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1 Implementing k-means

First we create the dataset. It will have 1500 samples and we want to use k-means to detect clusters
in this dataset.

In [1]: import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets

np.random.seed(0)

n_samples = 1500

X, y = datasets.make_blobs(n_samples=n_samples, random_state=8)

In [2]: print(X)

print(y)

[[ 5.86749807 8.17715188]

[ 5.61369982 9.93295527]

[ 7.22508428 10.44886194]

...,

[ 7.73674097 10.82855388]

[ -4.61701094 -9.64855983]

[ -3.48640175 -9.25766922]]

[0 0 0 ..., 0 2 2]

Let’s visualise the dataset. The clusters are clearly visible to us.

In [3]: plt.scatter(X[:, 0], X[:, 1])

plt.show()

plt.gcf().clear()
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To start the k-means calculation we pick three centroids - randomly, so in this case we select
the first three points in the dataset.

In [4]: k = 3

centroids = np.array(X[:k])

print(centroids)

[[ 5.86749807 8.17715188]

[ 5.61369982 9.93295527]

[ 7.22508428 10.44886194]]

Have a look at the dataset again and show the locations of the centroids.

In [5]: plt.scatter(X[:, 0], X[:, 1])

plt.scatter(centroids[:, 0], centroids[:, 1])

plt.show()

plt.gcf().clear()
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Now we start using Spark. The first operation is the creation of a "Resilient Distributed
Dataset" (RDD) which means distributing the data to the available nodes. This could be any size
of underlying cluster - the user doesn’t see the details.

Note that this is just a demo and normally the dataset would be available on the compute
nodes.

In [6]: rdd = sc.parallelize(X)

rdd.cache()

Out[6]: ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:475

We tell Spark to cache this dataset because k-means is an iterative algorithm and we will scan
through the data many times. (In this case, the dataset is so small that it will be easily kept in
memory. However, if necessary, Spark can spill to disk if the dataset grows too large.)

Let’s see how many records are in the dataset: Call the function count.

In [7]: rdd.count()

Out[7]: 1500

For the k-means algorithm we need to define a cost function. We will use the squared Eu-
clidean distance which is the "distance" between points.

In [8]: from math import sqrt

def cost_function(x, y):

return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)

We can test the cost function on two random points of the dataset:
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In [9]: cost_function(X[205], X[978])

Out[9]: 0.9590304461225516

Now we start the first k-means iteration: For each point in the dataset we calculate the dis-
tances to each of the centroids. Then we assign the point to the centroid to which it has the smallest
distance.

Spark allows us to do this quite easily: "For each" means we apply the "map" function, and
define the output as a lambda. So the following means that each point x is mapped to a tuple with
itself (x) as the first element, and the second element is a list of distances to all the centroids.

In [10]: d = rdd.map(lambda x: (x, [cost_function(x, centroids[i]) for i in range(k)]))

At this point, Spark has not actually "materialised" the dataset so no computations have actu-
ally happened because we only applied a "transformation". To kick off the calculation we need
to use an "action", for example "take" which returns the first n elements of a dataset. Let’s have a
look at the first 2 entries that from our mapping.

In [11]: d.take(2)

Out[11]: [(array([ 5.86749807, 8.17715188]),

[0.0, 1.7740516007978733, 2.646451758613209]),

(array([ 5.61369982, 9.93295527]),

[1.7740516007978733, 0.0, 1.6919573226760787])]

Now that we know all the distances we can pick the centroid that have the smallest distance
to our point. To do this we map each point to a tuple of itself and the centroid.

In [12]: assignments = d.map(lambda (x, c): (c.index(min(c)), x))

assignments.take(10)

Out[12]: [(0, array([ 5.86749807, 8.17715188])),

(1, array([ 5.61369982, 9.93295527])),

(2, array([ 7.22508428, 10.44886194])),

(0, array([ 6.76282255, 0.60514535])),

(0, array([ 8.0161824 , 1.54314701])),

(0, array([ 8.40185356, -0.37348132])),

(1, array([ 6.51192277, 9.81342902])),

(0, array([ 7.3996796 , 0.91258881])),

(0, array([ -4.98436335, -11.42227525])),

(0, array([ 9.88825096, 0.90241392]))]

Now we can plot the assignments of points to their centroids.

In [13]: colours = ['b','g','y']

for i in range(k):

all_assigned = np.array(assignments.filter(lambda (a, x): a==i).map(lambda (c, x): x).collect())

plt.scatter(all_assigned[:,0], all_assigned[:,1], color=colours[i])

plt.scatter([centroids[i][0]], [centroids[i][1]], color=['r'])

plt.show()

plt.gcf().clear()
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That doesn’t look very good. Both of the lower clusters are assigned to the same centroid and
the one at the top is split across all three centroids. Let’s see how many points are assigned to each
cluster: This is a class "Map-Reduce" operation for counting groups.

In [14]: assignments.map(lambda (c, a): (c, 1)).reduceByKey(lambda a,b: a+b).collect()

Out[14]: [(0, 1124), (1, 57), (2, 319)]

Actually, Spark has a built-in function that does this directly:

In [15]: assignments.countByKey()

Out[15]: defaultdict(int, {0: 1124, 1: 57, 2: 319})

Now we start the next iteration: For each cluster we calculate a new centroid as the mean of
all points in this cluster. So we first need to separate the clusters.

In [16]: c0 = assignments.filter(lambda (a, x): a==0).map(lambda (a, x): x)

c1 = assignments.filter(lambda (a, x): a==1).map(lambda (a, x): x)

c2 = assignments.filter(lambda (a, x): a==2).map(lambda (a, x): x)

c0.take(10)

Out[16]: [array([ 5.86749807, 8.17715188]),

array([ 6.76282255, 0.60514535]),

array([ 8.0161824 , 1.54314701]),

array([ 8.40185356, -0.37348132]),

array([ 7.3996796 , 0.91258881]),
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array([ -4.98436335, -11.42227525]),

array([ 9.88825096, 0.90241392]),

array([ 7.95311372, 8.36897664]),

array([ 6.10846066, 8.23343995]),

array([-6.66843698, -9.35707168])]

We now calculate the mean for each cluster and that yields the new centroids.

In [17]: print(c0.sum())

print(c0.count())

new_centroids = [c0.sum()/c0.count(), c1.sum()/c1.count(), c2.sum()/c2.count()]

print(new_centroids)

[ 1912.08080524 -3537.79137713]

1124

[array([ 1.70113951, -3.14750123]), array([ 5.88201222, 9.8330787 ]), array([ 7.96381989, 9.8000387 ])]

Now we use the same method as before to assign the points to their new centroids.

In [18]: d = rdd.map(lambda x: (x, [cost_function(x, new_centroids[i]) for i in range(k)]))

new_assignments = d.map(lambda (x, c): (c.index(min(c)), x))

new_assignments.take(10)

Out[18]: [(1, array([ 5.86749807, 8.17715188])),

(1, array([ 5.61369982, 9.93295527])),

(2, array([ 7.22508428, 10.44886194])),

(0, array([ 6.76282255, 0.60514535])),

(0, array([ 8.0161824 , 1.54314701])),

(0, array([ 8.40185356, -0.37348132])),

(1, array([ 6.51192277, 9.81342902])),

(0, array([ 7.3996796 , 0.91258881])),

(0, array([ -4.98436335, -11.42227525])),

(2, array([ 9.88825096, 0.90241392]))]

And plot the results.

In [19]: colours = ['b','g','y']

for i in range(k):

all_assigned = np.array(new_assignments.filter(lambda (a, x): a==i).map(lambda (c, x): x).collect())

plt.scatter(all_assigned[:,0], all_assigned[:,1], color=colours[i])

plt.scatter([new_centroids[i][0]], [new_centroids[i][1]], color=['r'])

plt.show()

plt.gcf().clear()
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Now let’s make this more efficient: We create functions for assigning points to centroids, and
for recalculating the centroids as the mean of the points in each cluster. The combination of those
functions gives us an iteration.

In [20]: def assign(rdd, centroids):

d = rdd.map(lambda x: (x, [cost_function(x, centroids[i]) for i in range(k)]))

return d.map(lambda (x, c): (c.index(min(c)), x))

def recalculate_centroids(assignments):

new_centroids = []

for i in range(k):

a = assignments.filter(lambda (a, x): a==i).map(lambda (a, x): x)

c = a.sum()/a.count()

new_centroids.append(c)

return new_centroids

def iteration(rdd, centroids):

assigned = assign(rdd, centroids)

new_centroids = recalculate_centroids(assigned)

return assigned, new_centroids

assigned, new_centroids = iteration(rdd, new_centroids)

To visually check the results let’s define a function for plotting the current cluster assignments.

In [21]: def draw_clusters(assignments, centroids):

colours = ['b','g','y']
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for i in range(k):

all_assigned = np.array(assignments.filter(lambda (a, x): a==i).map(lambda (c, x): x).collect())

plt.scatter(all_assigned[:,0], all_assigned[:,1], color=colours[i])

plt.scatter([centroids[i][0]], [centroids[i][1]], color=['r'])

plt.show()

plt.gcf().clear()

In [22]: draw_clusters(assigned, new_centroids)

And now repeat the following iteration as often as you like... You will see how the centroids
move and the algorithm slowly finds the correct clustering. Eventually, when there is no reassign-
ment of points any more, the algorithm stops.

In [25]: assigned, new_centroids = iteration(rdd, new_centroids)

draw_clusters(assigned, new_centroids)
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