
bioexcel.eu

Partners Funding

Molecular Dynamics Practical
Domain decomposition

Hybrid parallel execution – process & thread placement

bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their
permission before reusing these images.

bioexcel.eu

Parallel Decompositions for MD

• Given P processes, how could the work be split up?

• Goals:
• Achieve good load balance

• Each processor takes an equal share of the work / time
• Poor load balance limits scaling (similar to Amdahl’s Law)

• Reduce communication
• Especially global communication e.g. Broadcast, gather

• Asynchronous communication
• If possible, do communication while other work is going on

bioexcel.eu

Parallel MD - Task farm?
Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Proc 0 Proc 3Proc 2Proc 1

bioexcel.eu

Parallel MD - Task farm

• Advantages:
• Simple to implement – no communications
• Excellent load balance (assuming all systems are the same size)
• ‘Embarassingly parallel’ – perfect scaling

• Disadvantages:
• Only for replica / multiple walker sampling
• Cannot reduce runtime per MD step – limit to short MD timescales

bioexcel.eu

Parallel MD – Replicated Data?
Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Proc 0 Proc 1 Proc 2 Proc N-1

bioexcel.eu

Parallel MD – Replicated Data

• Advantages:
• Relatively simple to implement
• Possible to achieve good load balance

• Can decompose over particles, terms in the force field …
• Works well with complex force-fields

• Disadvantages:
• Global communication overhead
• Leads to limited scalability
• Requires large amount of memory in total

• Every process stores all the particles

bioexcel.eu

Parallel MD – Domain Decomposition

A B

C D

– Short	range	potential	cut	off	
(rcut <<	Lcell)

– Spatial	decomposition	of	atoms	
into	domains

– Map	domains	onto	processors	
– Use	link	cells	in	each	domain
– Pass	border	link	cells	to	adjacent	

processors
– Calculate	forces,	solve	equations	

of	motion
– Re-allocate	atoms	leaving	

domains

2D	Example

bioexcel.eu

Parallel MD – Domain Decomposition
• Advantages:

• Communication is mainly local (between neighbouring processes)
• Possible to achieve good load balance

• If system is isotropic
• Memory is distributed over all processes

• Allows large scaling
• Enables bigger systems than can be handled by a single CPU

(millions of atoms)

• Disadvantages:
• Larger cut-offs lead to more communication
• Implementation is more complex

• Examples:
• GROMACS
• DL_POLY	4
• LAMMPS

bioexcel.eu

Parallelisation in NAMD

• Workload is modelled as follows:
• Local force computation ~ Nap2

• All pairs of local atoms
• Force computations between neighbouring patches ~ w * Naa * Nab

• Weighting w depends on if patches share a corner, edge or face
• Forces between patches are assigned to ‘compute objects’

• May be migrated freely between processors later

• Then at runtime, use dynamic load balancing to optimise the
domain decomposition
• Accounts for costs not covered by the model
• Cope with changing system geometry during MD

bioexcel.eu

Parallelisation in NAMD

• Workload metrics are recorded as follows:
• Background load (non migratable work)
• Idle time
• Migratable compute objects and their associated compute load
• The patches that compute objects depend upon
• The home processor of each patch
• The proxy patches required by each processor

• Load balancing heuristic
• Move most expensive migratable object (compute objects) to least

loaded processor, taking into account possible communication
increases

• Details in Kalé et al, LNCS 1457, 1998

bioexcel.eu

MD Performance

• Basic measure – wallclock time
• Lower is better

• Application-specific measures
• For MD, simulation time per wallclock time

• ns / day
• Higher is better

• Many ways to parallelise MD
• All are a compromise between complexity and performance
• ‘Best’ method depends on the system

• e.g. in vacuo, solvated, solid state?

• Always run scaling tests before spending large amounts of
compute time on long MD runs

bioexcel.eu

MD Practical

• Run NAMD simulation of Apolipoprotein A1
• No need to compile, NAMD is already installed on ARCHER

• Investigate best way to run NAMD on a single node by
experimenting with different numbers of MPI processes &
OpenMP threads, e.g.:
• 1 MPI x 24 OpenMP
• 2 MPI x 12 OpenMP
• 6 MPI x 4 OpenMP
• 12 MPI x 2 OpenMP
• 24 MPI x 1 OpenMP

• Find out whether hyperthreads help performance
• Using the fastest single-node option, investigate parallel

scaling of NAMD to more nodes
13

bioexcel.eu

Outcomes

14

bioexcel.eu

NAMD single node walltime per step

15

bioexcel.eu

NAMD multinode speedup

16

bioexcel.eu

Process & threading placement
no hyperthreading (-j 1 = default)

17

n d ppn pemap commap

1 24 23 1-23	 0

2 12 11 1-11, 13-23	 0,12

4 6 5 1-5, 7-11, 13-17, 19-23	 0,6,12,18

6 4 3 1-3, 5-7, 9-11, 13-15, 17-19, 21-23	 0,4,8,12,16,20

aprun	–n	$n	–d	$d	namd2	+ppn	$ppn	+pemap	$pemap	+commap	$commap

bioexcel.eu

Process & threading placement
with hyperthreading (-j 2)

18

n d ppn pemap commap

1 48 47 1-47	 0

2 24 23 1-23, 25-47	 0,24

4 12 11 1-11, 13-23, 25-35, 37-47	 0,12,24,36

6 8 7 1-7, 9-15, 17-23, 25-31, 33-39, 41-47	 0,8,16,24,32,40

aprun	–n	$n	–d	$d	namd2	+ppn	$ppn	+pemap	$pemap	+commap	$commap

