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What is data streaming 
• Data Streaming is a strategy for processing large datasets 
•  Three Vs of Big Data:  

•  Volume 
•  Variety 
•  Velocity 



Why data streaming 
• Some datasets are already too large to store 
• Need new strategies for handling large datasets: 

•  Process as data is produced 
•  Compression/stacking/aggregation 

• Realtime computation of sensor data 
•  Short response times 



Example: LHC 



Example: LHC 
•  150 million sensors delivering data 40 million times per 

second 
•  1PB of data per second (!!) 
• With current systems it is impossible to store data at this 

rate 
•  Fast pre-selection of 1 in 10,000 events 
•  Fast processing selects 1% of the remaining for further 

analysis 
• Produces 30PB per year 



Example: Twitter 
•  6,000 tweets per second  

or over 500 million per day 
• Data analytics of tweets as they arrive 
• Stored in MySQL databases 
• Globally unique ID is assigned to each tweet 
• Data hash to store the tweet in one of the databases 
•  Throughput can be increased by increasing the number of 

databases 



Strategies for data stream processing 
• Handling large volumes of data and/or high-velocity data 

streams 
• No persistence – data is not stored 
• Access to a sliding window on the data 
• Often the goal is to extract real-time information  

•  Must be scalable to handle peak loads 
•  Aiming for short response times 

• Data stream mining 



Strategies for data stream mining 
• Data mining is an example for data processing 
• Many machine learning algorithms use multiple passes 

over the input data 
•  If a dataset gets too large we can’t use random access 

and multiple scans but have to use single pass algorithms 



Machine learning techniques 
Online learning 

•  Data becomes available 
sequentially 

•  Model is updated continuously 
•  Data is discarded after use 

 

Offline or batch learning 
•  Model is generated from the 

entire dataset 
•  Dataset is static 
•  Still might be too large for 

random access! 

Sequential access 
–  Update incrementally 
–  Single step or sliding 

windows (mini-batch) 

Random access 
–  Allows multiple passes over 

the data 
–  For example: k-means, 

recursive algorithms 



Multipass algorithms 
• A multipass algorithm traverses the data several times 
• Sequential or random access for input data 
• Only applicable when the dataset can be read many times 

•  Ideally: fits into memory 

•  For example: 
•  K-means 



Single pass algorithms 
• Reads input exactly once and in order 
• Updates the model in each step  
•  The model must be represented by a small number of 

properties that can be updated quickly and requires 
limited amount of storage 
•  Typically O(n) time and storage 
•  Ideally O(1) storage 

•  For example: Naïve Bayes 



Online learning 
•  There is a growing community building and evaluating 

algorithms that can be updated incrementally 
•  Targeting algorithms that typically require multiple passes 

and that would not be feasible in an online environment 
•  For example: 

•  Clustering 
•  K-means 



Data Streaming frameworks 
• A selection of examples: 

• Apache Storm (Twitter) 
• Apache Spark (Data Streaming) 
• Yahoo S4 
• Google TensorFlow 
• Amazon Kinesis 
• Apache Hadoop/YARN 



Apache Storm 
• A distributed realtime computation system 
• Scalable  
• Fault tolerant 
• Simple APIs, multi language 



Storm use cases 
• Storm powers a wide variety of Twitter systems, for 

example realtime analytics, search, revenue optimisation. 
• Storm powers a wide range of realtime features at 
Spotify, for example music recommendation, monitoring, 
ads targeting. 

• And many others! 



Twitter and Storm 
Twitter extracts emerging trends from the fire hose of 
tweets and maintains them at the local and national level. 
As a story begins to emerge, Twitter's trending topics 
algorithm identifies the topic in real time. This real-time 
algorithm is implemented within Storm as a continuous 
analysis of Twitter data. 
(https://www.ibm.com/developerworks/opensource/library/os-twitterstorm/) 
 



• Describe a data flow  
as a graph 

•  In Storm this is called 
a “topology” 

• Nodes are procedures  
that process or produce data  
(“bolts” and “spouts”)  

• Edges indicate how data streams between nodes 

How does Storm work? 



How Storm processes data 
• Each node consumes a stream of data 
• Data streams are streams of tuples 
• When a data tuple arrives at a bolt it kicks off a 

processing procedure 
• Spouts are data producers that initiate a data stream 
• Bolts produce zero or more output tuples for each input 

tuple 
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Example: Spam filtering 

•  Train model offline with an 
existing dataset and store 

• Classify incoming emails as 
spam (or ham) using the stored 
model 

• Update model when the user 
marks an email as spam 
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Scalability 
• Storm uses data parallelism: Data streams are a 

sequence of small blocks  
•  Twitter feed is a sequence of tweets plus metadata 
•  Sensor data is a sequence of observations 

• Each node executes in many instances 



Data parallelisation in Storm 
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Parallelisation 
•  The system distributes each data block to a target 

instance, according to grouping types defined in the 
topology 
•  Shuffle: random distribution, the default 
•  Fields: group by certain data attributes 
•  All-to-all, all-to-one 

• Worker nodes wait for work: Delivery of a data block 
triggers the execution 

•  Topologies can be rebalanced to increase or decrease the 
number of worker processes 



Fault tolerance 
•  Fault recovery: On failure of a worker messages are 

reassigned; worker are restarted if they fail 
•  Fault detection: data is tracked and replayed until it has 

been processed 
• Storm daemons are designed to be stateless and fail-fast 

– meaning that they start up again after a failure as if 
nothing has happened 



Conclusion 
• Big data is challenging existing systems 

•  Variety 
•  Velocity 
•  Volume 

• Processing must happen at real-time as data sets are too 
large to be persisted 

• Apache Storm is an example for a platform that offers 
reliable processing of unbounded streams of data 


