
Data Analytics with HPC

Data Streaming

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• What is data stream processing
• Why use streaming
• Strategies for data stream processing
•  Frameworks
• Apache Storm as an example
• Conclusions

What is data streaming
• Data Streaming is a strategy for processing large datasets
•  Three Vs of Big Data:

•  Volume
•  Variety
•  Velocity

Why data streaming
• Some datasets are already too large to store
• Need new strategies for handling large datasets:

•  Process as data is produced
•  Compression/stacking/aggregation

• Realtime computation of sensor data
•  Short response times

Example: LHC

Example: LHC
•  150 million sensors delivering data 40 million times per

second
•  1PB of data per second (!!)
• With current systems it is impossible to store data at this

rate
•  Fast pre-selection of 1 in 10,000 events
•  Fast processing selects 1% of the remaining for further

analysis
• Produces 30PB per year

Example: Twitter
•  6,000 tweets per second

or over 500 million per day
• Data analytics of tweets as they arrive
• Stored in MySQL databases
• Globally unique ID is assigned to each tweet
• Data hash to store the tweet in one of the databases
•  Throughput can be increased by increasing the number of

databases

Strategies for data stream processing
• Handling large volumes of data and/or high-velocity data

streams
• No persistence – data is not stored
• Access to a sliding window on the data
• Often the goal is to extract real-time information

•  Must be scalable to handle peak loads
•  Aiming for short response times

• Data stream mining

Strategies for data stream mining
• Data mining is an example for data processing
• Many machine learning algorithms use multiple passes

over the input data
•  If a dataset gets too large we can’t use random access

and multiple scans but have to use single pass algorithms

Machine learning techniques
Online learning

•  Data becomes available
sequentially

•  Model is updated continuously
•  Data is discarded after use

Offline or batch learning
•  Model is generated from the

entire dataset
•  Dataset is static
•  Still might be too large for

random access!

Sequential access
–  Update incrementally
–  Single step or sliding

windows (mini-batch)

Random access
–  Allows multiple passes over

the data
–  For example: k-means,

recursive algorithms

Multipass algorithms
• A multipass algorithm traverses the data several times
• Sequential or random access for input data
• Only applicable when the dataset can be read many times

•  Ideally: fits into memory

•  For example:
•  K-means

Single pass algorithms
• Reads input exactly once and in order
• Updates the model in each step
•  The model must be represented by a small number of

properties that can be updated quickly and requires
limited amount of storage
•  Typically O(n) time and storage
•  Ideally O(1) storage

•  For example: Naïve Bayes

Online learning
•  There is a growing community building and evaluating

algorithms that can be updated incrementally
•  Targeting algorithms that typically require multiple passes

and that would not be feasible in an online environment
•  For example:

•  Clustering
•  K-means

Data Streaming frameworks
• A selection of examples:

• Apache Storm (Twitter)
• Apache Spark (Data Streaming)
• Yahoo S4
• Google TensorFlow
• Amazon Kinesis
• Apache Hadoop/YARN

Apache Storm
• A distributed realtime computation system
• Scalable
• Fault tolerant
• Simple APIs, multi language

Storm use cases
• Storm powers a wide variety of Twitter systems, for

example realtime analytics, search, revenue optimisation.
• Storm powers a wide range of realtime features at
Spotify, for example music recommendation, monitoring,
ads targeting.

• And many others!

Twitter and Storm
Twitter extracts emerging trends from the fire hose of
tweets and maintains them at the local and national level.
As a story begins to emerge, Twitter's trending topics
algorithm identifies the topic in real time. This real-time
algorithm is implemented within Storm as a continuous
analysis of Twitter data.
(https://www.ibm.com/developerworks/opensource/library/os-twitterstorm/)

• Describe a data flow
as a graph

•  In Storm this is called
a “topology”

• Nodes are procedures
that process or produce data
(“bolts” and “spouts”)

• Edges indicate how data streams between nodes

How does Storm work?

How Storm processes data
• Each node consumes a stream of data
• Data streams are streams of tuples
• When a data tuple arrives at a bolt it kicks off a

processing procedure
• Spouts are data producers that initiate a data stream
• Bolts produce zero or more output tuples for each input

tuple

Twitter
Feed

Identify
trends

Notify
subscriber

tweet [trends]

Example: Spam filtering

•  Train model offline with an
existing dataset and store

• Classify incoming emails as
spam (or ham) using the stored
model

• Update model when the user
marks an email as spam

Read
email file

Extract
features

Update
model

Apply
model

Compare
results

train

classify

Scalability
• Storm uses data parallelism: Data streams are a

sequence of small blocks
•  Twitter feed is a sequence of tweets plus metadata
•  Sensor data is a sequence of observations

• Each node executes in many instances

Data parallelisation in Storm

Twitter
Feed

Identify
trends

Twitter
Feed

Twitter
Feed

Identify
trends

Identify
trends

Identify
trends

Identify
trends

Parallelisation
•  The system distributes each data block to a target

instance, according to grouping types defined in the
topology
•  Shuffle: random distribution, the default
•  Fields: group by certain data attributes
•  All-to-all, all-to-one

• Worker nodes wait for work: Delivery of a data block
triggers the execution

•  Topologies can be rebalanced to increase or decrease the
number of worker processes

Fault tolerance
•  Fault recovery: On failure of a worker messages are

reassigned; worker are restarted if they fail
•  Fault detection: data is tracked and replayed until it has

been processed
• Storm daemons are designed to be stateless and fail-fast

– meaning that they start up again after a failure as if
nothing has happened

Conclusion
• Big data is challenging existing systems

•  Variety
•  Velocity
•  Volume

• Processing must happen at real-time as data sets are too
large to be persisted

• Apache Storm is an example for a platform that offers
reliable processing of unbounded streams of data

