

Threaded
Programming

Lecture 2: OpenMP fundamentals

2

Overview

•  Basic Concepts in OpenMP

•  History of OpenMP

•  Compiling and running OpenMP programs

3

What is OpenMP?

•  OpenMP is an API designed for programming shared
memory parallel computers.

•  OpenMP uses the concepts of threads and tasks

•  OpenMP is a set of extensions to Fortran, C and C++

•  The extensions consist of:
–  Compiler directives
–  Runtime library routines
–  Environment variables

4

Directives and sentinels

•  A directive is a special line of source code with meaning only
to certain compilers.

•  A directive is distinguished by a sentinel at the start of the
line.

•  OpenMP sentinels are:

–  Fortran: !$OMP

–  C/C++: #pragma omp
•  This means that OpenMP directives are ignored if the code is

compiled as regular sequential Fortran/C/C++.

5

Parallel region

•  The parallel region is the basic parallel construct in OpenMP.

•  A parallel region defines a section of a program.

•  Program begins execution on a single thread (the master thread).

•  When the first parallel region is encountered, the master thread
creates a team of threads (fork/join model).

•  Every thread executes the statements which are inside the parallel
region

•  At the end of the parallel region, the master thread waits for the
other threads to finish, and continues executing the next statements

6

Parallel region

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region

7

Shared and private data

•  Inside a parallel region, variables can either be shared or private.

•  All threads see the same copy of shared variables.

•  All threads can read or write shared variables.

•  Each thread has its own copy of private variables: these are invisible to

other threads.

•  A private variable can only be read or written by its own thread.

8

Parallel loops

•  In a parallel region, all threads execute the same code

•  OpenMP also has directives which indicate that work should be divided
up between threads, not replicated.
–  this is called worksharing

•  Since loops are the main source of parallelism in many applications,
OpenMP has extensive support for parallelising loops.

•  The are a number of options to control which loop iterations are executed
by which threads.

•  It is up to the programmer to ensure that the iterations of a parallel loop
are independent.

•  Only loops where the iteration count can be computed before the
execution of the loop begins can be parallelised in this way.

9

Synchronisation

•  The main synchronisation concepts used in OpenMP are:

•  Barrier
–  all threads must arrive at a barrier before any thread can proceed past it
–  e.g. delimiting phases of computation

•  Critical region
–  a section of code which only one thread at a time can enter
–  e.g. modification of shared variables

•  Atomic update
–  an update to a variable which can be performed only by one thread at a time
–  e.g. modification of shared variables (special case)

10

Brief history of OpenMP

•  Historical lack of standardisation in shared memory directives.
–  each hardware vendor provided a different API
–  mainly directive based
–  almost all for Fortran
–  hard to write portable code

•  OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now
includes most major vendors (and some academic organisations,
including EPCC).

•  OpenMP Fortran standard released October 1997, minor revision (1.1)
in November 1999. Major revision (2.0) in November 2000.

•  OpenMP C/C++ standard released October 1998. Major revision (2.0)
in March 2002.

11

History (cont.)

•  Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.
–  no new features, but extensive rewriting and clarification

•  Version 3.0 released in May 2008
–  new features, including tasks, better support for loop parallelism and

nested parallelism

•  Version 3.1 released in June 2011
–  corrections and some minor new features
–  most current compilers support this

•  Version 4.0 released in July 2013
–  accelerator offloading, thread affinity, more task support,...
–  now in most implementations

•  Version 4.5 released November 2015
–  corrections and a few new features
–  no full implementations yet?

12

OpenMP resources

•  Web site:
 www.openmp.org

–  Official web site: language specifications, links to compilers and
tools, mailing lists

•  Book:

–  “Using OpenMP: Portable Shared Memory Parallel Programming”
Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022

–  however, does not contain OpenMP 3.0/3.1 features
–  second volume in production

13

Compiling and running OpenMP programs

•  OpenMP is built-in to most of the compilers you are likely to
use.

•  To compile an OpenMP program you need to add a
(compiler-specific) flag to your compile and link commands.
–  -fopenmp for gcc/gfortran
–  -openmp for Intel compilers
–  on by default in Cray compilers

•  The number of threads which will be used is determined at
runtime by the OMP_NUM_THREADS environment variable
–  set this before you run the program
–  e.g. export OMP_NUM_THREADS=4

•  Run in the same way you would a sequential program
–  type the name of the executable

14

Exercise

Hello World

•  Aim: to compile and run a trivial program.

•  Vary the number of threads using the OMP_NUM_THREADS environment
variable.

•  Run the code several times - is the output always the same?

