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Submodules

• Allows interfaces to be defined in one module and 
implementation done in another

• Enables splitting and sharing of data and functionality

• Submodule of a module have access to the all entities and 

components of that module and any ancestor submodules

• Allows definition of interfaces for others to implement

• Lets library developers provide some code and let others implement 

the rest

• Can reduce compilation issues/time



Submodule examples
module points

type :: point

real :: x, y

end type point

interface

module function point_dist(a, b) result(distance)

type(point), intent(in) :: a, b

real :: distance

end function point_dist

end interface

end module points

submodule (points) points_a

contains

module procedure point_dist

distance = sqrt((a%x - b%x)**2 + (a%y - b%y)**2)

end procedure point_dist

end submodule points_a



Parameterised derived types

• Can pass array lengths and kinds parameters when creating 
an instance of a derived type, i.e.:
type :: point(kind)

integer, kind :: kind

real(kind) :: x, y

end type point

type(point(kind(0.0))) :: a

type :: 1darray(kind,n)

integer, kind :: kind=kind(0.0d0) !default value

integer, len :: n

real(kind) :: array(n)

end type 1darray

type(1darray(10)) :: vectorx



Allocation copy

• New intrinsic function to move data and allocation from 
one variable to another:

real, allocatable :: vec(:),tempvec(:)

allocate(tempvec(N))

…

move_alloc(to=vec,from=tempvec)

• Types must be compatible

• From target become deallocated after call



Protected attribute

• Can define module variables as protected

• Module variable can be viewed outside the module but not 
changed

• Protects variable from external change



Interoperability with C

• New module ISO_C_BINDING

• Has the kind types for C intrinsic variables

• Defined types and structures can be inter-operable:

TYPE, BIND(C) :: matrix

….

END TYPE matrix

• Some restrictions on what can be in the types or structures

• Same can be done for procedures with defined interfaces



Summary

• F2003 and F2008 add further stuff too

• Co-arrays, etc…

• Lots of nice features

• Language continuing to evolve

• Can still get by with mostly F90 for a lot of program


