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Object Dependency Example

• What’s undesirable about this?

// UserInterface

public void compute() {

engine.compute();

}

// Engine

public void compute() {

...

ui.updateGraphics();

}

engine = Engine

:UserInterface

compute()
updateGraphics()

ui = UserInterface

:Engine

compute()



Two-Way Interdependency

• As well as the UserInterface being dependent on the 
Engine, the Engine is dependent on the UI

• So the Engine can’t run in isolation

• difficult to slot in a different interface (eg. command line)

• difficult to test the Engine component in isolation

• If there’s a display problem, is it in the UserInterface or 
the Engine?

• obvious place to look is the UserInterface

• with this design the problem might be in the Engine 



Functional separation

• Knowledge of the screen display is the responsibility of the 
UI not the Engine

• The Engine does not need to know about the UI

• ‘Knowledge Localisation’

• if one component doesn’t need to know about another keep it that way!

• Client-server is okay

• This is server-server



Object Dependency Separation

• Better solution

engine = Engine

:UserInterface

compute()
updateGraphics()

:Engine

compute()

// UserInterface

public void compute() {

engine.compute();

unpdateGraphics();

}

// Engine

public void compute() {

...

}



Trade-Off Example
• Drawing package

• How to track selected shapes
Canvas

Shape (selected)

Shape

Selected: 1



Slow Version

// Shape

public void select() {

selected = true;

}

public void deselect() {

selected = false;

}

public boolean isSelected() {

return selected;

} 

// Canvas

public int numSelected() {

// Return the number of selected shapes.

int n = 0;

foreach shape in shapes {

if (shape.isSelected()) {n = n + 1;}

}

return n;

}

selected: Boolean

:Shape

select()
deselected()
isSelected(): Boolean

:Canvas

numSelected(): Integer

shapes: Collection of Shape



Fast Version

// Shape

public void select {

selected = true;

canvas.incSelected();

}

public void deselect {

selected = false;

canvas.decSelected();

}

// Canvas

public void incSelected() {

numSelected++;

}

public void Selected() {

numSelected--;

}

public int numSelected() {

// Return the number of selected shapes.

return numSelected;

}

selected: Boolean

:Shape

select()

deselected()

isSelected(): Boolean

:Canvas

numSelected(): Integer

incrSelected()

decSelected()

shapes: Collection of Shape



Storage of State

• Advantages

• the changes allow numSelected() to run in constant time 

• Disadvantages

• they result in a bit more memory being consumed

• pointers from shapes to the canvas

• numSelected variable on Canvas

• more seriously they create interdependency!

• a Shape cannot run without a Canvas - may impede testing

• ‘algorithm dependency’ - future algorithms must be very careful to update 

numSelected



Storage of State

• What of the case where the shape being removed is 
also currently selected?

// Canvas

public void addShape(Shape s) {

shapes.add(s);

}

public void removeShape(Shape s) {

shapes.remove(s);

}

• Suppose someone adds simple methods for adding and 
removing shapes

:Canvas

numSelected(): Integer

incrSelected()

decSelected()

addShape(s: Shape)

removeShape(s: Shape)

shapes: Collection of Shape



Trade-Off Example

• The numSelected variable has not been updated

• It’s a bug!

Wrong! Selected: 1

Canvas



Trade-Off Summary

• Storage of state here is a trade-off between

• speed

• memory

• complexity

• specifically, the ease of extension and maintenance

• Only resolve in favour of speed if it really is a speed-
critical section

• Try to minimise the potential for bugs 



Derived Attributes

x: Float
y: Float

Point

point2

point1

area

21

point1: Point
point2: Point

Rectangle

• A derived attribute is a piece of data which can be 
calculated from more-fundamental attributes
• a rectangle’s points are its fundamental attributes

• a rectangle’s area is a derived attribute



Derived Attributes
• Easiest plan is to implement area() as a method only

// Rectangle

public float area() {

int w = point1.x() - point2.x();

int h =  point1.y() - point2.y();

return Math.abs(w * h);

}

• But if speed is critical, may have to store the area

point1: Point
point2: Point

area(): Float

Rectangle

x: Float
y: Float

x(): Float
y(): Float

Point

21



Derived Attributes
• Storing the area creates interdependency amongst the 

variables

• so ensure point1 and point2 can be modified only via an interface

// Rectangle

public void setPoint1(Point p) {

point1 = p;

updateArea();

}

public void setPoint2(Point p) {

point2 = p;

updateArea();

}

private void updateArea() {

int w = point1.x() - point2.x();

int h =  point1.y() - point2.y();

area = Math.abs(w * h);

}

point1: Point
point2: Point
area: Float

area(): Float
setPoint1(p: Point)
setPoint2(p: Point)
updateArea()

Rectangle



Factoring Out Side-Effects
• Often good practice to divide a method into a calculation 

part and a side-effect part

• localising side-effects makes debugging easier

• making methods smaller and simpler is a worthwhile goal anyway

// Rectangle

public void updateArea() {

area = calculateArea();

}

private float calculateArea() {

// Return the area. No side-effects.

int w = point1.x() - point2.x();

int h =  point1.y() - point2.y();

return Math.abs(w * h);

}

// Rectangle

public void updateArea() {

// Calculate new area and store it.

int w = point1.x() - point2.x();

int h =  point1.y() - point2.y();

area = Math.abs(w * h);

}



Method location

• The calculateArea()method needs to access point 

data // Rectangle

public float calculateArea() {

int w = point1.x() - point2.x();

int h =  point1.y() - point2.y();

return Math.abs(w * h);

}

// Rectangle

public float calculateArea() {

return point1.rectangularAreaTo(point2);

}

// Point

public float rectangularAreaTo(Point p) {

int w = p.x() - x;

int h =  p.y() - y;

return Math.abs(w * h);

}

• This is a clue to think about implementing it elsewhere 

e.g. greater flexibility if it’s on Point



Designing Classes for Reuse

• When designing a class, consider splitting it into a 
hierarchy even if there’s no current necessity

• if you can identify a sensible concept, factor it out

• lots of small classes are better than one big class

• keeps complexity down

• makes subsequent reuse much easier

Book

Document

Book Leaflet



Arguments are Healthy
• If a method relies on some global ‘constant’, try to build it 

from a method which doesn’t

// Event

public void process() {

…

t = t + Simulator.getClockStep();

…

}

// Event

public void process() {

process(Simulator.getClockStep());

}

public void process(float clockStep) {

…

t = t + clockStep;

...

}

• Turns implicit dependency into an explicit one

• Improves flexibility and reuse opportunities



Let the Compiler do the Work

• Consider an options component within a system
• provides a mapping of string names to integer values

options.set(“NodeHeight”, 45);

options.get(“NodeHeeght”);

• What happens if you make a spelling mistake?
• runtime error

name: String
number: Integer

set(name: String, i: Integer)
get(name: String): Integer

Options



Let the Compiler do the Work

• What happens if you make a spelling mistake now?
• compilation error - excellent!

1

*

nodeHeight(): Option

Options

set(i: Integer)
get() Integer

Option

• Much safer to add a class for an option, and access the “NodeHeight” option 
instance via a method



Reuse

• Reuse 
• The process of creating software systems from exisiting software 

assets

• Object-oriented programming encourages reuse
• Encapsulation: specifies which operations access which data

• Polymorphism: restricts the assumptions of an object to a well defined 
protocol

• Inheritance: allows re-use of a class whose behaviour provides some 
of the behaviour of a new class

• However successful reuse also requires
• Better ways to describe behaviour + interfaces 

• Easier ways to plug parts together



Reuse

• Classes
• The traditional entity of reuse

• However reuse of a set of classes is more useful

• Frameworks
• Set of classes with well defined interactions

• Designed to solve specific problems

• Customisable, implementation may only be partially defined

• Components
• Independent software entities (e.g. a set of classes) which can be 

integrated unchanged into larger systems

• Component Based Development
• Describes software developed by assembling exisiting components



Reuse

• Frameworks and Patterns relate to software reuse

• Expertise reuse is also important

• Patterns

• A general solution to a problem

• Abstracting common practice in solving a similar set of problems

• Process Patterns

• Describe rules which can be followed when building software systems

• Design Patterns

• Describe a set of classes and objects which solve a general design 

problem, for you to customise



Development and performance

• OO programming is focussed on code reuse and safe 
development

• OO programming does not guarantee good code

• Poor design will lead to poor code

• For Fortran the correct split of modules and classes is key

• Provided objects are not too low-level performance shouldn’t 
be affected
• Accessing individual array elements through methods in computational 

kernels will damage performance

• Constantly calculating data that could be stored may damage performance

• Storing data that could be calculated on the fly may damage performance

• OO functionality itself will not add much overhead



Performance

• Example performance 

investigation

• Very old

• F90 features not F2003 

• features 

• Performance ultimate 

dependent on 

implementation



Summary

• Make life easy for yourself

• make the code easy to read and understand

• minimise dependencies among objects 

• make a dependency explicit if you can’t avoid it

• decide on a class’s responsibilities and adhere to them

• don’t add complexity to gain speed unless you really have to

• design code with a careful eye on flexibility and re-use

• design methods that encapsulate small pieces of functionality

• give as much of the testing burden to the compiler as you can


