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Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on 
the material under the following terms: You must give appropriate credit, provide a 
link to the license and indicate if changes were made. If you adapt or build on the 

material you must distribute your work under the same license as the original.
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Mandelbrot Set

• Mandelbrot Set can be thought of as the set of points with 
2D coordinates (x,y) that satisfy a particular property
• not important for the exercise what this property actually is

• Supplied code works out in parallel as a task farm for a grid 
of points whether each point belongs to the Set or not

• For each point a calculation is repeated iteratively, with the 
result of each iteration serving as input to the next
• continues until the point is proven not to belong to the Set, or until 

enough iterations have passed to decide that it does belong to the Set
• Use this example to investigate task farm performance
• Look at load imbalance in particular
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Visualising the Mandelbrot Set

• Can visualise the Mandelbrot 
Set by colouring each point:

a) Black if it belongs to the Set
b) Otherwise another colour chosen 

from a gradient in proportion to how 
many iterations it took to discover 
the point does not belong to the Set

The result is a fractal à

Points in the black region take 
more iterations (time) to compute 
à spatial work imbalance 
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Mandelbrot Set – spatial work imbalance

Very	quick	
to	compute

Very	slow	to	
compute
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Parallelisation

• During the iterations for a given point, calculation values 
depend only on the previous calculation value at that point
• decompose 2D grid into equally sized blocks
• no communications between blocks needed.

• Don’t know in advance how much work is needed.
• number of iterations across the blocks varies.
• work dynamically assigned to workers as they become available.

Implementation
• Split the grid into blocks:
• each block corresponds to a task.
• master process hands out tasks to worker processes.
• workers return completed task to master.
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Example: Parallelisation on 4 CPUs
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• In diagram, colour represents which 

worker did the task
• number gives the task id
• tasks scan from left to right, moving upwards
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Parallelisation cont.

• in	images	made	by	supplied	code:
• shading	represents	worker	id
• here	we	have	added	worker	

id	as	a	number	by	hand

• e.g.	taskfarm run	on	5	CPUs
1	master
4	workers

• total	number	of	tasks	=	16
1 2 3 4

1 4 2 1

3 3 1 3

4 4 4 4
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Exercise

• You are supplied with source code etc.

• Compile and run on ARCHER
• visualise results

• Quantify performance results

• For a fixed number of workers
• improve load balance by increasing number of tasks (decrease size)
• compute LIF (load imbalance factor) to estimate minimum achievable runtime
• is this minimum ever reached?
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Fractal Practical
Outcomes
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Example results
fixed number of workers
varying number of tasks
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Example results
fixed number of workers
varying number of tasks
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16 workers and 16 tasks

-----Workload Summary (number of 
iterations)----

Total Number of Workers: 16
Total Number of Tasks:   16

Total   Worker Load: 498023053
Average Worker Load: 31126440
Maximum Worker Load: 156694685
Minimum Worker Load: 62822

Time taken by 16 workers was 
1.929219 (secs)
Load Imbalance Factor: 5.034134
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16 workers and 64 tasks

-----Workload Summary (number of 
iterations)---------

Total Number of Workers: 16
Total Number of Tasks:   64

Total   Worker Load: 498023053
Average Worker Load: 31126440
Maximum Worker Load: 46743511
Minimum Worker Load: 10968369

Time taken by 16 workers was 
0.586923 (secs)
Load Imbalance Factor: 1.501730
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Key points to take away

• TASK FARMS
• Also known as the master/worker pattern
• Allows a master process to distribute work to a set of worker 

processors. 
• Can be used for other types of tasks but it complicates the 

situation and other patterns may be more suitable for 
implementing. 

• Master process is responsible for creating, distributing and 
gathering the individual jobs. 

• Can improve load balance by using more tasks than workers
• with some overhead

• Load imbalance adversely affects performance
• especially as number of processors increases
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Key points to take away

TASKS
• Units of work
• Vary in size, do not have to be of consistent execution time. 

If execution times are known it can help with load balancing. 
QUEUES
• Master generates a pool of tasks and puts them in a queue
• Workers assigned task from queue when idle
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Key points to take away

LOAD BALANCING
• How a system determines how work or tasks are distributed 

across workers (processes or threads)
• Successful load balancing avoids idle processes and 

overloading single cores
• Poor load balancing leads to under-utilised cores, reducing 

performance.
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Key points to take away

COST
• Increasingly important
• Finite budgets require optimal use of resources requested. 
• Load balancing is just one method of ensuring optimal 

usage and avoiding wasting resources.
• More power and resources do not necessarily mean  

improved performance.
• Always ask – is it necessary to run this on 4000 cores or 

could it be run on 2000 more efficiently?


