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Outline 
•  MPI – de facto standard for distributed memory programming 

•  OpenMP – de facto standard for shared memory programming 

•  CUDA – dominant GPGPU programming model & libraries 

•  Other Approaches 
•  PGAS 
•  SHMEM 



MPI 
Distributed memory parallelism using message passing 



Message-passing concepts 
•  Processes can not access each 

other’s memory spaces 
•  Variables are private to each process 
•  Processes communicate data by 

passing messages 



What is MPI? 
• MPI = Message Passing Interface 
• MPI is not a programming language 

•  There is no such thing as an MPI compiler 

• MPI is available as a library of function/subroutine calls 
•  Library implements a communications protocol 
•  Follows an agreed-upon standard (see next slide) 

•  The C or Fortran compiler you invoke knows nothing 
about what MPI actually does 
•  only knows prototype/interface of the function/subroutine calls 



The MPI standard 
• MPI is a standard 
• Agreed upon through extensive joint effort of ~100 

representatives from ~40 different organisations (the MPI 
Forum) 
•  Academics 
•  Industry experts 
•  Vendors 
•  Application developers 
•  Users 

•  First version (MPI 1.0) drafted in 1993 
• Now on version 3 (version 4 being drafted) 



MPI Libraries 
•  The MPI Forum defines the standard, vendors  / open-

source developers create libraries that actually implement 
versions of the standard 

•  There are a number of different implementations but all 
should support the MPI standard (version 2 or 3) 
•  As with different compilers there will be variations in 

implementation details but all the features specified in the standard 
should work. 

•  Examples: MPICH2, OpenMPI 
•  Cray-MPICH on ARCHER (optimised for interconnect on Cray 

machines) 



Features of MPI 
• MPI is a portable library used for writing parallel programs 

using the message passing model 
•  You can expect MPI to be available on any HPC platform you use 

• Based on a number of processes running independently 
in parallel 
•  HPC resource provides a command to launch multiple processes 

simultaneously (e.g. mpiexec, aprun) 
•  Can think of each process as an instance of your executable 

communicating with other instances 



Explicit Parallelism 
•  In message-passing all the parallelism is explicit 

•  The program includes specific instructions for each communication 
•  What to send or receive 
•  When to send or receive 
•  Synchronisation 

•  It is up to the developer to design the parallel 
decomposition and implement it 
•  How will you divide up the problem? 
•  When will you need to communicate between processes? 



Point-to-point communications 
• A message sent by one process and received by another 
• Both processes are actively involved in the 

communication – not necessarily at the same time 
• Wide variety of semantics provided: 

•  Blocking vs. non-blocking 
•  Ready vs. synchronous vs. buffered 
•  Tags, communicators, wild-cards 
•  Built-in and custom data-types 

• Can be used to implement any communication pattern 
•  Collective operations, if applicable, can be more efficient 



Collective communications 
• A communication that involves all processes 

•  “all” within a communicator, i.e. a defined sub-set of all processes 
• Each collective operation implements a particular 

communication pattern 
•  Easier to program than lots of point-to-point messages 
•  Should be more efficient than lots of point-to-point messages 

• Commonly used examples: 
•  Broadcast 
•  Gather 
•  Reduce 
•  AllToAll 



Example: MPI HelloWorld 
#include	
  <mpi.h>	
  
	
  
int	
  main(int	
  argc,	
  char*	
  argv[])	
  
{	
  
	
  	
  	
  int	
  size,rank;	
  
	
  
	
  	
  	
  MPI_Init(&argc,	
  &argv);	
  
	
  	
  	
  MPI_Comm_size(MPI_COMM_WORLD,	
  &size);	
  
	
  	
  	
  MPI_Comm_rank(MPI_COMM_WORLD,	
  &rank);	
  
	
  
	
  	
  	
  printf("Hello	
  world	
  -­‐	
  I'm	
  rank	
  %d	
  of	
  %d\n",	
  rank,	
  size);	
  

	
  	
  MPI_Finalize();	
  
	
  	
  return	
  0;	
  
}	
  



OpenMP 
Shared-memory parallelism using directives 



Shared-memory concepts 
•  Threads “communicate” by having access to the same 

memory space 
•  Any thread can alter any bit of data 
•  No explicit communications between the parallel tasks 



OpenMP 
•  OpenMP = “Open Multi Processing”  

•  Application Program Interface (API) for shared memory programming 
•  OpenMP is a set of extensions to Fortran, C and C++: 

•  Compiler directives 
•  Runtime library routines 
•  Environment variables 

•  Not a library interface, unlike MPI 
•  A directive is a special line of source code with meaning only to 

certain compilers thanks to keywords (sentinels) 
•  Directives are ignored if code is compiled as regular sequential Fortran/C/C++ 

•  OpenMP is also a standard (see http://openmp.org/) 



Features of OpenMP 
•  Directives define parallel regions in code within which OpenMP 

threads divide work done in the region 
•  Should decide which variables are private to each thread or shared 

•  The compiler needs to know what OpenMP actually does 
•  It is responsible for producing the OpenMP-parallel code 
•  OpenMP supported by all common compilers used in HPC 
•  Compilers should implement the standard 

•  Parallelism is less explicit than for MPI 
•  You specify which parts of the program you want to parallelise and 

the compiler produces a parallel executable 
•  Also used for programming Intel Xeon Phi 



Loop-based parallelism 
• A very common form of OpenMP parallelism is to 

parallelise the work in a loop 
•  The OpenMP directives tell the compiler to divide the iterations of 

the loop between the threads 

#pragma	
  omp	
  parallel	
  shared(a,b,c,chunk)	
  private(i)	
  
{	
  
	
  	
  	
  #pragma	
  omp	
  for	
  schedule(dynamic,chunk)	
  nowait	
  
	
  	
  	
  for	
  (i=0;	
  i	
  <	
  N;	
  i++)	
  {	
  
	
  	
  	
  	
  	
  c[i]	
  =	
  a[i]	
  +	
  b[i];	
  
	
  	
  	
  }	
  
}	
  



Addition example 
asum	
  =	
  0.0	
  
#pragma	
  omp	
  parallel	
  \	
  
shared(a,N)	
  private(i)	
  \	
  
reduction(+:asum)	
  
{	
  
	
  	
  	
  #pragma	
  omp	
  for	
  
	
  	
  	
  for	
  (i=0;	
  i	
  <	
  N;	
  i++)	
  
	
  	
  	
  {	
  
	
  	
  	
  	
  	
  asum	
  +=	
  a[i];	
  
	
  	
  	
  }	
  
}	
  
printf(“asum	
  =	
  %f\n”,	
  asum);	
  

loop: i = istart,istop 
  myasum += a[i] 
end loop 

asum 

asum=0 



CUDA 
Programming GPGPU Accelerators 



CUDA 
• CUDA is an Application Program Interface (API) for 

programming NVIDIA GPU accelerators 
•  Proprietary software provided by NVIDIA. Should be available on 

all systems with NVIDIA GPU accelerators 
•  Write GPU specific functions called kernels 
•  Launch kernels using syntax within standard C programs 
•  Includes functions to shift data between CPU and GPU memory 

• Similar to OpenMP programming in many ways in that the 
parallelism is implicit in the kernel design and launch 

• More recent versions of CUDA include ways to 
communicate directly between multiple GPU accelerators 
(GPUdirect) 



Example: 
//	
  CUDA	
  kernel.	
  Each	
  thread	
  takes	
  care	
  of	
  one	
  element	
  of	
  c	
  
__global__	
  void	
  vecAdd(double	
  *a,	
  double	
  *b,	
  double	
  *c,	
  int	
  n)	
  
{	
  
	
  	
  	
  	
  //	
  Get	
  our	
  global	
  thread	
  ID	
  
	
  	
  	
  	
  int	
  id	
  =	
  blockIdx.x*blockDim.x+threadIdx.x;	
  
	
  	
  
	
  	
  	
  	
  //	
  Make	
  sure	
  we	
  do	
  not	
  go	
  out	
  of	
  bounds	
  
	
  	
  	
  	
  if	
  (id	
  <	
  n)	
  
	
  	
  	
  	
  	
  	
  	
  	
  c[id]	
  =	
  a[id]	
  +	
  b[id];	
  
}	
  
	
  
//	
  Called	
  with	
  
vecAdd<<<gridSize,	
  blockSize>>(d_a,	
  d_b,	
  d_c,	
  n);	
  



OpenCL 
• An open, cross-platform standard for programming 

accelerators 
•  includes GPUs, e.g. from both NVIDIA and AMD 
•  also Xeon Phi, Digital Signal Processors, ... 

• Comprises a language + library 

• Harder to write than CUDA if you have NVIDIA GPUs 
•  but portable across multiple platforms 
•  although maintaining performance is difficult 



Others 
Niche and future implementations 



Other parallel implementations 
• Partitioned Global Address Space (PGAS) 

•  Coarray Fortran, Unified Parallel C, Chapel 

• Cray SHMEM, OpenSHMEM 
•  Single-sided communication library  

• OpenACC 
•  Directive-based approach for programming accelerators 



Summary 



Parallel Implementations 
• Distributed memory programmed using MPI 
• Shared memory programmed using OpenMP 
• GPU accelerators most often programmed using CUDA 

• Hybrid programming approaches very common in HPC, 
especially MPI + X (where X is usually OpenMP) 
•  Hybrid approaches matches the hardware layout more closely 

 
• A number of other, more experimental approaches are 

available 


