
Parallel Programming
Libraries and Implementations

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

h"p://www.archer.ac.uk	

support@archer.ac.uk	

Outline
•  MPI – de facto standard for distributed memory programming

•  OpenMP – de facto standard for shared memory programming

•  CUDA – dominant GPGPU programming model & libraries

•  Other Approaches
•  PGAS
•  SHMEM

MPI
Distributed memory parallelism using message passing

Message-passing concepts
•  Processes can not access each

other’s memory spaces
•  Variables are private to each process
•  Processes communicate data by

passing messages

What is MPI?
• MPI = Message Passing Interface
• MPI is not a programming language

•  There is no such thing as an MPI compiler

• MPI is available as a library of function/subroutine calls
•  Library implements a communications protocol
•  Follows an agreed-upon standard (see next slide)

•  The C or Fortran compiler you invoke knows nothing
about what MPI actually does
•  only knows prototype/interface of the function/subroutine calls

The MPI standard
• MPI is a standard
• Agreed upon through extensive joint effort of ~100

representatives from ~40 different organisations (the MPI
Forum)
•  Academics
•  Industry experts
•  Vendors
•  Application developers
•  Users

•  First version (MPI 1.0) drafted in 1993
• Now on version 3 (version 4 being drafted)

MPI Libraries
•  The MPI Forum defines the standard, vendors / open-

source developers create libraries that actually implement
versions of the standard

•  There are a number of different implementations but all
should support the MPI standard (version 2 or 3)
•  As with different compilers there will be variations in

implementation details but all the features specified in the standard
should work.

•  Examples: MPICH2, OpenMPI
•  Cray-MPICH on ARCHER (optimised for interconnect on Cray

machines)

Features of MPI
• MPI is a portable library used for writing parallel programs

using the message passing model
•  You can expect MPI to be available on any HPC platform you use

• Based on a number of processes running independently
in parallel
•  HPC resource provides a command to launch multiple processes

simultaneously (e.g. mpiexec, aprun)
•  Can think of each process as an instance of your executable

communicating with other instances

Explicit Parallelism
•  In message-passing all the parallelism is explicit

•  The program includes specific instructions for each communication
•  What to send or receive
•  When to send or receive
•  Synchronisation

•  It is up to the developer to design the parallel
decomposition and implement it
•  How will you divide up the problem?
•  When will you need to communicate between processes?

Point-to-point communications
• A message sent by one process and received by another
• Both processes are actively involved in the

communication – not necessarily at the same time
• Wide variety of semantics provided:

•  Blocking vs. non-blocking
•  Ready vs. synchronous vs. buffered
•  Tags, communicators, wild-cards
•  Built-in and custom data-types

• Can be used to implement any communication pattern
•  Collective operations, if applicable, can be more efficient

Collective communications
• A communication that involves all processes

•  “all” within a communicator, i.e. a defined sub-set of all processes
• Each collective operation implements a particular

communication pattern
•  Easier to program than lots of point-to-point messages
•  Should be more efficient than lots of point-to-point messages

• Commonly used examples:
•  Broadcast
•  Gather
•  Reduce
•  AllToAll

Example: MPI HelloWorld
#include	
 <mpi.h>	

	

int	
 main(int	
 argc,	
 char*	
 argv[])	

{	

	
 	
 	
 int	
 size,rank;	

	

	
 	
 	
 MPI_Init(&argc,	
 &argv);	

	
 	
 	
 MPI_Comm_size(MPI_COMM_WORLD,	
 &size);	

	
 	
 	
 MPI_Comm_rank(MPI_COMM_WORLD,	
 &rank);	

	

	
 	
 	
 printf("Hello	
 world	
 -­‐	
 I'm	
 rank	
 %d	
 of	
 %d\n",	
 rank,	
 size);	

	
 	
 MPI_Finalize();	

	
 	
 return	
 0;	

}	

OpenMP
Shared-memory parallelism using directives

Shared-memory concepts
•  Threads “communicate” by having access to the same

memory space
•  Any thread can alter any bit of data
•  No explicit communications between the parallel tasks

OpenMP
•  OpenMP = “Open Multi Processing”

•  Application Program Interface (API) for shared memory programming
•  OpenMP is a set of extensions to Fortran, C and C++:

•  Compiler directives
•  Runtime library routines
•  Environment variables

•  Not a library interface, unlike MPI
•  A directive is a special line of source code with meaning only to

certain compilers thanks to keywords (sentinels)
•  Directives are ignored if code is compiled as regular sequential Fortran/C/C++

•  OpenMP is also a standard (see http://openmp.org/)

Features of OpenMP
•  Directives define parallel regions in code within which OpenMP

threads divide work done in the region
•  Should decide which variables are private to each thread or shared

•  The compiler needs to know what OpenMP actually does
•  It is responsible for producing the OpenMP-parallel code
•  OpenMP supported by all common compilers used in HPC
•  Compilers should implement the standard

•  Parallelism is less explicit than for MPI
•  You specify which parts of the program you want to parallelise and

the compiler produces a parallel executable
•  Also used for programming Intel Xeon Phi

Loop-based parallelism
• A very common form of OpenMP parallelism is to

parallelise the work in a loop
•  The OpenMP directives tell the compiler to divide the iterations of

the loop between the threads

#pragma	
 omp	
 parallel	
 shared(a,b,c,chunk)	
 private(i)	

{	

	
 	
 	
 #pragma	
 omp	
 for	
 schedule(dynamic,chunk)	
 nowait	

	
 	
 	
 for	
 (i=0;	
 i	
 <	
 N;	
 i++)	
 {	

	
 	
 	
 	
 	
 c[i]	
 =	
 a[i]	
 +	
 b[i];	

	
 	
 	
 }	

}	

Addition example
asum	
 =	
 0.0	

#pragma	
 omp	
 parallel	
 \	

shared(a,N)	
 private(i)	
 \	

reduction(+:asum)	

{	

	
 	
 	
 #pragma	
 omp	
 for	

	
 	
 	
 for	
 (i=0;	
 i	
 <	
 N;	
 i++)	

	
 	
 	
 {	

	
 	
 	
 	
 	
 asum	
 +=	
 a[i];	

	
 	
 	
 }	

}	

printf(“asum	
 =	
 %f\n”,	
 asum);	

loop: i = istart,istop
 myasum += a[i]
end loop

asum

asum=0

CUDA
Programming GPGPU Accelerators

CUDA
• CUDA is an Application Program Interface (API) for

programming NVIDIA GPU accelerators
•  Proprietary software provided by NVIDIA. Should be available on

all systems with NVIDIA GPU accelerators
•  Write GPU specific functions called kernels
•  Launch kernels using syntax within standard C programs
•  Includes functions to shift data between CPU and GPU memory

• Similar to OpenMP programming in many ways in that the
parallelism is implicit in the kernel design and launch

• More recent versions of CUDA include ways to
communicate directly between multiple GPU accelerators
(GPUdirect)

Example:
//	
 CUDA	
 kernel.	
 Each	
 thread	
 takes	
 care	
 of	
 one	
 element	
 of	
 c	

__global__	
 void	
 vecAdd(double	
 *a,	
 double	
 *b,	
 double	
 *c,	
 int	
 n)	

{	

	
 	
 	
 	
 //	
 Get	
 our	
 global	
 thread	
 ID	

	
 	
 	
 	
 int	
 id	
 =	
 blockIdx.x*blockDim.x+threadIdx.x;	

	
 	

	
 	
 	
 	
 //	
 Make	
 sure	
 we	
 do	
 not	
 go	
 out	
 of	
 bounds	

	
 	
 	
 	
 if	
 (id	
 <	
 n)	

	
 	
 	
 	
 	
 	
 	
 	
 c[id]	
 =	
 a[id]	
 +	
 b[id];	

}	

	

//	
 Called	
 with	

vecAdd<<<gridSize,	
 blockSize>>(d_a,	
 d_b,	
 d_c,	
 n);	

OpenCL
• An open, cross-platform standard for programming

accelerators
•  includes GPUs, e.g. from both NVIDIA and AMD
•  also Xeon Phi, Digital Signal Processors, ...

• Comprises a language + library

• Harder to write than CUDA if you have NVIDIA GPUs
•  but portable across multiple platforms
•  although maintaining performance is difficult

Others
Niche and future implementations

Other parallel implementations
• Partitioned Global Address Space (PGAS)

•  Coarray Fortran, Unified Parallel C, Chapel

• Cray SHMEM, OpenSHMEM
•  Single-sided communication library

• OpenACC
•  Directive-based approach for programming accelerators

Summary

Parallel Implementations
• Distributed memory programmed using MPI
• Shared memory programmed using OpenMP
• GPU accelerators most often programmed using CUDA

• Hybrid programming approaches very common in HPC,
especially MPI + X (where X is usually OpenMP)
•  Hybrid approaches matches the hardware layout more closely

• A number of other, more experimental approaches are

available

