
MPI and OpenMP 
Mark Bull 
EPCC, University of Edinburgh 
markb@epcc.ed.ac.uk 

1 



Overview 
• Motivation 
 
• Potential advantages of MPI + OpenMP 

• Problems with MPI + OpenMP 
 
• Styles of MPI + OpenMP programming 

•  MPI’s thread interface 
 
• MPI Endpoints 

2 



Motivation 

•  With the ubiquity of multicore chips, almost all current CPU systems 
are clustered architectures  

•  Distributed memory systems, where each node consist of a shared 
memory multiprocessor (SMP). 

•  Single address space within each node, but separate nodes have 
separate address spaces.   



Programming clusters 
• How should we program such a machine?  
• Could use MPI across whole system 
• Cannot (in general) use OpenMP/threads across whole 

system 
•  requires support for single address space 
•  this is possible in software, but inefficient 
•  also possible in hardware, but expensive 

• Could use OpenMP/threads within a node and MPI 
between nodes 
•  is there any advantage to this?  



Expectations 
•  In general, MPI + OpenMP does not improve performance 

(and may be worse!) in the regime where the MPI 
application is scaling well. 

• Benefits come when MPI scalability (either in time or 
memory) starts to run out 

• MPI +OpenMP may extend scalability to larger core 
counts  

5 



Typical performance curves 
6 



Potential advantages of MPI + OpenMP 

• Reducing memory usage 

• Exploiting additional levels of parallelism 

• Reducing load imbalance 

• Reducing communication costs 

7 



Reducing memory usage 
• Some MPI codes use a replicated data strategy 

•  all processes have a copy of a major data structure  
• Classical domain decomposition codes have replication in 

halos 
• MPI internal message buffers can consume significant 

amounts of memory 
• A pure MPI code needs one copy per process/core. 
• A mixed code would only require one copy per node 

•  data structure can be shared by multiple threads within a process 
•  MPI buffers for intra-node messages no longer required 

• Will be increasingly important 
•  amount of memory per core is not likely to increase in future 



Effect of domain size on halo storage 

Local domain size Halos % of data in halos 

503 = 125000 523 – 503 = 15608 11% 

203 = 8000 223 – 203 = 2648 25% 

103 = 1000 123 – 103 = 728 42% 

•  Typically, using more processors implies a smaller domain 
size per processor  
–  unless the problem can genuinely weak scale 

•  Although the amount of halo data does decrease as the local 
domain size decreases, it eventually starts to occupy a 
significant amount fraction of the storage 
–  even worse with deep halos or >3 dimensions  



Exploiting additional levels of parallelism 
• Some MPI codes do not scale beyond a certain core 

count because they run of of available parallelism at the 
top level. 

• However, there may be additional lower levels of 
parallelism that can be exploited. 

•  In principle, this could also be done using MPI. 
•  In practice this can be hard 

•  The lower level parallelism may be hard to load balance, or have 
irregular (or runtime determined) communication patterns. 

•  May be hard to work around design decisions in the original MPI 
version. 

10 



•  It may, for practical reasons, be easier to exploit the 
additional level(s) of parallelism using OpenMP threads. 

• Can take an incremental (e.g. loop by loop) approach to 
adding OpenMP 
•  maybe not performance optimal, but keeps development cost/time 

to a minimum.  

• Obviously OpenMP parallelism cannot extend beyond a 
single node, but this may be enough 
•  future systems seem likely to have more cores per nodes, rather 

than many more nodes 

11 



Reducing load imbalance 
•  Load balancing between MPI processes can be hard 

•  need to transfer both computational tasks and data from overloaded to 
underloaded processes 

•  transferring small tasks may not be beneficial  
•  having a global view of loads may not scale well 
•  may need to restrict to transferring loads only between neighbours 

•  Load balancing between threads is much easier 
•  only need to transfer tasks, not data 
•  overheads are lower, so fine grained balancing is possible  
•  easier to have a global view 

•  For applications with load balance problems, keeping the 
number of MPI processes small can be an advantage 



Reducing communication costs 
•  It is natural to suppose that communicating data inside a 

node is faster between OpenMP threads between MPI 
processes. 
•  no copying into buffers, no library call overheads 

•  True, but there are lots of caveats – see later.  
•  In some cases, MPI codes actually communicate more 

data than is actually required 
•  where actual data dependencies may be irregular and/or data-

dependent 
•  makes implementation easier 

13 



Collective communication 
•  In some circumstances, collective communications can be 

improved by using MPI + OpenMP 
•  e.g. AllReduce, AlltoAll 

•  In principle, the MPI implementation ought to be well 
optimised for clustered architectures, but this isn’t always 
the case. 
•  hard to do for AlltoAllv, for example 

• Can be cases where MPI + OpenMP transfers less data 
•  e.g. AllReduce where every thread contributes to the sum, but only 

the master threads uses the result 

14 



Example 
• ECMWF IFS weather forecasting code 

• Semi-Lagrangian advection: require data from neighbouring 
grid cells only in an upwind direction. 

• MPI solution – communicate all the data to neighbouring 
processors that could possibly be needed. 

• MPI + OpenMP solution – within a node, only read data from 
other threads’ grid point if it is actually required 
•  Significant reduction in communication costs   

15 



IFS example 

16 



Problems with MPI + OpenMP  
• Development/maintenance costs 

• Portability 

•  Libraries 

• Performance pitfalls 

17 



Development / maintenance costs 
•  In most cases, development and maintenance will be 

harder than for a pure MPI code. 

• OpenMP programming is easier than MPI (in general), but 
it’s still parallel programming, and therefore hard! 
•  application developers need yet another skill set  

• OpenMP (as with all threaded programming) is subject to 
subtle race conditions and non-deterministic bugs 
•  correctness testing can be hard  



Portability 
• Both OpenMP and MPI are themselves highly portable 

(but not perfect).  

• Combined MPI/OpenMP is less so 
•  main issue is thread safety of MPI  
•  if maximum thread safety is assumed, portability will be reduced 

• Desirable to make sure code functions correctly (maybe 
with conditional compilation) as stand-alone MPI code 
(and as stand-alone OpenMP code?) 



Libraries 
•  If the pure MPI code uses a distributed-memory library, 

need to replace this with a hybrid version. 
•  If the pure MPI code uses a sequential library, need to 

replace this with either a threaded version called from the 
master thread, or a thread-safe version called inside 
parallel regions. 

•  If thread/hybrid library versions use something other than 
OpenMP threads internally, can get problems with 
oversubscription. 
•  Both the application an the library may create threads that might 

not idle nicely when not being used   

20 



Performance pitfalls 
•  Adding OpenMP may introduce additional overheads not present in the 

MPI code (e.g. synchronisation, false sharing, sequential sections, NUMA 
effects). 

•  Adding OpenMP introduces a tunable parameter – the number of threads 
per MPI process 
•  optimal value depends on hardware, compiler, input data 

•  hard to guess the right value without experiments 

•  Placement of MPI processes and their associated OpenMP threads within 
a node can have performance consequences. 



•  An incremental, loop by loop approach to adding OpenMP is easy to do, 
but it can be hard to get sufficient parallel coverage. 
•  just Amdahl’s law applied inside the node 

P P P P P P P P P P P P 

MPI MPI + OpenMP 



More pitfalls... 
•  The mixed implementation may require more synchronisation than a 

pure OpenMP version, if non-thread-safety of MPI is assumed. 

•  Implicit point-to-point synchronisation via messages may be replaced 
by (more expensive) barriers.  
•  loose thread to thread synchronisation is hard to do in OpenMP 

•  In the pure MPI code, the intra-node messages will often be naturally 
overlapped with inter-node messages 
•  harder to overlap inter-thread communication with inter-node messages – see later 

•  OpenMP codes can suffer from false sharing (cache-to-cache 
transfers caused by multiple threads accessing different words in the 
same cache block) 
•  MPI naturally avoids this 

23 



NUMA effects 
•  Nodes which have multiple sockets are NUMA: each socket has it’s 

own block of RAM. 

•  OS allocates virtual memory pages to physical memory locations 
•  has to choose a socket for every page 

•  Common policy (default in Linux) is first touch – allocate on socket 
where the first read/write comes from 

•  right thing for MPI 

•  worst possible for OpenMP if data initialisation is not parallelised 
•  all data goes onto one socket 

•  NUMA effects can limit the scalability of OpenMP: it may be 
advantageous to run one MPI process per NUMA domain, rather than 
one MPI process per node. 

 

24 



Process/thread placement 
• On NUMA nodes need to make sure that: 

•  MPI processes are spread out across sockets 
•  OpenMP threads are on the same socket as their parent process 

• Not all batch systems do a good job of this.... 
•  can be hard to fix this as a user 
•  gets even more complicated if SMT (e.g. Hyperthreads) is used.  

25 



Styles of MPI + OpenMP programming 
• Can identify 4 different styles of MPI + OpenMP 

programming, depending on when/how OpenMP threads 
are permitted to make MPI library calls 

• Each has its advantages and disadvantages 

• MPI has a threading interface which allow the 
programmer to request and query the level of thread 
support 

26 



The 4 styles 
• Master-only 

•  all MPI communication takes place in the sequential part of the OpenMP 
program (no MPI in parallel regions) 

•  Funneled  
•  all MPI communication takes place through the same (master) thread 
•  can be inside parallel regions 

• Serialized 
•  only one thread makes MPI calls at any one time 
•  distinguish sending/receiving threads via MPI tags or communicators 
•  be very careful about race conditions on send/recv buffers etc. 

• Multiple 
•  MPI communication simultaneously in more than one thread 
•  some MPI implementations don’t support this 
•  …and those which do mostly don’t perform well 



OpenMP Master-only 

!$OMP parallel 
 work… 

!$OMP end parallel 
 

call MPI_Send(…) 

 
!$OMP parallel 

 work… 

!$OMP end parallel 

#pragma omp parallel 

{ 

   work… 

} 

ierror=MPI_Send(…); 

#pragma omp parallel 

{ 

   work…  

} 

Fortran C 



OpenMP Funneled 

!$OMP parallel 

… work 
!$OMP barrier 

!$OMP master 

  call MPI_Send(…) 

!$OMP end master 

!$OMP barrier 
.. work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp barrier 

  #pragma omp master 

  {   

    ierror=MPI_Send(…); 

  } 

 #pragma omp barrier 

 … work 

} 

Fortran C 



OpenMP Serialized 

!$OMP parallel 
… work 

!$OMP critical 
  call MPI_Send(…) 

!$OMP end critical 

… work 
!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp critical 

  {   

    ierror=MPI_Send(…); 

  } 

 … work 

} 

Fortran C 



OpenMP Multiple 

!$OMP parallel 
… work 

call MPI_Send(…) 
… work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work  

  ierror=MPI_Send(…); 

 … work 

} 

Fortran C 



Thread Safety 
• Making MPI libraries thread-safe is difficult 

•  lock access to data structures 
•  multiple data structures: one per thread 
•  … 

• Adds significant overheads 
•  which may hamper standard (single-threaded) codes 

• MPI defines various classes of thread usage 
•  library can supply an appropriate implementation 



MPI_Init_thread 
•  MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on the 

main thread. 

•  It has two integer arguments: 
•  Required ([in] Level of desired thread support ) 
•  Provided ([out] Level of provided thread support) 

•  C syntax 

int MPI_Init_thread(int *argc, char *((*argv)[]), int 
required, int *provided); 

 

•  Fortran syntax 
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR) 

  INTEGER REQUIRED, PROVIDED, IERROR 

 



MPI_Init_thread 

• MPI_THREAD_SINGLE 
•  Only one thread will execute.  

• MPI_THREAD_FUNNELED 
•  The process may be multi-threaded, but only the main thread will make 

MPI calls (all MPI calls are funneled to the main thread).  

• MPI_THREAD_SERIALIZED 
•  The process may be multi-threaded, and multiple threads may make MPI 

calls, but only one at a time: MPI calls are not made concurrently from two 
distinct threads (all MPI calls are serialized).  

• MPI_THREAD_MULTIPLE 
•  Multiple threads may call MPI, with no restrictions. 



MPI_Init_thread 

•  These integer values are monotonic; i.e.,  
•  MPI_THREAD_SINGLE  <  MPI_THREAD_FUNNELED       < 

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE 

• Note that these values do not strictly map on to the four 
MPI/OpenMP Mixed-mode styles as they are more 
general (i.e. deal with Posix threads where we don’t 
have “parallel regions”, etc.) 
•  e.g. no distinction here between Master-only and Funneled 
•  see MPI standard for full details 



MPI_Query_thread() 
•  MPI_Query_thread() returns the current level of thread support 

•  Has one integer argument: provided [in] as defined for MPI_Init_thread()  
 

•  C syntax 
int MPI_query_thread(int *provided); 

•  Fortran syntax 
MPI_QUERY_THREAD(PROVIDED, IERROR) 

  INTEGER PROVIDED, IERROR 

 

•  Need to compare the output manually, i.e. 
If (provided < requested) { 

 printf(“Not a high enough level of thread support!\n”); 

 MPI_Abort(MPI_COMM_WORLD,1) 

    …etc. 

} 

 

 



Master-only 
• Advantages 

•  simple to write and maintain  
•  clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism 
•  no concerns about synchronising threads before/after sending 

messages 

• Disadvantages 
•  threads other than the master are idle during MPI calls 
•  all communicated data passes through the cache where the master 

thread is executing. 
•  inter-process and inter-thread communication do not overlap. 
•  only way to synchronise threads before and after message transfers is 

by parallel regions which have a relatively high overhead. 
•  packing/unpacking of derived datatypes is sequential. 



Example 

 
      DO I=1,N 
         A(I) = B(I) + C(I) 
      END DO 
       
      CALL MPI_BSEND(A(N),1,.....) 
      CALL MPI_RECV(A(0),1,.....)  
 
 
      DO I = 1,N 
         D(I) = A(I-1) + A(I)  
      END DO  

!$omp parallel do 

!$omp parallel do 

Intra-node messages 
overlapped with inter-
node 

Inter-thread communication 
occurs here 

Implicit barrier added here 
* nthreads 

* nthreads 



Funneled 
• Advantages 

•  relatively simple to write and maintain  
•  cheaper ways to synchronise threads before and after message 

transfers 
•  possible for other threads to compute while master is in an MPI call 

• Disadvantages 
•  less clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism 
•  all communicated data still passes through the cache where the master 

thread is executing. 
•  inter-process and inter-thread communication still do not overlap. 



OpenMP Funneled with overlapping (1) 

Can’t using  
worksharing here! 



OpenMP Funneled with overlapping (2) 

Higher overheads and  
harder to synchronise  
between teams 



Serialised 
• Advantages 

•  easier for other threads to compute while one is in an MPI call 
•  can arrange for threads to communicate only their “own” data (i.e. the 

data they read and write).  

• Disadvantages 
•  getting harder to write/maintain 
•  more, smaller messages are sent, incurring additional latency 

overheads 
•  need to use tags or communicators to distinguish between messages 

from or to different threads in the same MPI process.   



Distinguishing between threads 

• By default, a call to MPI_Recv by any thread in an MPI 
process will match an incoming message from the sender.  

•  To distinguish between messages intended for different 
threads, we can use MPI tags 
•  if tags are already in use for other purposes, this gets messy 

• Alternatively, different threads can use different MPI 
communicators 
•  OK for simple patterns, e.g. where thread N in one process only ever 

communicates with thread N in other processes 
•  more complex patterns also get messy 



Multiple 

• Advantages 
•  Messages from different threads can (in theory) overlap  

•  many MPI implementations serialise them internally. 
•  Natural for threads to communicate only their “own” data 
•  Fewer concerns about synchronising threads (responsibility passed to 

the MPI library)  

• Disdavantages 
•  Hard to write/maintain 
•  Not all MPI implementations support this – loss of portability 
•  Most MPI implementations don’t perform well like this 

•  Thread safety implemented crudely using global locks. 



Endpoints proposal for MPI 4.0 

•  Idea is to make Multiple style easier to use and easier to 
implement efficiently.  

• Not yet available in implementations, but likely to appear 
in the fairly near future... 

45 



Mapping of Ranks to Processes in MPI 

• MPI provides a 1-to-1 mapping of ranks to processes 
• Programmers use many-to-one mapping of threads to 

processes 

Rank	
  

T	
   T	
   T	
  

Conventional Communicator 

Process 

Rank	
  

T	
   T	
  

Process 

… 

46 



Flexible Mapping of Ranks to Processes 

•  Provide a many-to-one mapping of ranks to processes 
•  Allows threads to act as first-class participants in MPI operations 
•  Improve programmability of MPI + node-level and MPI + system-level models 
•  Potential for improving performance of hybrid MPI + X 

•  A rank represents a communication “endpoint” 
•  Set of resources that supports the independent execution of MPI 

communications 

Rank	
  

T	
   T	
   T	
  

Endpoints Communicator 

Process 

Rank	
  

T	
   T	
  

Process 

… Rank	
  Rank	
   Rank	
   Rank	
  

T	
   T	
  

Process 

47 



Endpoints: Proposed Interface 
int	
  MPI_Comm_create_endpoints(	
  

	
  MPI_Comm	
  parent_comm,	
  
	
  int	
  my_num_ep,	
  
	
  MPI_Info	
  info,	
  
	
  MPI_Comm	
  *out_comm_hdls[]) 

• Each rank in parent_comm gets my_num_ep ranks in 
out_comm 
•  My_num_ep can be different at each process 
•  Rank order: process 0’s ranks, process 1’s ranks, etc. 

• Output is an array of communicator handles 
•  ith handle corresponds to ith endpoint create by parent process 
•  To use that endpoint, use the corresponding handle 

0 2 3 4

1 20

1

48 



Endpoints example 

49 

int main(int argc, char **argv) {
int world_rank, tl;
int max_threads = omp_get_max_threads();
MPI_Comm ep_comm[max_threads];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel

{
int nt = omp_get_num_threads();
int tn = omp_get_thread_num();
int ep_rank;

#pragma omp master

{
MPI_Comm_create_endpoints(MPI_COMM_WORLD,

nt, MPI_INFO_NULL, ep_comm);
}

#pragma omp barrier

MPI_Comm_attach(ep_comm[tn]);
MPI_Comm_rank(ep_comm[tn], &ep_rank);
... // divide up work based on ’ep_rank’

MPI_Allreduce(..., ep_comm[tn]);

MPI_Comm_free(&ep_comm[tn]);
}
MPI_Finalize();

}

Listing 1: Example hybrid MPI+OpenMP program where end-
points are used to enable all OpenMP threads to participate in
a collective MPI allreduce.

if they were separate MPI ranks in separate processes. Since the
threads share a process and address space, the MPI implementation
can optimize the combining of data between those threads. In ad-
dition, the MPI implementation can utilize the threads and network
resources in the endpoints to maximize network throughput.

5.2 System-Wide Hybrid Programs
Endpoints can be used to enable interoperability with system-

level programming models that use threads for on-node execution,
e.g., UPC, CAF, Charm++, X10, and Chapel. In this setting, end-
points are used to enable flexible mappings between MPI ranks and
execution units in the other model.

To illustrate this capability, we show a hybrid MPI+UPC pro-
gram in Listing 2. This program uses a flat (one-to-one) mapping
between MPI ranks and UPC threads [3]. The UPC specification
allows UPC threads to be implemented using processes or threads;
however, implementations commonly use threads as the execution
unit for UPC threads. In order to support the flat execution model,
a mechanism is needed to acquire multiple ranks per unit of MPI
execution. In [3], the authors extended the MPI launcher with a
-ranks-per-proc argument that would allow each spawned
process to call MPI_Init multiple times, once per UPC thread. This
is one approach to enabling a static endpoints model. However, it
results in all endpoints being within MPI_COMM_WORLD, which
may not be desired.

In order to support the UPC code in Listing 2, the UPC com-
piler must intercept usages of MPI_COMM_WORLD and substitute
the upc_comm_world communicator. Alternatively, the MPI profil-
ing interface (PMPI) can be used to intercept MPI calls and pro-
vide communicator translation. This approach provides the best
compatibility with MPI libraries that are not compiled by the UPC
compiler.

In Listing 3, we show the code that a UPC compiler could gen-
erate to enable this hybrid execution model. In this example, MPI
is used to bootstrap the UPC execution, which is the approach used
by several popular UPC implementations [1]. Once the execution

shared [*] double data[100*THREADS];

int main(int argc, char **argv) {
int rank, i; double err;

do {
upc_forall(i = 0; i < 100*THREADS; i++; i) {

data[i] = ...; err += ...;
}
MPI_Allreduce(&err, ..., MPI_COMM_WORLD);

} while (err > TOL);
}

Listing 2: Example hybrid MPI+UPC user code

int main(int argc, char **argv) {
int world_rank, tl, i;
MPI_Comm upc_comm_world[NUM_THREADS];

MPI_Init_thread(&argc, &argv, MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_create_endpoints(MPI_COMM_WORLD,

THREADS_PER_NODE, MPI_INFO_NULL, upc_comm_world);

/

*

Calls upc_thread_init(), which calls upc_main()

*

/

for (i = 0; i < NUM_THREADS; i++)
UPCR_Spawn(upc_thread_init, upc_comm_world[i]);

MPI_Finalize();
}

upc_thread_init(int argc, char **argv,
MPI_Comm upc_comm_world) {

MPI_Comm_attach(upc_comm_world);
upc_main(argc, argv); /

*

User’s main function

*

/

MPI_Comm_free(&upc_comm_world);
}

Listing 3: Example hybrid MPI+UPC bootstrapping code gen-
erated by the UPC compiler

has been bootstrapped, a “flat” endpoints communicator is created,
UPC threads are spawned, threads attach to their endpoints, reg-
ister the endpoints communicator with an interoperability library,
and finally run the user’s main function (shown in Listing 2).

5.3 Impact on Computation Management
Endpoints introduce powerful, new flexibility in the mapping of

ranks to processes. In the current MPI specification, ranks can be
shuffled, but the number of ranks assigned to each process must re-
main fixed. Dynamic endpoints allow ranks to be shuffled and also
the number of ranks assigned to each process to be adjusted. This
capability can be used to perform dynamic load balancing by treat-
ing endpoints as “virtual processes” and repartitioning endpoints
across nodes. This enables an application behavior that is simi-
lar to Adaptive MPI [2], where MPI processes are implemented as
Charm++ objects that can be migrated to perform load balancing.

A schematic example of this approach to load balancing is
shown in Figure 2. In this example, individual components of
the computation are associated with each endpoint rather than par-
ticular threads of execution. This enables a programming con-
vention where per-iteration data exchange can be performed with
respect to neighbor ranks in the endpoints communicator (e.g.,
halo exchange). Thus, when endpoints are migrated, the virtual
communication pattern between endpoints is preserved. Such a
communication-preserving approach to dynamic load balancing
can provide an effective solution for adaptive mesh computations.

While this model for load balancing is powerful and useful, it
requires the programmer to manually communicate computational
state from the previous thread or process responsible for an end-



Summary 
• MPI + OpenMP programming is becoming standard practice 

•  ~30% of consumed CPU hours on ARCHER  

• Many see it as the key to exascale, however … 
•  may require MPI_THREAD_MULTIPLE style to reduce overheads 
•  ... and end points to make this usable?  

• Achieving correctness is hard 
•  have to consider race conditions on message buffers 

• Achieving performance is hard 
•  entire application must be threaded (efficiently!) 

• Must optimise choice of 
•  numbers of processes/threads 
•  placement of processes/threads on NUMA architectures 

 



Practical session 
Copy source code using:  
cp /home/z01/shared/advomp.tar .!
and unpack with  
tar xvf advomp.tar!
 
Code is in Advanced/C/Traffic or Advanced/
Fortran90/Traffic!
 
See Practical Notes sheet on course materials page and go 
straight to Exercise 2.   


