MPI 3.0

S .-
o~ « o

- %&}

e

™ -

e,
O
O

e
e
-
O

O

e

£l
>

i

Collectives

Advanced Parallel Programming

David Henty Dan Holmes
EPCC, University of Edinburgh

Overview

* Review of topologies in MPI

* MPI 3.0 includes new neighbourhood collective operations:
— MPI_Neighbor_allgather|v]
— MPI_Neighbor_alltoall[v|w]

* Example usage:
— Halo-exchange can be done with a single MPI communication call

* Practical tomorrow:

— Replace all point-to-point halo-exchange communication with a single
neighbourhood collective in your MPP coursework code

Topology communicators (rev’ie’v&m‘

* Regular n-dimensional grid or torus topology
— MPI_CART_CREATE

* (General graph topology

— MPI_GRAPH_CREATE
— All processes specify all edges in the graph (not scalable)

* General graph topology (distributed version)
— MPI_DIST_GRAPH_CREATE_ADJACENT
— All processes specify their incoming and outgoing neighbours

— MPI_DIST_GRAPH_CREATE
— Any process can specify any edge in the graph (too general?)

Topology communicators (rev’ie’v&m‘

* Testing the topology type associated with a communicator
— MPI_TOPO_TEST

* Finding the neighbours for a process
— MPI_CART_SHIFT

— Find out how many neighbours there are:
— MPI_GRAPH_NEIGHBORS COUNT
— Get the ranks of all neighbours:
— MPI_GRAPH_NEIGHBORS

— Find out how many neighbours there are:

— MPI_DIST_GRAPH_NEIGHBORS COUNT
— Get the ranks of all neighbours:

— MPI_DIST_GRAPH_NEIGHBORS

Neighbourhood collective operatfm

e See section 7.6 in MPI 3.0 for blocking functions

— See section 7.7 in MPI 3.0 for non-blocking functions
— See section 7.8 in MP1 3.0 for an example application
— But beware of the mistake(s) in the example code!

MPI1_[N|In]eighbor_allgather|v]

— Send one piece of data to all neighbours
— Gather one piece of data from each neighbour

MPI1_[N|In]eighbor_alltoall[v|w]

— Send different data to each neighbour
— Receive different data from each neighbour

e Use-case: regular or irregular domain decomposition codes

— Where the decomposition is static or changes infrequently
— Because creating a topology communicator takes time

B,) ¢

MPI_Neighbor_allgather

sendtype

sendbuf sendcount
\(A | To 15t neighbour

recvbuf To 2" neighbour

To 3" neighbour

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4t neighbour
From 5™ neighbour

» Same send buffer
for each outgoing

neighbour
Y) Contiguous chunks
In receive buffer
recvtype from each incoming
recvcount neighbour

http://www.epcc.ed.ac.uk/

MPI_Neighbor_allgatherv’ =

sendtype

sendbuf sendcount
\(A | To 15t neighbour

recvbouf To 2" neighbour

To 3" neighbour

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4% neighbour
From 5™ neighbour

» Same send buffer
for each outgoing

neighbour
\ /"« Non-contiguous
recvlyype variable-sized
- chunks in receive
displs[5]
buffer from each
recvcounts[s] incoming neighbour

http://www.epcc.ed.ac.uk/

M PI_Neighbor_alItoaHAC)L

sendtype

sendbuf sendcount

\
/ \

P %Stdneighhbbour
0 2" neighbour
recvbuf To 3" neighbour

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4™ neighbour

 Contiguous chunks
In send buffer
for each outgoing

From 5™ neighbour neighbour
 Contiguous chunks
| %n recelv% buffer
recvtype rom each incoming
yP neighbour

recvcount

http://www.epcc.ed.ac.uk/

MP I_Neighbor_alltoaﬁv" ‘\‘i\“‘&m

sendtype
sdispls[3]
sendbuf sendcoAunts[B]
(|
$o %Stdneighhbbour
0 2" neighbour
recvbuf To 3" neighbour

* Non-contiguous
variable-sized chunks
In send buffer
for each outgoing
neighbour

* Non-contiguous
J . variable-sized chunks

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4™ neighbour
From 5™ neighbour

reC\)type In receive buffer from
- each incoming
rdispls(5] neighbour
recvcounts[S]

http://www.epcc.ed.ac.uk/

MPI_Neighbor_alltoallw ~ T INESA SN (= olo/ei§

sendtypes|3]
sendbuf sdispls[3]

Yendcopnts[(ﬂ]
(\

To 15t neighbour
To 2" neighbour
To 3" neighbour

recvbuf

From 15t neighbour
From 2" neighbour
From 3' neighbour for each outgoing
From 4™ neighbour neighbour

From 5" neighbour ———— « Non-contiguous

\ J . variable-sized chunks
recvt)}pes[S] In receive buffer from

: each incomin
rdispls[5] neighbour ’

recvcounts[5]
B,) (o ¢

variable-sized chunks
In send buffer

* Non-contiguous
NN\ g

http://www.epcc.ed.ac.uk/

for (int i=0;i<4;:++) { sendbuf
sendcounts[i] = 1;
recvcounts[i]=1; } recvbuf

sendtypes[0] = contigType;
senddispls[0] = colLen*(rowLen+2)+1;
sendtypes[1] = contigType;
senddispls[1] = 1*(rowLen+2)+1;
sendtypes[2] = vectorType;
senddispls[2] = 1*(rowLen+2)+1;
sendtypes[3] = vectorType; rowlLen
senddispls[3] = 2*(rowLen+2)-2; colLen

// similarly for recvtypes and recvdispls

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sendd_isPIs, sendtypes,
recvbuf, recvcounts, recvdsipls, recvtypes,

comm);
NENRSEL 3 B,) ™

http://www.epcc.ed.ac.uk/

sSummary

Regular or irregular domain decomposition codes
— Where the decomposition is static or changes infrequently

Should investigate replacing point-to-point communication
— E.g. halo-exchange communication

With neighbourhood collective communication
— Probably MPI_Ineighbor_alltoallw

So that MPI can optimise the whole pattern of messages
— Rather than trying to optimise each message individually

And so your application code is simpler and easier to read

