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Parallel Decompositions for MD

• Given P processes, how could the work be split up?

• Goals:
• Achieve good load balance

• Each processor takes an equal share of the work / time
• Poor load balance limits scaling (similar to Amdahl’s Law) 

• Reduce communication
• Especially global communication e.g. Broadcast, gather

• Asynchronous communication
• If possible, do communication while other work is going on
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Parallel MD - Task farm?
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Parallel MD - Task farm

• Advantages:
• Simple to implement – no communications
• Excellent load balance (assuming all systems are the same size)
• ‘Embarassingly parallel’ – perfect scaling

• Disadvantages:
• Only for replica / multiple walker sampling
• Cannot reduce runtime per MD step – limit to short MD timescales
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Parallel MD – Replicated Data?
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Parallel MD – Replicated Data

• Advantages:
• Relatively simple to implement 
• Possible to achieve good load balance

• Can decompose over particles, terms in the force field …
• Works well with complex force-fields

• Disadvantages:
• Global communication overhead
• Leads to limited scalability
• Requires large amount of memory in total

• Every process stores all the particles
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Parallel MD – Domain Decomposition

A B

C D

– Short	range	potential	cut	off	
(rcut <<	Lcell)

– Spatial	decomposition	of	atoms	
into	domains

– Map	domains	onto	processors	
– Use	link	cells	in	each	domain
– Pass	border	link	cells	to	adjacent	

processors
– Calculate	forces,	solve	equations	

of	motion
– Re-allocate	atoms	leaving	

domains

2D	Example
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Parallel MD – Domain Decomposition
• Advantages:

• Communication is mainly local (between neighbouring processes)
• Possible to achieve good load balance

• If system is isotropic
• Memory is distributed over all processes

• Allows large scaling
• Enables bigger systems than can be handled by a single CPU 

(millions of atoms)

• Disadvantages:
• Larger cut-offs lead to more communication
• Implementation is more complex

• Examples:
• GROMACS
• DL_POLY	4
• LAMMPS
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Parallelisation in NAMD

• Workload is modelled as follows:
• Local force computation ~ Nap2 

• All pairs of local atoms
• Force computations between neighbouring patches ~ w * Naa * Nab

• Weighting w depends on if patches share a corner, edge or face
• Forces between patches are assigned to ‘compute objects’

• May be migrated freely between processors later

• Then at runtime, use dynamic load balancing to optimise the 
domain decomposition
• Accounts for costs not covered by the model
• Cope with changing system geometry during MD
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Parallelisation in NAMD

• Workload metrics are recorded as follows:
• Background load (non migratable work)
• Idle time
• Migratable compute objects and their associated compute load
• The patches that compute objects depend upon
• The home processor of each patch
• The proxy patches required by each processor

• Load balancing heuristic
• Move most expensive migratable object (compute objects) to least 

loaded processor, taking into account possible communication 
increases

• Details in Kalé et al, LNCS 1457, 1998
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MD Performance

• Basic measure – wallclock time
• Lower is better

• Application-specific measures
• For MD, simulation time per wallclock time

• ns / day
• Higher is better

• Many ways to parallelise MD
• All are a compromise between complexity and performance
• ‘Best’ method depends on the system 

• e.g. in vacuo, solvated, solid state?

• Always run scaling tests before spending large amounts of 
compute time on long MD runs
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MD Practical

• Run NAMD simulation of Apolipoprotein A1
• No need to compile, NAMD is already installed on ARCHER 

• Investigate best way to run NAMD on a single node by 
experimenting with different numbers of MPI processes &  
OpenMP threads, e.g.:
• 1 MPI x 24 OpenMP
• 2 MPI x 12 OpenMP
• 6 MPI x 4 OpenMP
• 12 MPI x 2 OpenMP
• 24 MPI x 1 OpenMP

• Find out whether hyperthreads help performance
• Using the fastest single-node option, investigate parallel 

scaling of NAMD to more nodes
13
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Outcomes
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NAMD single node walltime per step  
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NAMD multinode speedup
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Process & threading placement
no hyperthreading (-j 1 = default)
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n d ppn pemap commap

1 24 23 1-23	 0

2 12 11 1-11, 13-23	 0,12

4 6 5 1-5, 7-11, 13-17, 19-23	 0,6,12,18

6 4 3 1-3, 5-7, 9-11, 13-15, 17-19, 21-23	 0,4,8,12,16,20

aprun	–n	$n	–d	$d	namd2	+ppn	$ppn	+pemap	$pemap	+commap	$commap
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Process & threading placement
with hyperthreading (-j 2)
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n d ppn pemap commap

1 48 47 1-47	 0

2 24 23 1-23, 25-47	 0,24

4 12 11 1-11, 13-23, 25-35, 37-47	 0,12,24,36

6 8 7 1-7, 9-15, 17-23, 25-31, 33-39, 41-47	 0,8,16,24,32,40

aprun	–n	$n	–d	$d	namd2	+ppn	$ppn	+pemap	$pemap	+commap	$commap


