
bioexcel.eu

Partners Funding

Fractal Practical
Investigating task farms and load imbalance



bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on 
the material under the following terms: You must give appropriate credit, provide a 
link to the license and indicate if changes were made. If you adapt or build on the 

material you must distribute your work under the same license as the original.



bioexcel.eu

Mandelbrot Set

• Mandelbrot Set can be thought of as the set of points with 
2D coordinates (x,y) that satisfy a particular property
• not important for the exercise what this property actually is

• Supplied code works out in parallel as a task farm for a grid 
of points whether each point belongs to the Set or not

• For each point a calculation is repeated iteratively, with the 
result of each iteration serving as input to the next
• continues until the point is proven not to belong to the Set, or until 

enough iterations have passed to decide that it does belong to the Set
• Use this example to investigate task farm performance
• Look at load imbalance in particular



bioexcel.eu

Visualising the Mandelbrot Set

• Can visualise the Mandelbrot 
Set by colouring each point:

a) Black if it belongs to the Set
b) Otherwise another colour chosen 

from a gradient in proportion to how 
many iterations it took to discover 
the point does not belong to the Set

The result is a fractal à

Points in the black region take 
more iterations (time) to compute 
à spatial work imbalance 



bioexcel.eu

Mandelbrot Set – spatial work imbalance

Very	quick	
to	compute

Very	slow	to	
compute



bioexcel.eu

Parallelisation

• During the iterations for a given point, calculation values 
depend only on the previous calculation value at that point
• decompose 2D grid into equally sized blocks
• no communications between blocks needed.

• Don’t know in advance how much work is needed.
• number of iterations across the blocks varies.
• work dynamically assigned to workers as they become available.

Implementation
• Split the grid into blocks:
• each block corresponds to a task.
• master process hands out tasks to worker processes.
• workers return completed task to master.



bioexcel.eu

Example: Parallelisation on 4 CPUs

x

master workers

CPU 1

CPU 2 CPU 3 CPU 4

7

4

1

1 2 3

8

2

9

6

3

5 52

y
• In diagram, colour represents which 

worker did the task
• number gives the task id
• tasks scan from left to right, moving upwards



bioexcel.eu

Parallelisation cont.

• in	images	made	by	supplied	code:
• shading	represents	worker	id
• here	we	have	added	worker	

id	as	a	number	by	hand

• e.g.	taskfarm run	on	5	CPUs
1	master
4	workers

• total	number	of	tasks	=	16
1 2 3 4

1 4 2 1

3 3 1 3

4 4 4 4



bioexcel.eu

Exercise

• You are supplied with source code etc.

• Compile and run on ARCHER
• visualise results

• Quantify performance results

• For a fixed number of workers
• improve load balance by increasing number of tasks (decrease size)
• compute LIF (load imbalance factor) to estimate minimum achievable runtime
• is this minimum ever reached?



bioexcel.eu

Fractal Practical
Outcomes



bioexcel.eu

Example results
fixed number of workers
varying number of tasks



bioexcel.eu

Example results
fixed number of workers
varying number of tasks



bioexcel.eu

16 workers and 16 tasks

-----Workload Summary (number of 
iterations)----

Total Number of Workers: 16
Total Number of Tasks:   16

Total   Worker Load: 498023053
Average Worker Load: 31126440
Maximum Worker Load: 156694685
Minimum Worker Load: 62822

Time taken by 16 workers was 
1.929219 (secs)
Load Imbalance Factor: 5.034134



bioexcel.eu

16 workers and 64 tasks

-----Workload Summary (number of 
iterations)---------

Total Number of Workers: 16
Total Number of Tasks:   64

Total   Worker Load: 498023053
Average Worker Load: 31126440
Maximum Worker Load: 46743511
Minimum Worker Load: 10968369

Time taken by 16 workers was 
0.586923 (secs)
Load Imbalance Factor: 1.501730



bioexcel.eu

Key points to take away

• TASK FARMS
• Also known as the master/worker pattern
• Allows a master process to distribute work to a set of worker 

processors. 
• Can be used for other types of tasks but it complicates the 

situation and other patterns may be more suitable for 
implementing. 

• Master process is responsible for creating, distributing and 
gathering the individual jobs. 

• Can improve load balance by using more tasks than workers
• with some overhead

• Load imbalance adversely affects performance
• especially as number of processors increases



bioexcel.eu

Key points to take away

TASKS
• Units of work
• Vary in size, do not have to be of consistent execution time. 

If execution times are known it can help with load balancing. 
QUEUES
• Master generates a pool of tasks and puts them in a queue
• Workers assigned task from queue when idle



bioexcel.eu

Key points to take away

LOAD BALANCING
• How a system determines how work or tasks are distributed 

across workers (processes or threads)
• Successful load balancing avoids idle processes and 

overloading single cores
• Poor load balancing leads to under-utilised cores, reducing 

performance.



bioexcel.eu

Key points to take away

COST
• Increasingly important
• Finite budgets require optimal use of resources requested. 
• Load balancing is just one method of ensuring optimal 

usage and avoiding wasting resources.
• More power and resources do not necessarily mean  

improved performance.
• Always ask – is it necessary to run this on 4000 cores or 

could it be run on 2000 more efficiently?


