GPU
Programming

Alan Gray
EPCC
The University of Edinburgh

Overview

* Motivation and need for CUDA

* |ntroduction to CUDA

— CUDA kernels, decompositions
— CUDA memory management
— C and Fortran

* OpenCL

NVIDIA CUDA

* Traditional languages alone are not sufficient for
programming GPUs

* CUDA allows NVIDIA GPUs to be programmed in
C/C++ or Fortran

— defines language extensions for defining kernels

— kernels execute in multiple threads concurrently on the
GPU

— provides API functions for e.g. device memory
management

CPU

Bus

Main program
code

GPU

Key kernel
code

GPGPU: Stream Computing

ANNNAN/N

wvuuuud

* Data set decomposed into a stream of elements

* A single computational function (kernel) operates on each element
— “thread” defined as execution of kernel on one data element

* Multiple cores can process multiple elements in parallel
— i.e. many threads running in parallel

e Suitable for data-parallel problems

GPU SM

SM SM

SM %

Shared memory

°* NVIDIA GPUs have a 2-level hierarchy:

— Multiple Streaming Multiprocessors (SMs), each with multiple cores
* The number of SMs, and cores per SM, varies across
generations

* |n CUDA, this is abstracted as Grid of Thread

Blocks

— The multiple blocks in a grid map onto the multiple SMs

— Each block in a grid contains multiple threads, mapping onto the
cores inan SM

* \WWe don’t need to know the exact details of the

hardware (number of SMs, cores per SM).

— Instead, oversubscribe, and system will perform
scheduling automatically
— Use more blocks than SMs, and more threads than cores

— Same code will be portable and efficient across different
GPU versions.

CUDA dim3 type

* CUDA introduces a new dim3 type

— Simply contains a collection of 3 integers, corresponding
to each of X,Y and Z directions.

C:

dim3 my xyz values (xvalue,yvalue, zvalue);

Fortran:
type (dim3) :: my xyz values

my xyz values = dim3(xvalue,yvalue, zvalue)

e X component can be accessed as follows:
C: my xyz values.x

Fortran: my xyz values%x

And similar for Y and Z

° E.g. for
my xyz values = dim3(6,4,12)

then my xyz values%z has value 12

R 101 e !

PR Lk e

Analogy

°* You check in to the hotel, as do your classmates
— Rooms allocated in order

* Receptionist realises hotel is less than half full

— Decides you should all move from your room number i to
room number 2i

— S0 that no-one has a neighbour to disturb them

11

* Serial Solution:

— Receptionist works out each new number in turn

12

* Parallel Solution:

“Everybody: check your room number. Multiply it by 2, and
move to that room.”

13

* Serial solution:

for (i=0;i<N;i++) {
result([i] = 2*1i;

}

* We can parallelise by assigning each iteration to a separate
CUDA thread.

14

CUDA C Example

__global void myKernel (int *result)

{

int 1 = threadlIdx.x;
result[i] = 2*1;

* Replace loop with function
* Add global specifier

* To specify this function is to form a GPU kernel
* Use internal CUDA variables to specify array indices

* threadidx.x Is an internal variable unique to each thread in a
block.

e X component of dim3 type. Since our problem is 1D, we are not
using the Y or Z components (more later)

15

CUDA C Example

* And launch this kernel by calling the function

* on multiple CUDA threads using <<<..>>> syntax

dim3 blocksPerGrid(1l,1,1); //use only one block
dim3 threadsPerBlock(N,1,1); //use N threads in the block

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);

16

CUDA FORTRAN Equivalent

Kernel:

attributes (global) subroutine myKernel (result)

integer, dimension(*) :: result

integer :: 1
i = threadidx%x
result (i) = 2*1

end subroutine

Launched as follows:
blocksPerGrid = dim3(1, 1, 1)

threadsPerBlock = dim3 (N, 1, 1)

call myKernel <<<blocksPerGrid, threadsPerBlock>>>

(result)

17

CUDA C Example

* The previous example only uses 1 block, i.e. only 1 SM on
the GPU, so performance will be very poor. In practice, we
need to use multiple blocks to utilise all SMs, e.g.:

__global void myKernel (int *result)

{

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
resultf[i] = 2*1i;

}

dim3 blocksPerGrid (N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock (256,1,1);

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);

18

FORTRAN

attributes (global) subroutine myKernel (result)

integer, dimension(*) :: result

integer :: 1

i = (blockidx%x-1)*blockdim%$x + threadidx$%x
result (i) = 2*1

end subroutine

blocksPerGrid = dim3(N/256, 1, 1) !assuming 256 divides N exactly
threadsPerBlock = dim3 (256, 1, 1)

call myKernel <<<blocksPerGrid, threadsPerBlock>>> (result)

* \We have chosen to use 256 threads per block, which is
typically a good number (see practical).

19

CUDA C Example

* More realistic 1D example: vector addition

__global void vectorAdd(float *a, float *b, float *c)

{
int 1 = blockIdx.x * blockDim.x + threadIdx.x;

cl[i] = ali] + b[1];

dim3 blocksPerGrid (N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock (256,1,1);

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

20

CUDA FORTRAN Equivalent

attributes (global) subroutine vectorAdd(a, b, <)

real, dimension(*) :: a, b, c

integer :: 1

1 = (blockidx%x-1)*blockdim%x + threadidx%x
c(i1) = a(i) + b(1)

end subroutine

blocksPerGrid = dim3 (N/256, 1, 1)
threadsPerBlock = dim3 (256, 1, 1)

call vectorAdd <<<blocksPerGrid, threadsPerBlock>>>

21

CUDA C Internal Variables

For a 1D decomposition (e.g. the previous examples)

* blockDim.x: Number of threads per block
— Takes value 256 in previous example

* threadIdx.x:unique to each thread in a block
— Ranges from 0O to 255 in previous example

* blockIdx.x: Unique to every block in the grid
— Ranges from 0 to (N/256 - 1) in previous example

22

CUDA Fortran Internal Variables

For a 1D decomposition (e.g. the previous example)

* blockDim%x:. Number of threads per block
— Takes value 256 in previous example

* threadIdx%x:unique to each thread in a block
— Ranges from 1 to 256 in previous example

* blockIdx%$x: Unique to every block in the grid
— Ranges from 1 to (N/256) in previous example

23

2D Example

e 2D or 3D CUDA decompositions also possible, e.g. for
matrix addition (2D):

__global void matrixAdd(float a[N][N], float b[N][N], float c[N][N])

int J = blockIdx.x * blockDim.x + threadldx.x;
int 1 = blockIdx.y * blockDim.y + threadIdx.y;

cl1][3] = alillg] + bIi][J]7

int main ()

{
dim3 blocksPerGrid(N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)
dim3 threadsPerBlock (16,16,1); // 16x16=256 threads/block (2D)
matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

24

CUDA Fortran Equivalent

! Kernel declaration

attributes (global) subroutine matrixAdd (N, a, b, <)

integer, value :: N

real, dimension(N,N) :: a, b, c

integer :: i,]

1 = (blockidx%x-1)*blockdim%$x + threadidx%x
7 = (blockidx%y-1)*blockdim%y + threadidx%y
c(i,j) = a(i,J3) + b(i,3)

end subroutine

! Kernel invocation
blocksPerGrid = dim3(N/16, N/16, 1) ! (N/1o)x(N/16) blocks/grid (2D)
threadsPerBlock = dim3 (16, 16, 1) ! 16x16=256 threads/block (2D)

call matrixAdd <<<blocksPerGrid, threadsPerBlock>>> (N, a, b, <)

Memory Management - allocation

The GPU has a separate memory space from the host
CPU

Data accessed in kernels must be on GPU memory

Need to manage GPU memory and copy data to and
from it explicitly

cudaMalloc is used to allocate GPU memory
cudaFree releases it again
float *a;

cudaMalloc (&a, N*sizeof (float)):;

cudafFree (a) ;

26

Memory Management - cudaMemcpy

* Once we've allocated GPU memory, we need to be able to copy data to and
from it

* cudaMemcpy does this:

CPU (host) to GPU (device):

cudaMemcpy (array device, array host, N*sizeof (float),
cudaMemcpyHostToDevice) ;

GPU (device) to CPU (host):

cudaMemcpy (array host, array device, N*sizeof (float),
cudaMemcpyDeviceToHost) ;

One location on the GPU to another:

cudaMemcpy (array device2, array devicel, N*sizeof (float),
cudaMemcpyDeviceToDevice) ;

* The first argument always corresponds to the destination of the transfer.

27

CUDA FORTRAN — Data management

Data management is more intuitive than CUDA C

* Because Fortran has array syntax, and also compiler knows if
a pointer is meant for CPU or GPU memory

* Can use allocate() and deallocate() as for host memory

real, device, allocatable, dimension(:) :: d a

allocate(d a(N))

deallocate (d a)

Can copy data between host and device using
assignment
d a = a(l:N)

Or can instead use CUDA API (similar to C), e.qg.
istat = cudaMemcpy(d a, a, N)

28

Synchronisation between host and device

* Kernel calls are non-blocking. This means that the
host program continues immediately after it calls
the kernel
— Allows overlap of computation on CPU and GPU

* Use cudaThreadSynchronize () to walt for
kernel to finish

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
//do work on host (that doesn’t depend on c)
cudaThreadSynchronise (); //wait for kernel to finish

e Standard cudaMemcpy calls are blocking

— Non-blocking variants exist
29

Synchronisation between CUDA threads

* Within a kernel, to syncronise between threads in the
same block use the syncthreads () call

* Therefore, threads in the same block can communicate
through memory spaces that they share, e.g. assuming
x local to each thread and array in a shared memory
space

if (threadldx.x == 0) arrayl[0]=x;
syncthreads () ;
if (threadldx.x == 1) x=array[0];

* Itis not possible to communicate between different blocks in
a kernel: must instead exit kernel and start a new one

30

Unified Memory

* The GPU has a separate memory space from the host
CPU

* Recent advances in CUDA and in hardware allow this
aspect to be largely hidden from the programmer with
automatic data movement.

— “Unified Memory”

* HOWEVER for performance it is often necessary to

manually manage these distinct spaces.
— And this lecture has shown how to do this
e But unified memory can be useful to help get codes

running quickly

— Possibly an incremental stepping stone to manual data
management

31

Unified Memory

With our previous examples, for each array we maintained both a host

and device copy.
— The device copy was allocated using cudaMalloc
— And we used cudaMemcpy to transfer

With Unified Memory, a single copy can be accessed on either the CPU
or GPU if allocated using the cudaMallocManaged call (and freed
using cudaFree), €.g.

float *array;

cudaMallocManaged (&array, N*sizeof (float));

// array can now be accessed either on host or device
setup, launch kernel, process output

cudaFree (array) ;

The data will be automatically transferred to/from the GPU as necessary.

32

Multi-GPU with MPI

* In this lecture, you have seen how to adapt a C or
Fortran code to utilise a GPU using CUDA

* \We can combine with MPI, to utilise multiple GPUs
(possibly distributed across multiple nodes)

* Simply set the number of MPI tasks equal to the

number of nodes
— And each MPI task controls its own GPU

* MPI communications: can either
— Explicitly copy from/to GPU with CUDA before/after any MPI
communications which access host data

— Use CUDA-aware MPI (if available) such that MPI directly
accesses GPU memory

33

Compiling CUDA Code

* CUDA C code is compiled using nvcc:

nvcc —o0 example example.cu

* CUDA Fortran is compiled using PGI compiler

— either use . cuf filename extension for CUDA files
— and/or pass —-Mcuda to the compiler command line

pgf90 -Mcuda -0 example example.cuf

34

OpenCL

* Open Compute Language (OpenCL): “The Open
Standard for Heterogeneous Parallel Programming’

— Open cross-platform framework for programming modern
multicore and heterogeneous systems

J

* Supports wide range of applications and

architectures, including GPUs
— Supported on NVIDIA Tesla + AMD FireStream

* See http://www.khronos.org/opencl/

35

OpenCL vs CUDA on NVIDIA

* NVIDIA support both CUDA and OpenCL as APlIs to the

hardware.

— But put much more effort into CUDA
— CUDA more mature, well documented and performs better

* OpenCL and C for CUDA conceptually very similar
— Very similar abstractions, basic functionality etc
— Different names e.g. “Thread” CUDA -> “Work Item” (OpenCL)
— Porting between the two should in principle be straightforward
* OpenCL is a lower level API than C for CUDA

— More work for programmer

* OpenCL obviously portable to other systems

— But in reality work will still need to be done for efficiency on
different architecture

* OpenCL may well catch up with CUDA given time

36

Summary

* Traditional languages alone are not sufficient for
programming GPUs

* CUDA allows NVIDIA GPUs to be programmed using
C/C++ or Fortran

— defines language extensions and APIs to enable this

* We introduced the key CUDA concepts and gave
examples

* OpenCL provides another means of programming

GPUs In C

— conceptually similar to CUDA, but less mature and lower-level
— supports other hardware as well as NVIDIA GPUs

37

