
Modules

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission
before reusing these images.

Program units
• Could write complete program as a single unit

• Preferable to break the program into smaller more

manageable units

• In Fortran there are three types of program unit
• Main program

• External subprogram (e.g. library routines)

• Module

• Program units
• Perform simple manageable task(s)

• Can be written, compiled and tested in isolation

• Built up to form the complete program

Modules
• Constants, variables, and procedures can be encapsulated in

modules for use in one or more programs.

• A module is a collection of variables and procedures
module sort

implicit none

! variable specifications

...

contains

! procedure specifications

subroutine sort_sub1()

...

end subroutine sort_sub1

...

end module sort

• Variables declared above contains are in scope
• Everywhere in the module itself
• Can also be made available by using the module

Points about modules

• Within a module, functions and subroutines are known as
module procedures

• Module procedures can contain internal procedures

• Module objects can be given the SAVE attribute

• Modules can be USEd by procedures and modules

• Modules must be compiled before the program unit
which uses them.

Module syntax

MODULE module-name

[<declarations and specification statements>]

[CONTAINS

<module-procedures>]

END [MODULE [module-name]]

MODULE Triangle_Operations

IMPLICIT NONE

REAL, PARAMETER :: pi=3.14159

CONTAINS

FUNCTION theta(x,y,z)

...

END FUNCTION theta

FUNCTION Area(x,y,z)

...

END FUNCTION Area

END MODULE Triangle_operations

Module example

Using modules

• Contents of a module are made available with use :
PROGRAM TriangUser

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c

• The use statement(s) should go directly after the program statement

• implicit none should go directly after any use statements

• There are important benefits
• Procedures contained within modules have explicit interfaces

• Number and type of the arguments is checked at compile time

• Not the case for external procedures

• Can implement data hiding or encapsulation
• Via public and private statements and attributes

Restricting visibility

• The visibility of an object declared in a module can be
restricted to that module by giving it the attribute PRIVATE

REAL :: Area, theta

PUBLIC !confirm default

PRIVATE :: theta !restrict

REAL, PRIVATE :: height!restrict

• All variables are available within the module

• But can only “use” public objects

• The default case is public

USE rename syntax

• Can rename module variables and procedures when
using them:

USE <module-name> &

[,<new-name> => <use-name>]

i.e.

USE Triangle_Operations, &

Space => Area

USE ONLY syntax

• Also possible to restrict what parts of a module to use:

USE <module-name> [, ONLY : <only-list>]

i.e.

USE Triangle_operations, ONLY: &

pi, Space => Area

• Fortran allows the definition of interfaces
• Informs compiler of expected shape, type, and number of arguments for routine or function

(also optional nature, intent)

• Can provide

• Compile time checking and aid to debugging code

• Potential increase in efficiency

• Can have explicit interfaces, i.e.:
interface

real function fun(x)

real, intent(in) :: x

end function fun

end interface

• Not necessary to specify explicit interfaces for module

procedures

Module interfaces

interface [name] [Interface specification part] end interface [name]

Module interfaces
• Possible to implement polymorphism with module interfaces, i.e.:

module maths_functions

implicit none

private

public :: my_sum

interface my_sum

module procedure real_sum

module procedure int_sum

end interface

contains

function real_sum (a, b)

implicit none

real, intent(in) :: a,b

real_sum = a + b

end function real_sum

function int_sum (a, b)

implicit none

integer, intent(in) :: a,b

int_sum = a + b

end function int_sum

end module

Operator overloading

• Using interfaces it is possible to overload operators (or define your
own operators) as well:

implicit none

private

interface operator(+)

module procedure real_sum, int_sum

end interface

contains

…

• Only really makes sense if you define your own operators or
datatypes
• Can’t override existing definitions (the above example isn’t actually allowed)

Psuedo OO programming with F90

• Modules and interfaces allow semi-OO programming

• Encapsulation of data and functions with modules

• Controlled access to data or functions with private and public

keywords

• Polymorphism with interfaces

• Operator overloading with interfaces

• Does not provide full OO functionality but can be very
powerful

• Often enough functionality with this without using the F2003 additions

Exercise

• Look at the basic module creation practicals

• Move on to covert percolate source code from single file
to multiple modules

Compiling code with modules
• Consider the program main (main.f90) which uses module sort

(sort.f90)
program main

use sort

implicit none

...

call sort_sub1()

end program main

• main.f90 and sort.f90 are separate files

• To compile this program use
gfortran sort.f90 main.f90 –o progsort

• As the program main uses module sort, sort should be compiled

before main

Compiling code with modules

• If you execute the command

gfortran sort.f90 main.f90 –o progsort

• You will notice that a file with a .mod extension is
created for each module file
• For this example a file sort.mod will be created

• These .mod files contain information about global files and

interfaces

Some dos and don’ts
• Can have:

module a

end module a

module b

use a

end module b

program c

use b

end program c

• But not:
module a

use b

end module a

module b

use a

end module b

