INg

Threaded

Lecture 7: Tasks

Programm




What are tasks? ' WT‘“‘W‘

* Tasks are independent units of work ‘

* Tasks are composed of:

— code to execute
— data to compute with

* Threads are assigned to perform the
work of each task.

Serial Parallel



OpenMP tasks

* The task construct includes a structured block of code

* Inside a parallel region, a thread encountering a task
construct will package up the code block and its data for
execution

* Some thread in the parallel region will execute the task at

some point in the future
— note: could be encountering thread, right now

* Tasks can be nested: i.e. a task may itself generate tasks.

RERNRA L RS | 3



" NG
task directve LU EENANE ele)

Syntax:
Fortran:
'SOMP TASK /clauses]
structured block
!SOMP END TASK
C/C++:

#pragma omp task [clauses]

structured-block



Sl e T\ ‘
L\ 3“\
Example . W‘

11— Create some threads

#pragma omp paralle
{

#pragma omp master <« Thread 0 packages
{ tasks

#pragma omp task
fred() ;

#ipragma omp task Tasks executed by

daisy () ; some thread in some
#pragma omp task order
billy() ;

RN R )| 5



When/where are tasks comﬁléfé-im'

* At thread barriers (explicit or implicit)

— applies to all tasks generated in the current parallel region up to the
barrier

* At taskwait directive
— i.e. Wait until all tasks defined in the current task have completed.

— Fortran: '$OMP TASKWAIT
— C/C++:. #pragma omp taskwait

— Note: applies only to tasks generated in the current task, not to
“descendants” .

— The code executed by a thread in a parallel region is considered a
task here



When/where are tasks com&éﬁémml

* At the end of a taskgroup region
— Fortran:

1SOMP TASKGROUP

Structured block

1SOMP END TASKGROUP
— C/C++:
#pragma omp taskgroup
Structured-block

— walit until all tasks created within the taskgroup have
completed

— applies to all “descendants”



Example B L lepCC]

#pragma omp parallel
{

#pragma omp master

{
#pragma omp task

fred() ;
#prcaiglfla c(n)np task fred() and
aisy\) ., daisy () must
#pragma taskwaité//////// complete before
#pragma omp task billy () starts
billy();




. . ‘TR AES
Linked list traversal m‘

p = listhead ;
while (p) {
process (p) ;
p=next (p)
}

* Classic linked list traversal
* Do some work on each item in the list
* Assume that items can be processed independently

* Cannot use an OpenMP loop directive



. -‘v*' THA )
. . Cy Y
Parallel linked list traversal | W‘

Only one thread

#pragma omp parallel/ packages tasks
{

#pragma omp master

{
p = listhead ;
while (p) {
#pragma omp task firstprivate(p)
{
process (p);
}
p=next (p) ; makes a copy of p
} when the task is
} packaged

RN R 0\ 10



. -‘v*' THA )
. . Cy Y
Parallel linked list traversal | W‘

Thread O: Other threads:

p = listhead ;

while (p) {
< package up task >

p=next (p) - while (tasks to do) ({
} < execute task >

}
while (tasks_ to do) {

< execute task >

}

< barrier > < barrier >

RN R 0\



S . T )
: . " ~
Parallel pointer chasing on rﬁ&lﬁm

#pragma omp parallel All threads package
{ tasks

#pragma omp for“private (p)
for ( int 1 =0; 1 <numlists; i++) {
p = listheads[i] ;
while (p ) {
#pragma omp task firstprivate (p)
{

process (p) ;

}
p=next (p) ;

}

RN TR



Data scoping with tasks

* Variables can be shared, private or firstprivate with respect
to task

* These concepts are a little bit different compared with

threads:

— |f a variable is shared on a task construct, the references to it
inside the construct are to the storage with that name at the point
where the task was encountered

— If a variable is private on a task construct, the references to it inside
the construct are to new uninitialized storage that is created when
the task is executed

— If a variable is firstprivate on a construct, the references to it inside
the construct are to new storage that is created and initialized with
the value of the existing storage of that name when the task is
encountered



Data scoping defaults Bl IS

* The behavior you want for tasks is usually firstprivate, because the task
may not be executed until later (and variables may have gone out of
scope)

— Variables that are private when the task construct is encountered are firstprivate by
default

* Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private (B)
{

#pragma omp task A iIs shared

Lt B is firstprivate
int C; . .
/ C is private

compute (A, B, C);
}
<l TR - 14



=\
Example: Fibonacci numﬂe&lgm‘

int fib (int n) * Fa=Faat oo

{ * Inefficient O(n?) recursive
int x,y; implementation!
if ( n < 2 ) return n;
x = fib(n-1);

y = fib(n-2) ;
return x+y;

}

int main ()

{
int NN = 5000;
fib (NN) ;

}



Parallel Fibonacci B L) L iy o .

int £fib ( int n )

? . * Binary tree of tasks
int x,y;
if ( n < 2 ) return n; * Traversed using a recursive
#pragma omp task shared(x) function
x = fib(n-1);
#Pragma omp task shared(y) * Atask cannot Complete until
y = fib(n-2); all tasks below it in the tree

#pragma omp taskwait

are complete (enforced with
return x+y;

} taskwait)
int main() e x,y arelocal, and so
int NN = 5000; :
{ private to current task
#pragma omp parallel
{ — must be shared on child tasks
so they don'’t create their own
#ipragma omp master firstprivate copies at this level!
fib (NN) ;
}

}
RN B )\ 16



Using tasks e Ny o

* Getting the data attribute scoping right can be quite tricky
— default scoping rules different from other constructs
— as ever, using default (none) is a good idea

* Don’t use tasks for things already well supported by OpenMP
— e.g. standard do/for loops
— the overhead of using tasks is greater

* Don’t expect miracles from the runtime

— best results usually obtained where the user controls the
number and granularity of tasks

RERNRA L - 17



S . T )
: . alRls
Parallel pointer chasing aga% W‘

#pragma omp parallel

{
#pragma omp single private (p)
{
p = listhead ;
while (p) {
#pragma omp task firstprivate (p)

{

process (p,nitems) ; Process
! — — nitems at
} a time
for (1=0; i<nitems &&p; i++) {
p=next (p) ;
}
) \
} skip nitems ahead

} in the list

RN R )| 15



VA Vo - i
. . gt ) VO
Parallel Fibonacci again u m

int £fib ( int n )

{

int x,y;
if ( n < 2 ) return n;

#pragma omp task shared(x) if (n>30)
x = fib(n-1);

#pragma omp task shared(y) if (n>30)
y = fib(n-2);

#pragma omp taskwait
return x+y;

}

int main ()

{ 4int NN 5000;
#pragma omp parallel
{

#pragma omp master
£ib (NN) ;

}
RN

* Stop creating
tasks at some
level in the tree.

R )| 1o



. SETEAR
Exercise L)L W‘

* Mandelbrot example using tasks.



