
Further Features

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission
before reusing these images.

Submodules

• Allows interfaces to be defined in one module and
implementation done in another

• Enables splitting and sharing of data and functionality

• Submodule of a module have access to the all entities and

components of that module and any ancestor submodules

• Allows definition of interfaces for others to implement

• Lets library developers provide some code and let others implement

the rest

• Can reduce compilation issues/time

Submodule examples
module points

type :: point

real :: x, y

end type point

interface

module function point_dist(a, b) result(distance)

type(point), intent(in) :: a, b

real :: distance

end function point_dist

end interface

end module points

submodule (points) points_a

contains

module procedure point_dist

distance = sqrt((a%x - b%x)**2 + (a%y - b%y)**2)

end procedure point_dist

end submodule points_a

Parameterised derived types

• Can pass array lengths and kinds parameters when creating
an instance of a derived type, i.e.:
type :: point(kind)

integer, kind :: kind

real(kind) :: x, y

end type point

type(point(kind(0.0))) :: a

type :: 1darray(kind,n)

integer, kind :: kind=kind(0.0d0) !default value

integer, len :: n

real(kind) :: array(n)

end type 1darray

type(1darray(10)) :: vectorx

Allocation copy

• New intrinsic function to move data and allocation from
one variable to another:

real, allocatable :: vec(:),tempvec(:)

allocate(tempvec(N))

…

move_alloc(to=vec,from=tempvec)

• Types must be compatible

• From target become deallocated after call

Protected attribute

• Can define module variables as protected

• Module variable can be viewed outside the module but not
changed

• Protects variable from external change

Interoperability with C

• New module ISO_C_BINDING

• Has the kind types for C intrinsic variables

• Defined types and structures can be inter-operable:

TYPE, BIND(C) :: matrix

….

END TYPE matrix

• Some restrictions on what can be in the types or structures

• Same can be done for procedures with defined interfaces

Summary

• F2003 and F2008 add further stuff too

• Co-arrays, etc…

• Lots of nice features

• Language continuing to evolve

• Can still get by with mostly F90 for a lot of program

