
bioexcel.eu

Partners Funding

Measuring Parallel Performance
How well does my application scale?

1

bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their
permission before reusing these images.

bioexcel.eu

Outline
•Performance Metrics

•Scalability

•Amdahl’s law

•Gustafson’s law

• Load Imbalance

bioexcel.eu

Why care about parallel performance?

• Why do we run applications in parallel?
• so we can get solutions more quickly
• so we can solve larger, more complex problems

• If we use 10x as many cores, ideally
• we’ll get our solution 10x faster
• we can solve a problem that is 10x bigger or more complex
• unfortunately this is not always the case…

• Measuring parallel performance can help us understand
• whether an application is making efficient use of many cores
• what factors affect this
• how best to use the application and the available HPC resources

bioexcel.eu

Performance Metrics
• How do we quantify performance when running in parallel?

• Consider execution time T(N,P) measured whilst running on
P “processors” (cores) with problem size/complexity N

• Speedup:
• typically S(N,P) < P

• Parallel efficiency:
• typically E(N,P) < 1

• Serial efficiency:
• typically E(N) <= 1

bioexcel.eu

Parallel Scaling

• Scaling describes how the runtime of a parallel application
changes as the number of processors is increased

• Can investigate two types of scaling:
• Strong Scaling (increasing P, constant N):

problem size/complexity stays the same as the number of processors
increases, decreasing the work per processor

• Weak Scaling (increasing P , increasing N):
problem size/complexity increases at the same rate as the number of
processors, keeping the work per processor the same

bioexcel.eu

Parallel Scaling

• Ideal strong scaling: runtime keeps decreasing in direct
proportion to the growing number of processor used

• Ideal weak scaling: runtime stays constant as the problem
size gets bigger and bigger

• Good strong scaling is generally more relevant for most
scientific problems, but more difficult to achieve than good
weak scaling

bioexcel.eu

Typical strong scaling behaviour

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Sp
ee

d-
up

No of processors

Speed-up vs No of processors

Ideal
actual

bioexcel.eu

Typical weak scaling behaviour

0
2
4
6
8

10
12
14
16
18
20

1 n

Actual

Ideal

Ru
nt
im

e	
(s
)

No.	of	processors

bioexcel.eu

Limits to scaling – the serial fraction
Amdahl’s Law

bioexcel.eu

Amdahl’s Law - illustrated
“The performance improvement to be gained by parallelisation is
limited by the proportion of the code which is serial”

Gene Amdahl, 1967

bioexcel.eu

Amdahl’s Law - proof

• Consider a typical program, which has:
• Sections of code that are inherently serial so can’t be run in parallel
• Sections of code that could potentially run in parallel

• Suppose serial code accounts for a fraction a of the
program’s runtime
• Assume the potentially parallel part could be made to run

with 100% parallel efficiency, then:

• Hypothetical runtime in parallel =

• Hypothetical speedup =

T (N,P) =αT (N,1)+ (1−α)T (N,1)
P

S(N,P) = T (N,1)
T (N,P)

=
P

αP + (1−α)

bioexcel.eu

Amdahl’s Law - proof

• Hypothetical speedup =

• What does this mean?

• Speedup fundamentally limited by the serial fraction
• Speedup will always be less than 1/a no matter how large P

• E.g. for a = 0.1:
• hypothetical speedup on 16 processors = S(N,16) = 6.4
• hypothetical speedup on 1024 processors = S(N,1024) = 9.9
• ...
• maximum theoretical speed up is 10.0

bioexcel.eu

Limits to scaling – problem size
Gustafson’s Law

bioexcel.eu

We need larger problems for larger numbers of processors

• Whilst we are still limited by the serial fraction, it becomes
less important

Gustafson’s Law - illustrated

bioexcel.eu

Gustafson’s Law - proof

• Assume parallel contribution to runtime is proportional to N,
and serial contribution independent of N

• Then total runtime
on P processors =

• And total runtime
on 1 processor =

T (N,P) = Tserial (N,P)+Tparallel (N,P)

 =αT (1,1)+ (1−α) N T (1,1)
P

T (N,1) =αT (1,1)+ (1−α) N T(1,1)

bioexcel.eu

Gustafson’s Law - proof

• Hence speedup =

• If we scale problem size with number of processors,
i.e. set N = P (weak scaling), then:
• speedup S(P,P) = a + (1- a) P
• efficiency E(P,P) = a /P + (1- a)

• What does this mean?

S(N,P) = T (N,1)
T (N,P)

=
α + (1−α)N
α + (1−α) N

P

bioexcel.eu

• If you increase the amount of work done by each parallel
task then the serial component will not dominate
• Increase the problem size to maintain scaling
• Can do this by adding extra complexity or increasing the overall

problem size

Gustafson’s Law – consequence
Efficient Use of Large Parallel Machines

Due	to	the	scaling	of	
N,	the	serial	fraction	
effectively	becomes	
a/P

Number	of	
processors

Strong	scaling
(Amdahl’s	law)

Weak	scaling
(Gustafson’s	law)

16 6.4 14.5

1024 9.9 921.7

bioexcel.eu

Analogy: Flying London to New York

bioexcel.eu

Buckingham Palace to Empire State
• By Jumbo Jet
• distance: 5600 km; speed: 700 kph
• time: 8 hours ?

• No!
• 1 hour by tube to Heathrow + 1 hour for check in etc.
• 1 hour immigration + 1 hour taxi downtown
• fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph
• total journey time = 4 hours + 2 hours 40 mins = 6.7 hours
• speedup of 1.8 not 3.0

• Amdahl’s law! a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

bioexcel.eu

Flying London to Sydney

bioexcel.eu

Buckingham Palace to Sydney Opera

• By Jumbo Jet
• distance: 16800 km; speed: 700 kph; flight time; 24 hours
• serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed
• total time = 4 hours + 8 hours = 12 hours
• speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!
• bigger problems scale better

• increase both distance (i.e. N) and max speed (i.e. P) by three
• maintain same balance: 4 “serial” + 8 “parallel”

bioexcel.eu

Load Imbalance
• These laws all assumed all processors are equally busy
• what happens if some run out of work?

• Specific case
• four people pack boxes with cans of soup: 1 minute per box

• takes 6 minutes as everyone is waiting for Anna to finish!
• if we gave everyone same number of boxes, would take 3 minutes

• Scalability isn’t everything
• make the best use of the processors at hand before increasing the number

of processors

Person Anna Paul David Helen Total

#	boxes 6 1 3 2 12

bioexcel.eu

Quantifying Load Imbalance

• Define Load Imbalance Factor

LIF = maximum load / average load

• for perfectly balanced problems LIF = 1.0, as expected
• in general, LIF > 1.0
• LIF tells you how much faster your calculation could be with balanced

load

• Box packing
• LIF = 6/3 = 2
• initial time = 6 minutes
• best time = 6/2 = 3 minutes

bioexcel.eu

Summary

• Key performance metric is execution time
• Good scaling is important, as the better a code scales the

larger a machine it can make efficient use of and the faster
you’ll solve your problem
• can consider weak and strong scaling
• in practice, overheads limit the scalability of real parallel programs
• Amdahl’s law models these in terms of serial and parallel fractions
• larger problems generally scale better: Gustafson’s law

• Load balance is also a crucial factor
• Metrics exist to give you an indication of how well your code

performs and scales

