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GPU performance inhibitors 

•  Copying data to/from device 

•  Device under-utilisation/ GPU memory latency 

•  GPU memory bandwidth 

•  Code branching 

This lecture will address each of these 
–  And advise how to maximise performance 
–  Concentrating on NVIDIA, but many concepts will be 

transferable to e.g. AMD 
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Host – Device Data Copy 

•  CPU (host) and GPU (device) have separate 
memories. 

•  All data read/written on the device must be copied 
to/from the device (over PCIe bus). 
–  This very expensive  

•  Must try to minimise copies 
–  Keep data resident on device  

– May involve porting more routines to device, even if they are not 
computationally expensive 

–  Might be quicker to calculate something from scratch on 
device instead of copying from host  
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Data copy optimisation example 

•  Port inexpensive routine to device and move data copies 
outside of loop 

Loop over timesteps 

 inexpensive_routine_on_host(data_on_host) 

 copy data from host to device 

 expensive_routine_on_device(data_on_device) 

 copy data from device to host 

End loop over timesteps 

 
 

copy data from host to device 

Loop over timesteps 

 inexpensive_routine_on_device(data_on_device) 

 expensive_routine_on_device(data_on_device) 

End loop over timesteps 

copy data from device to host 
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Exposing parallelism 

•  GPU performance relies on parallel use of many 
threads 
–  Degree of parallelism much higher than a CPU 

•  Effort must be made to expose as much parallelism 
as possible within application 
–  May involve rewriting/refactoring  

•  If significant sections of code remain serial, 
effectiveness of GPU acceleration will be limited 
(Amdahl’s law) 
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Occupancy and Memory Latency hiding 

•  Programmer decomposes loops in code to threads 
–  Obviously, there must be at least as many total threads 

as cores, otherwise cores will be left idle. 

•  For best performance, actually want   

 #threads >> #cores 

•   Accesses to GPU memory have several hundred 
cycles latency 
–  When a thread stalls waiting for data, if another thread 

can switch in this latency can be hidden. 

•  NVIDIA GPUs have very fast thread switching, and 
support many concurrent threads  
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Exposing parallelism example 
Loop over i from 1 to 512 

 Loop over j from 1 to 512 

  independent iteration 

 
 

Calc i from thread/block ID 

 Loop over j from 1 to 512 

  independent iteration 

 
 

Calc i & j from thread/block ID 

  independent iteration 
 

Original code

1D decomposition 2D decomposition

512 threads  262,144 threads✖ ✔
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Memory coalescing 

•  GPUs have high peak memory bandwidth 

•  Maximum memory bandwidth is only achieved 
when data is accessed for multiple threads in a 
single transaction: memory coalescing  

•  To achieve this, ensure that consecutive threads 
access consecutive memory locations  

•  Otherwise, memory accesses are serialised, 
significantly degrading performance 
–  Adapting code to allow coalescing can dramatically 

improve performance 
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Memory coalescing example 

•  consecutive threads are those with consecutive 
threadIdx.x or threadidx%x values 

•  Do consecutive threads access consecutive memory 
locations? 

 index = blockIdx.x*blockDim.x + threadIdx.x; 

 output[index] = 2*input[index];   

Coalesced. Consecutive threadIdx values 
correspond to consecutive index values✔

 index = (blockidx%x-1)*blockdim%x + threadidx%x 

 result(index) = 2*input(index)   

C:

F:
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Memory coalescing examples 

•  Do consecutive threads read consecutive memory 
locations? 

•  In C, outermost index runs fastest: j here 
 i = blockIdx.x*blockDim.x + threadIdx.x; 

 for (j=0; j<N; j++) 

   output[i][j]=2*input[i][j];   

 j = blockIdx.x*blockDim.x + threadIdx.x; 

 for (i=0; i<N; i++) 

   output[i][j]=2*input[i][j];   

✖ Not Coalesced. Consecutive threadIdx.x 
corresponds to consecutive i values

Coalesced. Consecutive threadIdx.x 
corresponds to consecutive j values✔
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Memory coalescing examples 

•  Do consecutive threads read consecutive memory 
locations? 

•  In Fortran, innermost index runs fastest: i here 
 j = (blockIdx%x-1)*blockDim%x + threadIdx%x 
   

 do i=1, 256 

   output(i,j) = 2*input(i,j) 
 end do  

✖ Not Coalesced. Consecutive threadIdx%x 
corresponds to consecutive j values

Coalesced. Consecutive threadIdx%x 
corresponds to consecutive i values✔

 i = (blockIdx%x-1)*blockDim%x + threadIdx%x 
   

 do j=1, 256 

   output(i,j) = 2*input(i,j) 
 end do  
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Memory coalescing examples 

•  What about when using 2D or 3D CUDA 
decompositions? 
–  Same procedure. X component of threadIdx is always 

that which increments with consecutive threads 
–  E.g., for matrix addition, coalescing achieved as follows:  
 

 int j = blockIdx.x * blockDim.x + threadIdx.x; 
 int i = blockIdx.y * blockDim.y + threadIdx.y; 
 
 c[i][j] = a[i][j] + b[i][j]; 

i = (blockidx%x-1)*blockdim%x + threadidx%x 
j = (blockidx%y-1)*blockdim%y + threadidx%y 
 
c(i,j) = a(i,j) + b(i,j) 

C:

F:
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Code Branching 

•  On NVIDIA GPUs, there are less instruction scheduling 
units than cores  

•  Threads are scheduled in groups of 32, called a warp 

•  Threads within a warp must execute the same 
instruction in lock-step (on different data elements) 

•  The CUDA programming allows branching, but this 
results in all cores following all branches 
–  With only the required results saved 
–  This is obviously suboptimal 

•  Must avoid intra-warp branching wherever possible 
(especially in key computational sections) 
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Branching example 

•  E.g you want to split your threads into 2 groups:  
i = blockIdx.x*blockDim.x + threadIdx.x; 
if (i%2 == 0) 

 … 

else 

 … 
 

 

i = blockIdx.x*blockDim.x + threadIdx.x; 
if ((i/32)%2 == 0) 

 … 

else 

 … 
 

 

Threads within warp diverge

 Threads within warp follow same path

✖

✔
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CUDA Profiling 

•  Simply set COMPUTE_PROFILE environment variable to 1 
•  Log file, e.g. cuda_profile_0.log created at runtime: timing 

information for kernels and data transfer  

•  Alternatively, use NVIDIA profiler nvprof 

nvprof [options] [application] [application-arguments] 

•  http://docs.nvidia.com/cuda/profiler-users-guide/
#nvprof-overview 

•  Possible to output more metrics (cache misses etc) 
–  See doc/Compute_Profiler.txt file in main CUDA 

installation 
–  Another option:  

# CUDA_PROFILE_LOG_VERSION 2.0 
# CUDA_DEVICE 0 Tesla M1060 
# CUDA_CONTEXT 1 
# TIMESTAMPFACTOR fffff6e2e9ee8858 
method,gputime,cputime,occupancy 
method=[ memcpyHtoD ] gputime=[ 37.952 ] cputime=[ 86.000 ]  
method=[ memcpyHtoD ] gputime=[ 37.376 ] cputime=[ 71.000 ]  
method=[ memcpyHtoD ] gputime=[ 37.184 ] cputime=[ 57.000 ]  
method=[ _Z23inverseEdgeDetect1D_colPfS_S_ ] gputime=[ 253.536 ] cputime=[ 13.00 
0 ] occupancy=[ 0.250 ]  
... 
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Conclusions 

•  GPU architecture offers higher Floating Point and 
memory bandwidth performance over leading CPUs 

•  There are a number of factors which can inhibit 
application performance on the GPU. 
–  And a number of steps which can be taken to circumvent 

these inhibitors 
–  Some of these may require significant development/tuning for 

real applications 

•  It is important to have a good understanding of the 
application, architecture and programming model. 

17 


