C

C O S
D C 5
O = 0
= S
O £ 5
— >
c © =
= 5 %
(D)

S 3
O S
1

Why is it required?

Recall:

Need to synchronise actions on shared variables.

Need to ensure correct ordering of reads and writes.

Need to protect updates to shared variables (not atomic by default)

= A (R B) 2

>A‘ - WA T\
vy " -
B)
.
-

BARRIER directive

* No thread can proceed past a barrier until all the other threads have
arrived.

* Note that there is an implicit barrier at the end of DO/FOR, SECTIONS
and SINGLE directives.

* Syntax:
Fortran: '$SOMP BARRIER

C/C++:. #pragma omp barrier

* Either all threads or none must encounter the barrier: otherwise
DEADLOCK!

RN RS) 3

BARRIER directive (cont) it W TTeTo'el)

Example:

1$OMP PARALLEL PRIVATE (I,MYID,NEIGHB)
myid = omp get thread num()
neighb = myid - 1
if (myid.eq.0) neighb = omp get num threads()-1

a(myid) = a(myid) *3.5
1SOMP BARRIER

b (myid) = a(neighb) + c

1SOMP END PARALLEL

* Barrier required to force synchronisation on a

RN R)| 4

Critical sections

* A critical section is a block of code which can be executed by only one
thread at a time.

* (Can be used to protect updates to shared variables.
* The CRITICAL directive allows critical sections to be named.

* If one thread is in a critical section with a given name, no other thread
may be in a critical section with the same name (though they can be in

critical sections with other names).

CRITICAL directive

* Syntax:
Fortran: ' SOMP CRITICAL [(name)]
block
' SOMP END CRITICAL [(name)]
C/C++. #pragma omp critical [(nhame)]

structured block

* |In Fortran, the names on the directive pair must match.

* |If the name is omitted, a null name is assumed (all unnamed critical
sections effectively have the same null name).

CRITICAL directive (cont) = iure\WNT=ToTe’el]

Example: pushing and popping a task stack

!SOMP PARALLEL SHARED (STACK) , PRIVATE (INEXT, INEW)

1SOMP CRITICAL (STACKPROT)
inext = getnext (stack)
1SOMP END CRITICAL (STACKPROT)
call work (inext, inew)
1SOMP CRITICAL (STACKPROT)
if (inew .gt. 0) call putnew(inew, stack)

1SOMP END CRITICAL (STACKPROT)

'SOMP END PARALLEL

-~ IR T

ATOMIC directive ““W‘

* Used to protect a single update to a shared variable.

* Applies only to a single statement.
* Syntax:
Fortran: ! SOMP ATOMIC

statement

where statement must have one of these forms:
X= X Op expr, X=expropx, X=Iintr (x, expr) or

X = intr (expr, x)

opisoneof+, * - / .and., .or., .eqv.,Or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

- W)
A v

ATOMIC directive (cont) .

C/C++: #pragma omp atomic

Statement
where statement must have one of the forms:
X binop = expr, x++, ++X, Xx--, or —-Xx

and binop isone of +, *, -, /, & *~, <<, or >>

* Note that the evaluation of expr is not atomic.

* May be more efficient than using CRITICAL directives, e.g. if
different array elements can be protected separately.

* No interaction with CRITICAL directives

ATOMIC directive (cont) NS TToloTe]l

Example (compute degree of each vertex in a graph):

#pragma omp parallel for
for (j=0; j<nedges; j++) {
#pragma omp atomic
degree[edge[]j] .vertexl] ++;
#pragma omp atomic

degree[edge[]j] .vertex2] ++;

B 0| 10

Lock routines

* Occasionally we may require more flexibility than is provided by
CRITICAL directive.

* Alock is a special variable that may be set by a thread. No other thread
may set the lock until the thread which set the lock has unset it.

e Setting a lock can either be blocking or non-blocking.

* A lock must be initialised before it is used, and may be destroyed when it
IS not longer required.

* Lock variables should not be used for any other purpose.

RN - 11

. -‘v*' THA)
. T
Lock routines - syntax 8 W‘

Fortran:
USE OMP LIB

SUBROUTINE OMP INIT LOCK (OMP LOCK KIND var)
SUBROUTINE OMP SET LOCK (OMP LOCK KIND var)
LOGICAL FUNCTION OMP TEST LOCK (OMP LOCK KIND var)
SUBROUTINE OMP UNSET LOCK (OMP LOCK KIND var)
SUBROUTINE OMP DESTROY LOCK (OMP_ LOCK KIND var)

var should be an INTEGER of the same size as addresses (e.g. INTEGER*8 on a
64-bit machine)

OMP_LIB defines OMP_LOCK_KIND

RN TR

W . T
\ Sy
Lock routines - syntax B m

C/C++:

#include <omp.h>
void omp init lock (omp lock t *lock);
void omp set lock(omp lock t *lock);
int omp test lock(omp lock t *lock);
void omp unset lock (omp lock t *lock);

void omp destroy lock(omp lock t *lock);

There are also nestable lock routines which allow the same thread to set a
lock multiple times before unsetting it the same number of times.

RERNRAL R)\ 13

NG
Lock example T W‘

Example (compute degree of each vertex in a graph):

for (i=0; i<nvertexes; i++) {

omp init lock(lockvar[i]);

#pragma omp parallel for
for (j=0; j<nedges; j++) {
omp set lock(lockvar[edge[]j].vertexl]);
degree[edge[]j] .vertexl]++;
omp unset lock(lockvar[edge[]].vertexl])
omp set lock(lockvar[edge[j].vertex2]);
degree[edge[j] .vertex2]++;

omp_unset lock(lockvar[edge[]j].vertex2]) ;

RN

Exercise

Molecular dynamics

* The code supplied is a simple molecular dynamics simulation of the
melting of solid argon.

* Computation is dominated by the calculation of force pairs in subroutine
forces.
* Parallelise this routine using a DO/FOR directive and critical sections.

— Woatch out for PRIVATE and REDUCTION variables.
— Choose a suitable loop schedule

e Extra exercise: can you improve the performance by using locks, or
atomics, or by using a reduction array (C programmers will need to
implement this “by hand”).

RERNRA L - 15

