Threaded

ing

Programm
: ".‘Lecture 3: Parallel Regions

. : g (VU
Parallel region directive L m

* Code within a parallel region is executed by all threads.

* Syntax:

Fortran: !'$OMP PARALLEL
block
1SOMP END PARALLEL
C/C++. #pragma omp parallel

{
block

Parallel region directive (&)‘F‘)wml

Example:

fred() ;

#pragma omp parallel

{
billy() ;

}
daisy () ;

fred

billy

billy

billy |(billy

daisy

B | 3

S . T)
: nifle
Useful functions L W‘

* Often useful to find out number of threads being used.

Fortran:

USE OMP LIB
INTEGER FUNCTION OMP GET NUM THREADS ()

C/C++:
#include <omp.h>

int omp get num threads (void) ;

* Important note: returns 1 if called outside parallel region!

RN R)| 4

Useful functions (cont) mu\m

* Also useful to find out number of the executing thread.

Fortran:
USE OMP_LIB
INTEGER FUNCTION OMP GET THREAD NUM()

C/C++:
#include <omp.h>

int omp get thread num(void)

* Takes values between 0 and OMP_GET NUM THREADS () - 1

RERNRAL R)\ 5

A TR L
Sy
Clauses B m

* Specify additional information in the parallel region directive through

clauses:

Fortran : ' SOMP PARALLEL [clauses]

C/C++. #pragma omp parallel [clauses]

* Clauses are comma or space separated in Fortran, space separated in
C/C++,

: o LV
Shared and private vanable? m

* Inside a parallel region, variables can be either shared (all threads see

same copy) or private (each thread has its own copy).

e Shared, private and default clauses

Fortran: SHARED (/ist)
PRIVATE (/ist)
DEFAULT (SHARED|PRIVATE|NONE)
C/C++: shared (/ist)
private (/ist)

default (shared|none)

= A (R B)\ 7

Shared and private (cont.)

* On entry to a parallel region, private variables are
uninitialised.

* Variables declared inside the scope of the parallel region are
automatically private.

* After the parallel region ends the original variable is
unaffected by any changes to private copies.

* Not specifying a DEFAULT clause is the same as specifying
DEFAULT(SHARED)

— Danger!
— Always use DEFAULT(NONE)

Shared and private (cc;nt)“‘ WW‘

Example: each thread initialises its own column of a shared array:

1 SOMP PARALLEL DEFAULT (NONE) , PRIVATE (I,MYID),
1 SOMP& SHARED (A, N)

myid = omp get thread num() + 1 012 3

do 1 =1,n
a(i,myid) = 1.0
end do

1SOMP END PARALLEL

T OETRLE
Multi-line directives . L |EPCCL

* Fortran: fixed source form

'SOMP PARALLEL DEFAULT (NONE) , PRIVATE (I,MYID),

1 SOMP& SHARED (A, N)

* Fortran: free source form

!SOMP PARALLEL DEFAULT (NONE) , PRIVATE (I,MYID), &

1 SOMP SHARED (A, N)

° C/C++:
#pragma omp parallel default (none) \
private (i,myid) shared(a,n)

R 0| 0

) ANhA | : e TR R
Initialising private variables T 9

AR

* Private variables are uninitialised at the start of the parallel region.

* |f we wish to initialise them, we use the FIRSTPRIVATE clause:

Fortran: FIRSTPRIVATE (/ist)

C/C++: firstprivate (/ist)

* Note: use cases for this are uncommon!

RN B)\ 11

Initialising private variéﬁ@%\‘} e

Example:

b = 23.0;

#pragma omp parallel firstprivate(b), private (i,myid)
{
myid = omp get thread num() ;
for (i=0; i<n; i++) {
b += c[myid] [i];
}
c[myid] [n] = b;

RN B 0| 12

>A‘ - L % “'
~-‘ & “
BA -
>
-

Reductions

* A reduction produces a single value from associative operations
such as addition, multiplication,max, min, and, or.

* Would like each thread to reduce into a private copy, then reduce
all these to give final result.

* Use REDUCTION clause:

Fortran: REDUCTION (op: list)

C/C++: reduction (op:list)

* (Can have reduction arrays in Fortran, but not in C/C++

RN - 13

Reductions (cont.) BRE L) L iy o .

Example: Value in original variable is saved
/ Each thread gets a private copy
b =10
/ of b, initialised to 0

1 SOMP PARALLEL REDUCTION (+:b),
1SOMP& PRIVATE (I,MYID)

myid = omp get thread num() + 1

do i =1,n All accesses inside the parallel
b=b + c(i,myid)/ region are to the private copies

end do

!$OMP END PARALLEL <\ At the end of the parallel region, all

a=hb the private copies are added into the
original variable

RN - 14

Exercise

Area of the Mandelbrot set
* Aim: introduction to using parallel regions.

* Estimate the area of the Mandelbrot set by Monte Carlo sampling.
— Generate a grid of complex numbers in a box surrounding the set

— Test each number to see if it is in the set or not.

— Ratio of points inside to total number of points gives an estimate of
the area.

— Testing of points is independent - parallelise with a parallel region!

15

