(dp)

T O m
L C 5
o E 5
e g
r |
c © 5
- E

i &

(D)

3

/G

Work sharing directives AL L iy .

* Directives which appear inside a parallel region and indicate how work
should be shared out between threads

— Parallel do/for loops
— Single directive
— Master directive

RN B) 2

Parallel do loops

* Loops are the most common source of parallelism in most codes. Parallel
loop directives are therefore very important!

* A parallel do/for loop divides up the iterations of the loop between
threads.

* The loop directive appears inside a parallel region and indicates that the
work should be shared out between threads, instead of replicated

* There is a synchronisation point at the end of the loop: all threads must
finish their iterations before any thread can proceed

RERNRA L R | 3

Parallel do/for loops (ééht’ﬁ‘wml

Syntax:

Fortran:
'SOMP DO [clauses]
do loop
[V'$SOMP END DO]
C/C++:
#pragma omp for [clauses]

for loop

Restrictions in C/C++ ““m

Because the for loop in C is a general while loop, there are restrictions on
the form it can take.

It has to have determinable trip count - it must be of the form:

for (var = a; wvar logical-op b; Incr-exp)

where logical-op is one of <, <=, >, >=
and incr-exp is var = var +/- incr or semantic
equivalents such as var++.

Also cannot modify var within the loop body.

N
Parallel loops (example) ‘“‘“}-\W‘

Example:
| SOMP PARALLEL #pragma omp parallel
'SOMP DO {

do i=1,n #pragma omp for

b(i) = (a(i)-a(i-1))*0.5 for (int i=0;i<n;i++) {

end do b[i] = (a[i]l*a[i-1])*0.5;
'SOMP END DO }
| $OMP END PARALLEL }

Parallel DO/FOR directive L ure W T=ToTelel)

* This construct is so common that there is a shorthand form which

combines parallel region and DO/FOR directives:
Fortran:
'SOMP PARALLEL DO [clauses]
do loop
['SOMP END PARALLEL DO]
C/C++:
#pragma omp parallel for [clauses]

for loop

RERNRAL B)\ 7

Clauses

* DO/FOR directive can take PRIVATE , FIRSTPRIVATE and
REDUCTION clauses which refer to the scope of the loop.

* Note that the parallel loop index variable is PRIVATE by
default

— other loop indices are private by default in Fortran, but not
in C.

 PARALLEL DO/FOR directive can take all clauses available
for PARALLEL directive.

* Beware! PARALLEL DO/FOR is not the same as DO/FOR
or the same as PARALLEL

. . A - !.
- A

Parallel do/for loops (cont) m“"“m

* With no additional clauses, the DO/FOR directive will partition the
iterations as equally as possible between the threads.

* However, this is implementation dependent, and there is still some
ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

SCHEDULE clause “‘BA\“‘;m

* The SCHEDULE clause gives a variety of options for specifying which

loops iterations are executed by which thread.
* Syntax:
Fortran: SCHEDULE (kind[, chunksize])
C/C++:. schedule (kind[, chunksize])
where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value.

* E.g. 'SOMP DO SCHEDULE (DYNAMIC,4)

B)\ 0

STATIC schedule

* With no chunksize specified, the iteration space is divided into

(approximately) equal chunks, and one chunk is assigned to each thread
in order (block schedule).

* |If chunksize is specified, the iteration space is divided into chunks, each
of chunksize iterations, and the chunks are assigned cyclically to each
thread in order (block cyclic schedule)

RN - 11

STATIC schedule

7o 73

SCHEDULE (STATIC)

o 11 72 13 TO Tt 72 J3 JO T1 12 13

B B B

1 46
SCHEDULE (STATIC, 4)

RERNRLAL - 12

DYNAMIC schedule

* DYNAMIC schedule divides the iteration space up into chunks of size
chunksize, and assigns them to threads on a first-come-first-served

basis.

* j.e. as athread finish a chunk, it is assigned the next chunk in the list.

* When no chunksize is specified, it defaults to 1.

RN - 13

GUIDED schedule B L |SPCCL

* GUIDED schedule is similar to DYNAMIC, but the chunks start off large
and get smaller exponentially.

* The size of the next chunk is proportional to the number of remaining
iterations divided by the number of threads.

* The chunksize specifies the minimum size of the chunks.

* When no chunksize is specified it defaults to 1.

RN - 14

DYNAMIC and GUIDED schedules s\ (< ole/el]

B = B =

1 SCHEDULE (DYNAMIC, 3) 46

SCHEDULE (GUIDED, 3)

AUTO schedule Wik “W‘

* Lets the runtime have full freedom to choose its own

assignment of iterations to threads

* If the parallel loop is executed many times, the runtime can
evolve a good schedule which has good load balance and
low overheads.

RN - 16

i
3 »

Choosing a schedule

When to use which schedule?

e STATIC best for load balanced loops - least overhead.

e STATIC,n good for loops with mild or smooth load imbalance, but can
induce overheads.

* DYNAMIC useful if iterations have widely varying loads, but ruins data
locality.

* GUIDED often less expensive than DYNAMIC, but beware of loops
where the first iterations are the most expensive!

e AUTO may be useful if the loop is executed many times over

RERNRA L - 17

SINGLE directive R L lepCCL

* Indicates that a block of code is to be executed by a single thread only.

* The first thread to reach the SINGLE directive will execute the block

* There is a synchronisation point at the end of the block: all the other
threads wait until block has been executed.

RN s 18

SINGLE directive (con:t) \\‘“L\W

Syntax:

Fortran:
'SOMP SINGLE [clauses]
block

1SOMP END SINGLE

C/C++:
#pragma omp single [clauses]

structured block

SINGLE directive (con;t) RIBAE m

Example:

#pragma omp parallel
{

setup (x) ;
#pragma omp single

{

input(y);
}
work (x,vy) ;

setup

idle

work

setup

input

work

setup setup
idlle 3
| idle
work work
B |\ 20

SINGLE directive (cont) NS elee))

e SINGLE directive can take PRIVATE and FIRSTPRIVATE clauses.

* Directive must contain a structured block: cannot branch into or out of it.

RERNRAL R)\ 21

MASTER directive R Lo lepecl

* Indicates that a block of code should be executed by the master thread
(thread 0) only.

* There is no synchronisation at the end of the block: other threads skip the
block and continue executing: N.B. different from SINGLE in this respect.

RN - 22

MASTER directive (cont) R\ olo ek

Syntax:
Fortran:
! SOMP MASTER
block

!SOMP END MASTER

C/C++:

#pragma omp master

structured block

SR\ 1))
Exercise ‘\‘ W‘

* Redo the Mandelbrot example using a worksharing do/for directive.

