
 
 
THREADED PROGRAMMING 

OpenMP Performance 



A common scenario..... 
 
“So I wrote my OpenMP program, and I checked it gave the 
right answers, so I ran some timing tests, and the speedup 
was, well, a bit disappointing really. Now what?”. 
 
Most of us have probably been here.  
 
Where did my performance go?  
 
It disappeared into overheads..... 
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The six (and a half) evils... 
•  There are six main sources of overhead in OpenMP programs: 
 

•  sequential code  
•  idle threads 
•  synchronisation 
•  scheduling 
•  communication 
•  hardware resource contention 

•  and another minor one: 
•  compiler (non-)optimisation 

•  Let’s take a look at each of them and discuss ways of avoiding 
them.  
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Sequential code 
•  In OpenMP, all code outside parallel regions, or inside 

MASTER and SINGLE directives is sequential. 

• Time spent in sequential code will limit performance 
(that’s Amdahl’s Law).  

•  If 20% of the original execution time is not parallelised, I 
can never get more that 5x speedup.  

• Need to find ways of parallelising it! 
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Idle threads 
•  Some threads finish a piece of computation before others, and have to wait 

for others to catch up. 

•  e.g. threads sit idle in a barrier at the end of a parallel loop or parallel 
region.  
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Time  



Avoiding load imbalance 

•  It’s a parallel loop, experiment with different schedule kinds and 
chunksizes   
•  can use SCHEDULE(RUNTIME) to avoid recompilation. 

  
•  For more irregular computations, using tasks can be helpful 

•  runtime takes care of the load balancing  

•  Note that it’s not always safe to assume that two threads doing the 
same number of computations will take the same time. 
•  the time taken to load/store data may be different, depending on if/where 

it’s cached. 
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Critical sections 
•  Threads can be idle waiting to access a critical section 

•  In OpenMP, critical regions, atomics or lock routines 
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Avoiding waiting 
• Minimise the time spent in the critical section 

• OpenMP critical regions are a global lock 
•  but can use critical directives with different names 

• Use atomics if possible 
•  allows more optimisation, e.g. concurrent updates to different array 

elements 

•  ... or use multiple locks 
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Synchronisation 
• Every time we synchronise threads, there is some overhead, 

even if the threads are never idle. 
•  threads must communicate somehow..... 

• Many OpenMP codes are full of (implicit) barriers 
•  end of parallel regions, parallel loops 

• Barriers can be very expensive  
•  depends on no. of threads, runtime, hardware, but typically 1000s to 

10000s of clock cycles. 

• Criticals, atomics and locks are not free either. 
•  ...nor is creating or executing a task 
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Avoiding synchronisation overheads 
• Parallelise at the outermost level possible.  

•  Minimise the frequency of barriers 
•  May require reordering of loops and/or array indices. 
 

• Careful use of NOWAIT clauses. 
•  easy to introduce race conditions by removing barriers that are 

required for correctness 

• Atomics may have less overhead that critical or locks 
•  quality of implementation problem 
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Scheduling 
•  If we create computational tasks, and rely on the runtime 

to assign these to threads, then we incur some overheads 
•  some of this is actually internal synchronisation in the runtime 

• Examples: non-static loop schedules, task constructs 
 
 
 

• Need to get granularity of tasks right 
•  too big may result in idle threads 
•  too small results in scheduling overheads 
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#pragma omp parallel for schedule(dynamic,1)  
for (i=0;i<10000000;i++){ 
....... 
}  
 



Communication 
• On shared memory systems, communication is “disguised” as 

increased memory access costs - it takes longer to access 
data in main memory or another processors cache than it 
does from local cache.  

• Memory accesses are expensive! ( O(100) cycles for a main 
memory access compared to 1-3 cycles for a flop).  

• Communication between processors takes place via the 
cache coherency mechanism.  

• Unlike in message-passing, communication is fine –grained 
and spread throughout the program 
•  much harder to analyse or monitor.  
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Cache coherency in a nutshell 
•  If a thread writes a data item, it gets an exclusive copy of the 

data in it’s local cache 

•  Any copies of the data item in other caches get invalidated to 
avoid reading of out-of-date values. 

•  Subsequent accesses to the data item by other threads must 
get the data from the exclusive copy 
•  this takes time as it requires moving data from one cache to another  

(Caveat : this is a highly simplified description! ) 
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Data affinity 
• Data will be cached on the processors which are accessing it, 

so we must reuse cached data as much as possible.  
• Need to write code with good data affinity - ensure that the 

same thread accesses the same subset of program data as 
much as possible.  

• Try to make these subsets large, contiguous chunks of data 
• Also important to prevent threads migrating between cores 

while the code is running. 
•  use export OMP_PROC_BIND=true 
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Data affinity example 1 
#pragma omp parallel for schedule(static)  
for (i=0;i<n;i++){ 
   for (j=0; j<n; j++){  
      a[j][i] = i+j; 
   } 
}  
 
#pragma omp parallel for schedule(static,16)  
for (i=0;i<n;i++){ 
   for (j=0; j<i; j++){  
      b[j] += a[j][i]; 
   } 
} 
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Different access patterns 
for a will result in extra 

communication 

Balanced loop 

Unbalanced loop 



Data affinity example 2  
 
#pragma omp parallel for 
for (i=0;i<n;i++){ 
     ... = a[i]; 
} 
 
for (i=0;i<n;i++){ 
     a[i] = 23; 
} 
 
#pragma omp parallel for 
for (i=0;i<n;i++){ 
     ... = a[i]; 
} 
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a will be spread across 
multiple caches 

Sequential code!  
 a will be gathered into 

one cache 

a will be spread across 
multiple caches again  



Data affinity (cont.)  

• Sequential code will take longer with multiple threads than it 
does on one thread, due to the cache invalidations 

• Second parallel region will scale badly due to additional cache 
misses 

• May need to parallelise code which does not appear to take 
much time in the sequential program!   
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Data affinity: NUMA effects 
• Very evil!  
• On multi-socket systems, the location of data in main memory 

is important. 
•  Note: all current multi-socket x86 systems are NUMA! 

• OpenMP has no support for controlling this.  
• Common default policy for the OS is to place data on the 

processor which first accesses it (first touch policy). 
• For OpenMP programs this can be the worst possible option 

•  data is initialised in the master thread, so it is all allocated one node 
•  having all threads accessing data on the same node becomes a 

bottleneck 
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Avoiding NUMA effects 
•  In some OSs, there are options to control data placement 

•  e.g. in Linux, can use numactl change policy to round-robin   

• First touch policy can be used to control data placement 
indirectly by parallelising data initialisation 
•  even though this may not seem worthwhile in view of the insignificant 

time it takes in the sequential code 

• Don’t have to get the distribution exactly right 
•  some distribution is usually much better than none at all.  

• Remember that the allocation is done on an OS page basis  
•  typically 4KB to 16KB 
•  beware of using large pages!  
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False sharing 
• Very very evil!  

• The units of data on which the cache coherency 
operations are done (typically 64 or 128 bytes) are always 
bigger than a word (typically 4 or 8 bytes).  

• Different threads writing to neighbouring words in memory 
may cause cache invalidations!  
•  still a problem if one thread is writing and others reading 
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False sharing patterns 
•  Worst cases occur where different threads repeatedly write neighbouring 

array elements. 
 
 count[omp_get_thread_num()]++;  
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#pragma omp parallel for schedule(static,1)  
for (i=0;i<n;i++){ 
   for (j=0; j<n; j++){  
      b[i] += a[j][i]; 
   } 
}  



Hardware resource contention 
•  The design of shared memory hardware is often a cost vs. 

performance trade-off. 

•  There are shared resources which if all cores try to access at 
the same time. do not scale 
•  or, put another way, an application running on a single code can access 

more than its fair share of the resources 
•  In particular, cores (and hence OpenMP threads) can contend 

for: 
•  memory bandwidth  
•  cache capacity  
•  functional units (if using SMT) 
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Memory bandwidth 
• Codes which are very bandwidth-hungry will not scale linearly 

of most shared-memory hardware. 

• Try to reduce bandwidth demands by improving locality, and 
hence the re-use of data in caches 
•  will benefit the sequential performance as well.  
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Memory bandwith example 
•  Intel Ivy Bridge processor 

•  12 cores 
•  L1 and L2 caches per core 
•  30 MB shared L3 cache 

 
#pragma omp parallel for reduction (+:sum) 
for (i=0;i<n;i++){ 
   sum += a[i]; 
}  
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Death by synchronisation! 

L3 cache BW contention 

Memory BW contention 



Cache space contention 

• On systems where cores share some level of cache (e.g. L3), 
codes may not appear to scale well because a single core can 
access the whole of the shared cache. 

• Beware of tuning block sizes for a single thread, and then 
running multithreaded code 
•  each thread will try to utilise the whole cache 
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Hardware threads  
• When using hardware threads, OpenMP threads running on 

the same core contend for functional units as well as cache 
space and memory bandwidth.  

• Tends to benefit codes where threads are idle because they 
are waiting on memory references 
•  code with non-contiguous/random memory access patterns 

• Codes which are bandwidth-hungry, or which saturate the 
floating point units (e.g. dense linear algebra) may not benefit 
from this 
•  may actually run slower 
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Oversubscription 
• Running more threads than hardware execution units 

(cores or hardware threads) is generally a bad idea. 

• OS tries to give each thread a fair share of execution units 

• Cost of stopping one thread and starting another is high 
(1000s of clock cycles) 

• Ruins data locality!  
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Compiler (non-)optimisation 
•  Very rarely, the addition of OpenMP directives can inhibit the compiler 

from performing  sequential optimisations.  

•  Symptoms: 1-thread parallel code has longer execution time than 
sequential code.  

•  Can be hard to find a workaround 

•  Can sometimes be cured by making shared data private, or making  
local copies of variables.  
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Minimising overheads 
My code is giving poor speedup. I don’t know why.  
 
What do I do now? 
1.    

•  Say “OpenMP is a heap of junk”.  
•  Give up.  

2.  
•  Try to classify and localise the sources of overhead.  
•  What type of problem is it, and where in the code does it occur?   
•  Use any available tools to help you (e.g. timers, hardware counters, 

profiling tools).  
•  Fix problems which are responsible for large overheads first.   
•  Iterate. 
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Profilers 
• Standard profilers (gprof, IDE profilers) can be confusing  

•  they typically accumulate the time spent in functions across all threads. 

• You can get a lot out of using timers ( omp_get_wtime()) 
• Add  timers round every parallel region, and round the whole 

code. 
•  work out which parallel regions have the worst speedup 
•  don’t assume the time spent outside parallel regions is independent of 

the number of threads. 



Performance tools 
• Vampir 

•  timeline traces can be very useful for visualising load balance 

•  Intel Vtune 
• Oracle Studio Performance Analyzer 
• CrayPAT 
• Scalasca 

•  breaks down overheads into different categories 

• ParaTools Threadspotter 
•  very good for finding cache/memory problems, including false sharing.  


