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Program units
• Could write complete program as a single unit

• Preferable to break the program into smaller more 

manageable units

• In Fortran there are three types of program unit
• Main program

• External subprogram (e.g. library routines)

• Module

• Program units
• Perform simple manageable task(s) 

• Can be written, compiled and tested in isolation

• Built up to form the complete program



Modules
• Constants, variables, and procedures can be encapsulated in

modules for use in one or more programs.

• A module is a collection of variables and procedures
module sort

implicit none

! variable specifications

...

contains

! procedure specifications

subroutine sort_sub1()

... 

end subroutine sort_sub1

...

end module sort

• Variables declared above contains are in scope
• Everywhere in the module itself
• Can also be made available by using the module



Points about modules

• Within a module, functions and subroutines are known as 
module procedures

• Module procedures can contain internal procedures

• Module objects can be given the SAVE attribute

• Modules can be USEd by procedures and modules

• Modules must be compiled before the program unit 
which uses them.



Module syntax

MODULE module-name

[ <declarations and specification statements> ]

[ CONTAINS

<module-procedures> ]

END [ MODULE [ module-name ]]



MODULE Triangle_Operations

IMPLICIT NONE

REAL, PARAMETER :: pi=3.14159

CONTAINS

FUNCTION theta(x,y,z)

...

END FUNCTION theta

FUNCTION Area(x,y,z)

...

END FUNCTION Area

END MODULE Triangle_operations

Module example



Using modules

• Contents of a module are made available with use :
PROGRAM TriangUser

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c

• The use statement(s) should go directly after the program statement

• implicit none should go directly after any use statements

• There are important benefits
• Procedures contained within modules have explicit interfaces

• Number and type of the arguments is checked at compile time

• Not the case for external procedures

• Can implement data hiding or encapsulation
• Via public and private statements and attributes



Restricting visibility

• The visibility of an object declared in a module can be 
restricted to that module by giving it the attribute PRIVATE

REAL :: Area, theta

PUBLIC !confirm default

PRIVATE :: theta      !restrict

REAL, PRIVATE :: height!restrict

• All variables are available within the module

• But can only “use” public objects

• The default case is public



USE rename syntax

• Can rename module variables and procedures when 
using them:

USE <module-name> &

[,<new-name> => <use-name>]

i.e.

USE Triangle_Operations, &

Space => Area



USE ONLY syntax

• Also possible to restrict what parts of a module to use:

USE <module-name> [, ONLY : <only-list>]

i.e.

USE Triangle_operations, ONLY: &

pi, Space => Area



• Fortran allows the definition of interfaces
• Informs compiler of expected shape, type, and number of arguments for routine or function 

(also optional nature, intent)  

• Can provide

• Compile time checking and aid to debugging code

• Potential increase in efficiency

• Can have explicit interfaces, i.e.:
interface

real function fun(x)

real, intent(in) :: x

end function fun

end interface

• Not necessary to specify explicit interfaces for module 

procedures

Module interfaces

interface [name] [Interface specification part] end interface [name]



Module interfaces
• Possible to implement polymorphism with module interfaces, i.e.:

module maths_functions

implicit none

private

public :: my_sum

interface my_sum

module procedure real_sum

module procedure int_sum

end interface

contains

function real_sum (a, b)

implicit none

real, intent(in) :: a,b

real_sum = a + b

end function real_sum

function int_sum (a, b)

implicit none

integer, intent(in) :: a,b

int_sum = a + b

end function int_sum

end module



Operator overloading 

• Using interfaces it is possible to overload operators (or define your 
own operators) as well:

implicit none

private

interface operator(+)

module procedure real_sum, int_sum

end interface

contains

…

• Only really makes sense if you define your own operators or 
datatypes
• Can’t override existing definitions (the above example isn’t actually allowed)



Psuedo OO programming with F90

• Modules and interfaces allow semi-OO programming

• Encapsulation of data and functions with modules

• Controlled access to data or functions with private and public 

keywords

• Polymorphism with interfaces

• Operator overloading with interfaces

• Does not provide full OO functionality but can be very 
powerful

• Often enough functionality with this without using the F2003 additions



Exercise

• Look at the basic module creation practicals

• Move on to covert percolate source code from single file 
to multiple modules



Compiling code with modules
• Consider the program main (main.f90) which uses module sort 

(sort.f90)
program main

use sort

implicit none

...

call sort_sub1()

end program main

• main.f90 and sort.f90 are separate files

• To compile this program use
gfortran sort.f90 main.f90 –o progsort

• As the program main uses module sort, sort should be compiled 

before main



Compiling code with modules

• If you execute the command

gfortran sort.f90 main.f90 –o progsort

• You will notice that a file with a .mod extension is 
created for each module file 
• For this example a file sort.mod will be created 

• These .mod files contain information about global files and 

interfaces



Some dos and don’ts
• Can have:

module a

end module a

module b

use a

end module b

program c

use b

end program c

• But not:
module a

use b

end module a

module b

use a

end module b


