
1

Introduction to Object-

Oriented Programming

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material 

under the following terms: You must give appropriate credit, provide a link to the license and 

indicate if changes were made. If you adapt or build on the material you must distribute your work 

under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission 

before reusing these images.



2

Procedural programming

• Traditional scientific programming languages (i.e. C, Fortran) are 
procedural

• Programs constructed from functions/subroutines/procedures

• Modularity and re-use of operations achieved through grouping in functions

• Data scoping generally based on function scope

• Single function required (main), better practise to have as many 
functions as match distinct operations in the program

• Generally no explicit link between data and functions

• Data accessible and modifiable by functions at will

Object-oriented programming

• Object-oriented programming (OOP)

• Large programs often become hard to maintain and extend

• Complex interdependencies makes development and maintenance 

difficult

• Packaging functionality and data into groups and only exposing the 

minimum amount of this to other parts of the program can help 

address this issue

• Abstract datatypes (ADTs) are attractive programming idea

• Group code and data together

• Hide data and only access through associated code

• Provide defined interfaces and access mechanisms

• Hide users of data from details



3

OOP

• Can implement ADTs in procedural lanugages 

• Derived datatypes/structures

• Doesn’t force hiding of data

• Don’t allow easy re-use for different datatypes

• Object concept designed to allow fully functional 
implementation of ADTs

• Allow better control of visibility and access

• Allow better re-use of common code and extension for different data 

types or functionality

• A class is a specification of an ADT

• Blueprint of the ADT, definition of data and implementation of 

procedures

• An instance is a runtime instantiation of the ADT

• Actual ADT with data in it

• Can have as many instances as the program requires

• Instance also known as an Object

OOP - Encapsulation

name = “Bob Smith”

officeNumber = 8

:Person

Class

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)
name = “Sarah Wilson”

officeNumber = 9

:Person

name = “Andy Paul”

officeNumber = 254

:Person

name = “Mia Patton”

officeNumber = 50

:Person

Runtime Instances/Objects



4

7

Object Creation

• Object creation at runtime

Person p = new Person();

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)

name = “Bob Smith”

officeNumber = 8

:Person

name = “Sarah Wilson”

officeNumber = 9

:Person

name = “Andy Paul”

officeNumber = 254

:Person

name = “Mia Patton”

officeNumber = 50

:Person

8

Methods - Encapsulation

• Objects used by calling methods

• methods in OO => functions/subroutines in procedural programming

• they can take arguments and return results

• Cannot be called in isolation

• need an instance (object)

• (not strictly true, many languages have static methods)

p.setOfficeNumber(2)

p.moveOffice();

setOfficeNumber(2);

p
Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)

name = “Bob Smith”

officeNumber = 8

:Person



5

Methods - Encapsulation

• Method implementation specified in class

• Classes can have method specifications but not implementations 

(abstract class)

• Abstract classes need to be implemented in other classes to be used

• Methods can access class data
• i.e. officeNumber not visible outside class

// Person

public void setOfficeNumber(integer number) {

officeNumber = number;

return;

}

Class hierarchy and relationships

• Individual class functionality not particularly useful

• Power of OOP comes from the relationships between multiple classes

• Controlling code and data re-use

• Defining hierarchy/relationships between data

• Composition: has-a

• Objects can contain other objects within them 

• Inheritance: is-a-type-of

• Objects can be built on other objects (extend)

• Allows for multiple version of some functionality, only changing or 

adding what is required for the different version

• Abstract classes can define object to be implemented with no actual 

implementation provided



6

Composition

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)

Corridor

rooms:Array of Person

numberOfRooms: Integer

addPerson(Person): Boolean

removePerson(Person): Boolean

getNumberOfRooms(): Integer

getPerson(Integer i): Person

Building

corridors:Array of Corridor

numberOfCorridors: Integer

addCorridor(Corridor): Boolean

removeCorridor(Corridor): Boolean

getNumberOfCorridors(): Integer

getCorridor(Integer i): Corridor

getNumberOfRooms(): Integer

• Class containing an object can use the 
objects methods through that object

Inheritance

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)

Corridor

rooms:Array of Person

numberOfRooms: Integer

addPerson(Person): Boolean

removePerson(Person): Boolean

getNumberOfRooms(): Integer

getPerson(Integer i): Person

Building

corridors:Array of Corridor

numberOfCorridors: Integer

addCorridor(Corridor): Boolean

removeCorridor(Corridor): Boolean

getNumberOfCorridors(): Integer

getCorridor(Integer i): Corridor

getNumberOfRooms(): Integer

Manager

addPerson()

removePerson()

movePerson()

• Manager is a subclass of Person

• Person is a superclass of Manager
• Subclass inherits 

(can use) superclass 

functions and data

• Can add new 

functions and data



7

Polymorphism

• Can re-define superclass functions (override/subtyping)

// Person

public void print() {

write(“Person: “, name);

return;

}

//Manager

public void print() {

write(“Manager: “, name);

return;

}

Mixing objects

• OO languages allow mixing of subclasses:

Person arr[] = new Person[2];

arr[0] = new Person(“Adrian Jackson”); 

arr[1] = new Manager(“David Henty”);

for (int i = 0; i < numPeople; i++) {

arr[i].print(); 

}



8

Construction/Destruction

• Special function/method to setup an object (constructor)

• Called on object creation

• Ensures that object is created in desired state

• Likewise, possible to provide a method that is called when 
an object is destroyed (destructor)

• Enable cleaning up when object is no longer needed

Summary

• Object-oriented programming groups data and functionality together

• Safety of data can be ensured by controlling how data is accessed and 

updated (encapsulation)

• Definition and instance of data separated into class and object

• Class defines the data and functions that can operate on that data

• Object is a specific instance of the class

• Can have many, separate and distinct, objects from the same class

• Functionality can be re-used when creating new objects

• Composition and inheritance

• Enable specification/provision of interfaces for others to use or 

implement



9

Exercise

• This is purely a thought exercise

• Have a look at the percolate code. Think about how you 
could split that into classes

• Where could different functionality go?

• How would it then be used?

• What needs to know/access what?

• Where could things be likely to change?

• What things need to hidden for safety?


