
Derived Datatypes

MPI Datatypes

• Basic types

• Derived types

- vectors

- structs

- others

2

Basic datatypes

3

int x[10];

INTEGER:: x(10);

// send all 10 values

MPI_Send(x, 10, MPI_INT, …);

MPI_SEND(x, 10, MPI_INTEGER, …)

MPI_Send(&x[0], 4, …);

MPI_SEND(x(1), 4, …)

// send first 4 values

MPI_SEND(x(5), 4, …)

MPI_Send(&x[4], 4, …);

// send 5th, 6th, 7th, 8th

struct mystruct x[10];

type(mytype) :: x(10)

// ??

Motivation

• Send / Recv calls need a datatype argument

- pre-defined values exist for pre-defined language types

- e.g. real <-> MPI_REAL; int <-> MPI_INT

• What about types defined by a program?

- e.g. structures (in C) or user-defined types (Fortran)

• Send / Recv calls take a count parameter

- what about data that isn’t contiguous in memory?

- e.g. subsections of 2D arrays

4

Approach

• Can define new types in MPI

- user calls setup routines to describe new data type to MPI

• remember, MPI is a library and NOT a compiler!

- MPI returns a new data type handle

- store this value in a variable, e.g. MPI_MY_NEWTYPE

• Derived types have same status as pre-defined

- can use in any message-passing call

• Some care needed for reduction operations

- user must also define a new MPI_Op appropriate to the new data

type to tell MPI how to combine them

 5

Defining types

• All derived types stored by MPI as a list of basic types and

displacements (in bytes)

- for a structure, types may be different

- for an array subsection, types will be the same

• User can define new derived types in terms of both basic

types and other derived types

6

Derived Data types - Type

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

7

Contiguous Data
• The simplest derived datatype consists of a number of

contiguous items of the same datatype.

• C:
 int MPI_Type_contiguous(int count,

 MPI_Datatype oldtype,

 MPI_Datatype *newtype)

• Fortran:
 MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE,

 NEWTYPE, IERROR)

 INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

8

Use of contiguous

• May make program clearer to read

• Imagine sending a block of 4 integers
- use MPI_Ssend with MPI_INT / MPI_INTEGER and count = 4

• Or …
- define a new contiguous type of 4 integers called BLOCK4

- use MPI_Ssend with type=BLOCK4 and count = 1

• May also be useful intermediate stage in building more
complicated types
- i.e. later used in definition of another derived type

9

Vector Datatype Example

• count = 2

• stride = 5

• blocklength = 3

10

Oldtype

Newtype

3 elements per block

5 element stride

between blocks

2 blocks

What is a vector type?

• Why is a pattern with blocks and gaps useful?

A vector type corresponds to a

subsection of a 2D array

• Think about how arrays are stored in memory

- unfortunately, different conventions for C and Fortran!

- must use statically allocated arrays in C because dynamically
allocated arrays (using malloc) have no defined storage format

- In Fortran, can use either static or allocatable arrays

11

Coordinate System (how I draw arrays)

12

x[i][j]

x(i,j)

x[0][3]

x[0][2]

x[0][1]

x[0][0]

i

j

x[1][3]

x[1][2]

x[1][1]

x[1][0]

x[2][3]

x[2][2]

x[2][1]

x[2][0]

x[3][3]

x[3][2]

x[3][1]

x[3][0]

x(1,4)

x(1,1)

x(1,3)

x(1,2)

x(2,4)

x(2,1)

x(2,3)

x(2,2)

x(3,4)

x(3,1)

x(3,3)

x(3,2)

x(4,4)

x(4,1)

x(4,3)

x(4,2)

Arrray Layout in Memory

• Data is contiguous in memory

- different conventions for mapping 2D t o 1D arrays in C and Fortran

13

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

9 3

C: x[4][4] F: x(4,4)

1 5 13 2 6 10 14 3 7 11 15 4 8 12 16 9

C: x[16] F: x(16)

i

j

C example

• A 3 x 2 subsection of a 5 x 4 array

- three blocks of two elements separated by gaps of two

14

C: x[5][4]

Fortran example

• A 3 x 2 subsection of a 5 x 4 array

- two blocks of three elements separated by gaps of two

15

F: x(5,4)

stride = 4

blocklength = 2

count = 3

stride = 5

blocklength = 3

count = 2

Equivalent Vector Datatypes

16

Constructing a Vector Datatype

• C:

 int MPI_Type_vector (int count,

 int blocklength, int stride,

 MPI_Datatype oldtype,

 MPI_Datatype *newtype)

• Fortran:

 MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH,

 STRIDE, OLDTYPE, NEWTYPE, IERROR)

17

Sending a vector

• Have defined a 3x2 subsection of a 5x4 array

- but not defined WHICH subsection

- is it the bottom left-hand corner? top-right?

• Data that is sent depends on what buffer you pass to the

send routines

- pass the address of the first element that should be sent

18

Vectors in send routines

19

MPI_Ssend(&x[1][1], 1, vector3x2, ...);

MPI_SSEND(x(2,2) , 1, vector3x2, ...)

MPI_Ssend(&x[2][1], 1, vector3x2, ...);

MPI_SSEND(x(3,2) , 1, vector3x2, ...)

Extent of a Datatatype

• May be useful to find out how big a derived type is
- extent is distance from start of first to end of last data entry

- can use these routines to compute extents of basic types too

- answer is returned in bytes

• C:

 int MPI_Type_get_extent (MPI_Datatype datatype,

 MPI_Aint *extent)

• Fortran:
 MPI_TYPE_GET_EXTENT(DATATYPE, EXTENT, IERROR)

 INTEGER DATATYPE, EXTENT, IERROR

20

Structures
• Can define compound objects in C and Fortran

• Storage format NOT defined by the language

- different compilers do different things

- e.g. insert arbitrary padding between successive elements

- need to tell MPI the byte displacements of every element

21

struct compound {

 int ival;

 double dval[3];

};

type compound

 integer :: ival

 double precision :: dval(3)

end type compound

Constructing a Struct Datatype
• C:

 int MPI_Type_create_struct (int count,

 int *array_of_blocklengths,

 MPI_Aint *array_of_displacements,

 MPI_Datatype *array_of_types,

 MPI_Datatype *newtype)

• Fortran:

 MPI_TYPE_CREATE_STRUCT (COUNT,

 ARRAY_OF_BLOCKLENGTHS,

 ARRAY_OF_DISPLACEMENTS,

 ARRAY_OF_TYPES, NEWTYPE, IERROR)

22

Struct Datatype Example

• count = 2

• array_of_blocklengths[0] = 1

• array_of_types[0] = MPI_INT

• array_of_blocklengths[1] = 3

• array_of_types[1] = MPI_DOUBLE

• But how do we compute the displacements?
- need to create a compound variable in our program

- explicitly compute memory addresses of every member

- subtract addresses to get displacements from origin

23

Address of a Variable

• C:

 int MPI_Get_address (void *location,

 MPI_Aint *address);

• Fortran:

 MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

 <type> LOCATION (*)

 INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

 INTEGER IERROR

24

Committing a datatype

• Once a datatype has been constructed, it needs to be

committed before it is used in a message-passing call

• This is done using MPI_TYPE_COMMIT

• C:

 int MPI_Type_commit (MPI_Datatype *datatype)

• Fortran:

 MPI_TYPE_COMMIT (DATATYPE, IERROR)

 INTEGER DATATYPE, IERROR

25

Exercise

Derived Datatypes

• See Exercise 7.1 on the sheet

• Modify the passing-around-a-ring exercise.

• Calculate two separate sums:
- rank integer sum, as before

- rank floating point sum

• Use a struct datatype for this.

• If you are a Fortran programmer unfamiliar with Fortran
derived types then jump to exercise 7.2
- illustrates the use of MPI_Type_vector

26

