
GPU
Performance
Optimisation

Alan Gray

EPCC
The University of Edinburgh

Hardware

CPU GPUBus

Main program
code

Key kernel
code

SMGPU

Shared memory

SM SM

SM SM

Memory

Memory

NVIDIA accelerated system:

2

GPU performance inhibitors

•  Copying data to/from device

•  Device under-utilisation/ GPU memory latency

•  GPU memory bandwidth

•  Code branching

This lecture will address each of these
–  And advise how to maximise performance
–  Concentrating on NVIDIA, but many concepts will be

transferable to e.g. AMD

3

Host – Device Data Copy

•  CPU (host) and GPU (device) have separate
memories.

•  All data read/written on the device must be copied
to/from the device (over PCIe bus).
–  This very expensive

•  Must try to minimise copies
–  Keep data resident on device

– May involve porting more routines to device, even if they are not
computationally expensive

–  Might be quicker to calculate something from scratch on
device instead of copying from host

4

Data copy optimisation example

•  Port inexpensive routine to device and move data copies
outside of loop

Loop over timesteps

 inexpensive_routine_on_host(data_on_host)

 copy data from host to device

 expensive_routine_on_device(data_on_device)

 copy data from device to host

End loop over timesteps

copy data from host to device

Loop over timesteps

 inexpensive_routine_on_device(data_on_device)

 expensive_routine_on_device(data_on_device)

End loop over timesteps

copy data from device to host

5

Exposing parallelism

•  GPU performance relies on parallel use of many
threads
–  Degree of parallelism much higher than a CPU

•  Effort must be made to expose as much parallelism
as possible within application
–  May involve rewriting/refactoring

•  If significant sections of code remain serial,
effectiveness of GPU acceleration will be limited
(Amdahl’s law)

6

Occupancy and Memory Latency hiding

•  Programmer decomposes loops in code to threads
–  Obviously, there must be at least as many total threads

as cores, otherwise cores will be left idle.

•  For best performance, actually want

 #threads >> #cores

•  Accesses to GPU memory have several hundred
cycles latency
–  When a thread stalls waiting for data, if another thread

can switch in this latency can be hidden.

•  NVIDIA GPUs have very fast thread switching, and
support many concurrent threads

7

Exposing parallelism example
Loop over i from 1 to 512

 Loop over j from 1 to 512

 independent iteration

Calc i from thread/block ID

 Loop over j from 1 to 512

 independent iteration

Calc i & j from thread/block ID

 independent iteration

Original code

1D decomposition 2D decomposition

512 threads 262,144 threads✖ ✔

8

Memory coalescing

•  GPUs have high peak memory bandwidth

•  Maximum memory bandwidth is only achieved
when data is accessed for multiple threads in a
single transaction: memory coalescing

•  To achieve this, ensure that consecutive threads
access consecutive memory locations

•  Otherwise, memory accesses are serialised,
significantly degrading performance
–  Adapting code to allow coalescing can dramatically

improve performance
9

Memory coalescing example

•  consecutive threads are those with consecutive
threadIdx.x or threadidx%x values

•  Do consecutive threads access consecutive memory
locations?

 index = blockIdx.x*blockDim.x + threadIdx.x;

 output[index] = 2*input[index];

Coalesced. Consecutive threadIdx values
correspond to consecutive index values✔

 index = (blockidx%x-1)*blockdim%x + threadidx%x

 result(index) = 2*input(index)

C:

F:

10

Memory coalescing examples

•  Do consecutive threads read consecutive memory
locations?

•  In C, outermost index runs fastest: j here
 i = blockIdx.x*blockDim.x + threadIdx.x;

 for (j=0; j<N; j++)

 output[i][j]=2*input[i][j];

 j = blockIdx.x*blockDim.x + threadIdx.x;

 for (i=0; i<N; i++)

 output[i][j]=2*input[i][j];

✖ Not Coalesced. Consecutive threadIdx.x
corresponds to consecutive i values

Coalesced. Consecutive threadIdx.x
corresponds to consecutive j values✔

11

Memory coalescing examples

•  Do consecutive threads read consecutive memory
locations?

•  In Fortran, innermost index runs fastest: i here
 j = (blockIdx%x-1)*blockDim%x + threadIdx%x

 do i=1, 256

 output(i,j) = 2*input(i,j)
 end do

✖ Not Coalesced. Consecutive threadIdx%x
corresponds to consecutive j values

Coalesced. Consecutive threadIdx%x
corresponds to consecutive i values✔

 i = (blockIdx%x-1)*blockDim%x + threadIdx%x

 do j=1, 256

 output(i,j) = 2*input(i,j)
 end do

12

Memory coalescing examples

•  What about when using 2D or 3D CUDA
decompositions?
–  Same procedure. X component of threadIdx is always

that which increments with consecutive threads
–  E.g., for matrix addition, coalescing achieved as follows:

 int j = blockIdx.x * blockDim.x + threadIdx.x;
 int i = blockIdx.y * blockDim.y + threadIdx.y;

 c[i][j] = a[i][j] + b[i][j];

i = (blockidx%x-1)*blockdim%x + threadidx%x
j = (blockidx%y-1)*blockdim%y + threadidx%y

c(i,j) = a(i,j) + b(i,j)

C:

F:

13

Code Branching

•  On NVIDIA GPUs, there are less instruction scheduling
units than cores

•  Threads are scheduled in groups of 32, called a warp

•  Threads within a warp must execute the same
instruction in lock-step (on different data elements)

•  The CUDA programming allows branching, but this
results in all cores following all branches
–  With only the required results saved
–  This is obviously suboptimal

•  Must avoid intra-warp branching wherever possible
(especially in key computational sections)

14

Branching example

•  E.g you want to split your threads into 2 groups:
i = blockIdx.x*blockDim.x + threadIdx.x;
if (i%2 == 0)

 …

else

 …

i = blockIdx.x*blockDim.x + threadIdx.x;
if ((i/32)%2 == 0)

 …

else

 …

Threads within warp diverge

 Threads within warp follow same path

✖

✔
15

CUDA Profiling

•  Simply set COMPUTE_PROFILE environment variable to 1
•  Log file, e.g. cuda_profile_0.log created at runtime: timing

information for kernels and data transfer

•  Alternatively, use NVIDIA profiler nvprof

nvprof [options] [application] [application-arguments]

•  http://docs.nvidia.com/cuda/profiler-users-guide/
#nvprof-overview

•  Possible to output more metrics (cache misses etc)
–  See doc/Compute_Profiler.txt file in main CUDA

installation
–  Another option:

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla M1060
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff6e2e9ee8858
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[37.952] cputime=[86.000]
method=[memcpyHtoD] gputime=[37.376] cputime=[71.000]
method=[memcpyHtoD] gputime=[37.184] cputime=[57.000]
method=[_Z23inverseEdgeDetect1D_colPfS_S_] gputime=[253.536] cputime=[13.00
0] occupancy=[0.250]
...

16

Conclusions

•  GPU architecture offers higher Floating Point and
memory bandwidth performance over leading CPUs

•  There are a number of factors which can inhibit
application performance on the GPU.
–  And a number of steps which can be taken to circumvent

these inhibitors
–  Some of these may require significant development/tuning for

real applications

•  It is important to have a good understanding of the
application, architecture and programming model.

17

