
bioexcel.eu

Partners Funding

Parallel Models
Different ways to exploit parallelism



bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their 
permission before reusing these images.



bioexcel.eu

Outline

• Shared-Variables Parallelism
• threads
• shared-memory architectures

• Message-Passing Parallelism
• processes
• distributed-memory architectures

• Practicalities
• compilers
• libraries
• usage on real HPC architectures



bioexcel.eu

Shared Variables
Threads-based parallelism



bioexcel.eu

Shared-memory concepts

• Have already covered basic concepts
• threads can all see data of parent process
• can run on different cores
• potential for parallel speedup



bioexcel.eu

Analogy

• One very large whiteboard in a two-person office
• the shared memory

• Two people working on the same problem
• the threads running on different cores attached to the memory

• How do they collaborate?
• working together
• but not interfering

• Also need private data
my	
data

shared	data

my	
data



bioexcel.eu

Thread Communication
Thread	1 Thread	2
mya=23

mya=a+1

23

23 24

Program

Private
data

Shared
data

a=mya



bioexcel.eu

Synchronisation

• Synchronisation crucial for shared variables approach
• thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation
• other mechanisms such as locks also available

• Writing parallel codes relatively straightforward
• access shared data as and when its needed

• Getting correct code can be difficult!



bioexcel.eu

Hardware

Need a shared-memory architecture to use threads-based parallelism:

Memory

Processor

Shared	Bus

Processor Processor Processor Processor



bioexcel.eu

Threads: Summary
• Shared blackboard is a good analogy for thread parallelism

• Thread-base parallelism requires a shared-memory architecture
• in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data
• need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP threads
• OpenMP standard allows simple statements to be added to code

• these control creation of threads, allocation of work
• Supports common parallel decomposition patterns, e.g. loop parallelism
• Provides flexible robust ways of managing threads’ behaviour at runtime

• this can make a big difference to performance 



bioexcel.eu

Message Passing
Process-based parallelism



bioexcel.eu

Analogy

• Two whiteboards in different single-person offices
• the distributed memory

• Two people working on the same problem
• the processes on different nodes attached to the interconnect

• How do they collaborate?
• to work on single problem

• Explicit communication
• e.g. by telephone
• no shared data

my	data my	data



bioexcel.eu

Process communication

a=23 Recv(1,b)
Process 1

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process 2



bioexcel.eu

Synchronisation

• Synchronisation is automatic in message-passing
• the messages do it for you

• Make a phone call …
• … wait until the receiver picks up

• Receive a phone call
• … wait until the phone rings

• No danger of corrupting someone else’s data
• no shared blackboard



bioexcel.eu

Hardware

Natural map to 
distributed-memory:

• one process per 
processor-core

• messages go over the 
interconnect, between 
nodes/OS’s 

Processor

Processor

Processor

Processor

Processor
Processor

Processor
Processor

Interconnect



bioexcel.eu

Processes: Summary

• Processes cannot share memory
• ring-fenced from each other
• analogous to white boards in separate offices

• Communication requires explicit messages
• analogous to making a phone call, sending an email, …
• synchronisation is done by the messages

• Almost exclusively use Message-Passing Interface (MPI)
• MPI is a library of function calls / subroutines
• Allows control over how information is shared between processes and 

independent distributed memory spaces through sending of messages
• Supported by and heavily optimised for HPC networks



bioexcel.eu

Practicalities

• 8-core machine might only have 2 
nodes
• how do we run MPI on a real HPC machine?

• Mostly ignore architecture
• pretend we have single-core nodes
• one MPI process per processor-core
• e.g. run 8 processes on the 2 nodes

• Messages between processes on the 
same node are fast
• but remember they also share access to the 

network

Interconnect



bioexcel.eu

Message Passing on Shared Memory

• Run one process per core
• don’t directly exploit shared memory
• analogy is phoning your office mate
• actually works well in practice!

• Message-passing programs 
run by a special job launcher
• user specifies #copies
• some control over allocation to nodes

my	data my	data



bioexcel.eu

Summary

• Shared-variables parallelism
• uses threads
• requires shared-memory machine
• easy to implement but limited scalability
• in HPC, done using OpenMP

• Distributed memory
• uses processes
• can run on any machine: messages can go over the interconnect
• harder to implement but better scalability
• on HPC, done using MPI


