
Compilers
Algorithms to executables

Outline

• What does compiling mean?

• Where do libraries come in?

• Anatomy of a compiler

• Compiler “optimisations”

• Can the compiler parallelise my code?

• Why are there differences in compilers?

• On ARCHER we have the Cray, Intel and GNU compilers

Compiling

What does compiling mean?

Compiling Overview

• HPC programs are usually written in a high-level, human-

readable language.

• Almost always Fortran, C, or C++ (“99%” of all HPC applications)

• Rarely something else

• Processors execute machine code (via instruction sets)

• Compilers convert high-level source code into machine

code.

• Also incorporate functionality from external libraries

• Usually try to optimise the code produced so that it runs as fast as

possible on the processors

Libraries
• Libraries provide functionality that is common across

multiple programs
• Low level – e.g. filesystem access. Usually not interesting to users

• Optimised numerical operations – e.g. linear algebra, Fourier
transformations

• Communications and parallelism – e.g. Message Passing Interface
(MPI), OpenMP

• The compiler combines the code in these libraries with the
code generated from the user’s program to produce the
final executable.
• Linking at run time is also possible – known as dynamic linking (or

shared libraries).

Anatomy of a compiler

How does it actually work?

Compiler Flow

Link

Stage

Compile

Stage
Source

code files

Machine code

object files

(*.o)

Libraries

Executable

binary file

Compile Stage

• Operates on individual source code files

• Transforms high level source to machine code

• Produces object files – usually one object file per source file

• Error and warning checking performed

• Optimisations are performed

• More on optimisations later

• Actually consists of a number of sub-stages

• Details are beyond this course

Compile

Stage
Source

code files

Machine code

object files

(*.o)

Compiler Flow

Link

Stage

Compile

Stage
Source

code files

Machine code

object files

(*.o)

Libraries

Executable

binary file

Link Stage
• Object files are combined (linked) to produce the actual

application

• Application is an executable binary file

• Any library code required by the application is also linked

at this stage

• Two forms of linking:

• Static – All code is combined into a single executable file

• Dynamic – Code from libraries is not combined into executable file,

instead this code is called and executed dynamically when the

executable is run

Illustration of library linking

Program A Program B

Dynamic libraries

(*.so)

Static linking at

compile time,

executable contains

the libraries

Dynamic linking at

runtime, no libraries

contained in the

executable and these are

loaded in when the

program runs

Program A

Static libraries

(*.a)

Program B

Static libraries

(*.a)

Compiler optimisations

What do they do? When should/shouldn’t I use them?

Optimisation
• Compiler will try to alter code so it runs more quickly

• This can be done at a number of levels (high-level, assembly code,

machine code) and can include the reordering of operations

• Note: although these are called optimisations, this is a

misnomer

• Resulting code is never optimal

• Seldom any iterative process

• Seldom any attempt to quantify effect of any transformations

• Usually a predetermined sequence of transformations that is known

to produce performance gains for some codes.

Optimisation strategies
• Loop index reordering

• To match memory layout or make more effective use of the cache

• Loop unrolling

• Reduces the number of (or avoids) termination checks & jumps

• Use of fast mathematical operators

• Non IEEE compliant mathematical operations can speed up

arithmetic

• But can no longer be sure the answer is reproducible or correct (as

disables correctness checking.)

• Function in-lining

• Avoiding a function call

• Operation reordering to allow for cache reuse

When to use optimisation
• Simple answer: always

• You should always use the performance gains given by
optimisation

• If you are debugging then you usually switch optimisation
off to ensure that the statements are being executed in
the order you specified

• Compilers commonly combine optimisations into different
levels
• O0, O1, O2, O3  where 0 is no optimisation and 3 the most

extreme

• Other optimisations (such as Os for executable size.)

A warning on optimisation
• Some optimisations can change the order of calculations

• Which means that your code might produce slightly different results

with or without that optimisation enabled.

• When enabling new optimisations it is always worth ensuring that

the code still produces “correct” results

• If you suspect that compiler optimisations are causing a

problem you can turn them off gradually

• All good compilers allow the specification of a range of optimisation

levels so you can turn it off gradually

• An easy initial test is to reduce the optimisation level, i.e. to go from

O3 to O2

Cray, Intel and GNU compiler flags
Feature Cray Intel GNU

Listing -ra (fnt)

-hlist=a (cc/CC)

-opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1 and

above

By default at -O2 and

above

By default at -O3 or using

-ftree-vectorize

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -fp-model

[fast|fast=2|precise|

except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx

-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Debugging -g -g -g

Compilers and parallelisation

Can compilers parallelise my code?

Compiler parallelisation

• They cannot (yet) produce the general, high-level

parallelism required for scaling on multiple cores or nodes

• Compilers do not have the holistic view required to produce this

level of parallism

• Data parallelism is usually easier to produce automatically than

task parallelism

• Attempts have been made but with limited success so far.

• However, compilers often make a good job of

automatically parallelising floating point operations at the

CPU instruction level

Compiler parallelisation

• Compilers can produce parallel (or vector) instructions

• Makes use of “SIMD” (Single Instruction, Multiple Data) instructions

available on processor cores’ floating point units.

Different compilers

Why are there differences between compilers?

Standards and implementations
• Compilers implement the behaviour specified in agreed

standards for languages

• Multiple standards exist and change over time

• Standards cannot cover all cases and can contain ambiguities

• Some details are left unspecified

• Wherever the standard is not clear it is up to the compiler
architects to select the behaviour

• Leads to differences between compiler implementations

• Facilitates or hinders different optimisation possibilities

• Some compilers are open source (GNU), others commercial
(Intel) and can take advantage of detailed knowledge about
hardware behaviour

Summary

Summary

• The compiler is a hugely important part of the HPC

workflow

• Correct usage can provide significant performance

benefits

• With some caveats

• It is important to be aware of the differences between

compilers and whether your code requires a specific

compiler

