
Design and performance

considerations

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission
before reusing these images.

Object Dependency Example

• What’s undesirable about this?

// UserInterface

public void compute() {

engine.compute();

}

// Engine

public void compute() {

...

ui.updateGraphics();

}

engine = Engine

:UserInterface

compute()
updateGraphics()

ui = UserInterface

:Engine

compute()

Two-Way Interdependency

• As well as the UserInterface being dependent on the
Engine, the Engine is dependent on the UI

• So the Engine can’t run in isolation

• difficult to slot in a different interface (eg. command line)

• difficult to test the Engine component in isolation

• If there’s a display problem, is it in the UserInterface or
the Engine?

• obvious place to look is the UserInterface

• with this design the problem might be in the Engine

Functional separation

• Knowledge of the screen display is the responsibility of the
UI not the Engine

• The Engine does not need to know about the UI

• ‘Knowledge Localisation’

• if one component doesn’t need to know about another keep it that way!

• Client-server is okay

• This is server-server

Object Dependency Separation

• Better solution

engine = Engine

:UserInterface

compute()
updateGraphics()

:Engine

compute()

// UserInterface

public void compute() {

engine.compute();

unpdateGraphics();

}

// Engine

public void compute() {

...

}

Trade-Off Example
• Drawing package

• How to track selected shapes
Canvas

Shape (selected)

Shape

Selected: 1

Slow Version

// Shape

public void select() {

selected = true;

}

public void deselect() {

selected = false;

}

public boolean isSelected() {

return selected;

}

// Canvas

public int numSelected() {

// Return the number of selected shapes.

int n = 0;

foreach shape in shapes {

if (shape.isSelected()) {n = n + 1;}

}

return n;

}

selected: Boolean

:Shape

select()
deselected()
isSelected(): Boolean

:Canvas

numSelected(): Integer

shapes: Collection of Shape

Fast Version

// Shape

public void select {

selected = true;

canvas.incSelected();

}

public void deselect {

selected = false;

canvas.decSelected();

}

// Canvas

public void incSelected() {

numSelected++;

}

public void Selected() {

numSelected--;

}

public int numSelected() {

// Return the number of selected shapes.

return numSelected;

}

selected: Boolean

:Shape

select()

deselected()

isSelected(): Boolean

:Canvas

numSelected(): Integer

incrSelected()

decSelected()

shapes: Collection of Shape

Storage of State

• Advantages

• the changes allow numSelected() to run in constant time

• Disadvantages

• they result in a bit more memory being consumed

• pointers from shapes to the canvas

• numSelected variable on Canvas

• more seriously they create interdependency!

• a Shape cannot run without a Canvas - may impede testing

• ‘algorithm dependency’ - future algorithms must be very careful to update

numSelected

Storage of State

• What of the case where the shape being removed is
also currently selected?

// Canvas

public void addShape(Shape s) {

shapes.add(s);

}

public void removeShape(Shape s) {

shapes.remove(s);

}

• Suppose someone adds simple methods for adding and
removing shapes

:Canvas

numSelected(): Integer

incrSelected()

decSelected()

addShape(s: Shape)

removeShape(s: Shape)

shapes: Collection of Shape

Trade-Off Example

• The numSelected variable has not been updated

• It’s a bug!

Wrong! Selected: 1

Canvas

Trade-Off Summary

• Storage of state here is a trade-off between

• speed

• memory

• complexity

• specifically, the ease of extension and maintenance

• Only resolve in favour of speed if it really is a speed-
critical section

• Try to minimise the potential for bugs

Derived Attributes

x: Float
y: Float

Point

point2

point1

area

21

point1: Point
point2: Point

Rectangle

• A derived attribute is a piece of data which can be
calculated from more-fundamental attributes
• a rectangle’s points are its fundamental attributes

• a rectangle’s area is a derived attribute

Derived Attributes
• Easiest plan is to implement area() as a method only

// Rectangle

public float area() {

int w = point1.x() - point2.x();

int h = point1.y() - point2.y();

return Math.abs(w * h);

}

• But if speed is critical, may have to store the area

point1: Point
point2: Point

area(): Float

Rectangle

x: Float
y: Float

x(): Float
y(): Float

Point

21

Derived Attributes
• Storing the area creates interdependency amongst the

variables

• so ensure point1 and point2 can be modified only via an interface

// Rectangle

public void setPoint1(Point p) {

point1 = p;

updateArea();

}

public void setPoint2(Point p) {

point2 = p;

updateArea();

}

private void updateArea() {

int w = point1.x() - point2.x();

int h = point1.y() - point2.y();

area = Math.abs(w * h);

}

point1: Point
point2: Point
area: Float

area(): Float
setPoint1(p: Point)
setPoint2(p: Point)
updateArea()

Rectangle

Factoring Out Side-Effects
• Often good practice to divide a method into a calculation

part and a side-effect part

• localising side-effects makes debugging easier

• making methods smaller and simpler is a worthwhile goal anyway

// Rectangle

public void updateArea() {

area = calculateArea();

}

private float calculateArea() {

// Return the area. No side-effects.

int w = point1.x() - point2.x();

int h = point1.y() - point2.y();

return Math.abs(w * h);

}

// Rectangle

public void updateArea() {

// Calculate new area and store it.

int w = point1.x() - point2.x();

int h = point1.y() - point2.y();

area = Math.abs(w * h);

}

Method location

• The calculateArea()method needs to access point

data // Rectangle

public float calculateArea() {

int w = point1.x() - point2.x();

int h = point1.y() - point2.y();

return Math.abs(w * h);

}

// Rectangle

public float calculateArea() {

return point1.rectangularAreaTo(point2);

}

// Point

public float rectangularAreaTo(Point p) {

int w = p.x() - x;

int h = p.y() - y;

return Math.abs(w * h);

}

• This is a clue to think about implementing it elsewhere

e.g. greater flexibility if it’s on Point

Designing Classes for Reuse

• When designing a class, consider splitting it into a
hierarchy even if there’s no current necessity

• if you can identify a sensible concept, factor it out

• lots of small classes are better than one big class

• keeps complexity down

• makes subsequent reuse much easier

Book

Document

Book Leaflet

Arguments are Healthy
• If a method relies on some global ‘constant’, try to build it

from a method which doesn’t

// Event

public void process() {

…

t = t + Simulator.getClockStep();

…

}

// Event

public void process() {

process(Simulator.getClockStep());

}

public void process(float clockStep) {

…

t = t + clockStep;

...

}

• Turns implicit dependency into an explicit one

• Improves flexibility and reuse opportunities

Let the Compiler do the Work

• Consider an options component within a system
• provides a mapping of string names to integer values

options.set(“NodeHeight”, 45);

options.get(“NodeHeeght”);

• What happens if you make a spelling mistake?
• runtime error

name: String
number: Integer

set(name: String, i: Integer)
get(name: String): Integer

Options

Let the Compiler do the Work

• What happens if you make a spelling mistake now?
• compilation error - excellent!

1

*

nodeHeight(): Option

Options

set(i: Integer)
get() Integer

Option

• Much safer to add a class for an option, and access the “NodeHeight” option
instance via a method

Reuse

• Reuse
• The process of creating software systems from exisiting software

assets

• Object-oriented programming encourages reuse
• Encapsulation: specifies which operations access which data

• Polymorphism: restricts the assumptions of an object to a well defined
protocol

• Inheritance: allows re-use of a class whose behaviour provides some
of the behaviour of a new class

• However successful reuse also requires
• Better ways to describe behaviour + interfaces

• Easier ways to plug parts together

Reuse

• Classes
• The traditional entity of reuse

• However reuse of a set of classes is more useful

• Frameworks
• Set of classes with well defined interactions

• Designed to solve specific problems

• Customisable, implementation may only be partially defined

• Components
• Independent software entities (e.g. a set of classes) which can be

integrated unchanged into larger systems

• Component Based Development
• Describes software developed by assembling exisiting components

Reuse

• Frameworks and Patterns relate to software reuse

• Expertise reuse is also important

• Patterns

• A general solution to a problem

• Abstracting common practice in solving a similar set of problems

• Process Patterns

• Describe rules which can be followed when building software systems

• Design Patterns

• Describe a set of classes and objects which solve a general design

problem, for you to customise

Development and performance

• OO programming is focussed on code reuse and safe
development

• OO programming does not guarantee good code

• Poor design will lead to poor code

• For Fortran the correct split of modules and classes is key

• Provided objects are not too low-level performance shouldn’t
be affected
• Accessing individual array elements through methods in computational

kernels will damage performance

• Constantly calculating data that could be stored may damage performance

• Storing data that could be calculated on the fly may damage performance

• OO functionality itself will not add much overhead

Performance

• Example performance

investigation

• Very old

• F90 features not F2003

• features

• Performance ultimate

dependent on

implementation

Summary

• Make life easy for yourself

• make the code easy to read and understand

• minimise dependencies among objects

• make a dependency explicit if you can’t avoid it

• decide on a class’s responsibilities and adhere to them

• don’t add complexity to gain speed unless you really have to

• design code with a careful eye on flexibility and re-use

• design methods that encapsulate small pieces of functionality

• give as much of the testing burden to the compiler as you can

