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1 Introduction

1.1 Background

VOX-FE is a voxel-based FE software package for bone modelling, developed jointly be-

tween Hull Medical & Biological Engineering, Hull-York Medical School and Edinburgh

Parallel Computing Centre. It has a sophisticated graphical user interface that allows the

complex loading regimes that are inevitably present in biomechanical analyses to be read-

ily applied to the model geometry, and the resultant 3D stress and strain patterns to be

visualized easily.

The project has grown out of a number of research efforts over the past decade.

In 2009, in conjunction with Hull York Medical School, various strands of code were

brought together within a GUI facilitated by Borland/Embarcadero C++ Builder suite.

In contrast to the GUI, the solver was developed on Ubuntu and later parallelised on

HECToR in 2012. A parallel input/output interface [1] (via NetCDF) was also added at

this time.

1.2 Limitations of the GUI

In retrospect, the choice of C++ Builder was unfortunate for three reasons. Firstly, the

GUI was tied to the Windows platform. Secondly, Embarcadero did not provide a 64-bit

version of their compiler until 2013 (so that the GUI could only handle models of up to

around ten million elements). Third, support for OpenGL graphics calls was only made

possible by importing an external component developed by the user community.

The situation was not improved by the eventual release of the 64-bit version of C++

Builder, which did not support the existing OpenGL component. Further development
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of the GUI, in particular to allow the analysis of larger models, would therefore have

required a very significant re-write.

1.3 Limitations of the solver

Although written separately (and previously known as PARA-BMU), development of the

solver was also rather organic, in that features were added over time in without restructur-

ing. This made further development, debugging and refactoring incredibly difficult. Two

aspects of the evolution were of particular concern.

Firstly, a combinatorial lookup scheme was used which meant that the number of ma-

terials was limited to three and; second, that partitioning for MPI was arbitrarily limited

to division into similar sized blocks along the Z-axis of the model. These factors severely

limited the potential scalability of models which can be handled by the solver.

1.4 Aims of the project

In 2014, ARCHER eCSE funding (project ID ‘ecse01-015’) was awarded to redevelop

VOX-FE to improve its capabilities, performance and usability. In order to take advantage

of libraries and technologies which have become de facto, open source standards over the

intervening years, it was decided to move to different platforms for both the GUI and

solver. Details of this this development project and discussion of the results are detailed

herein: the new GUI is discussed in section 2, and development of the solver is described

in section 3. Section 4 introduces the new remodelling tools which have been developed

on ARCHER.

2 The VOX-FE2 ParaView plugin GUI

2.1 ParaView

ParaView [2] was chosen as the basis for the new GUI for several reasons:

• VOX-FE2 is essentially a visual tool to import data, generate and inspect meshes,
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add boundary conditions and overlay strain data. Many of the methods needed to

support this kind of functionality are already available in the Visualization Toolkit

(VTK) which underpins ParaView.

• The incorporation of many existing visualization tools (clipping, contouring etc)

into ParaView means that clear policies for passing data between filters, support

for undoing/redoing, etc. already exist.

• The parallelization of VTK algorithms within ParaView affords the possibility of

working with very large models (at least 1010 elements), given adequate computing

resources.

The most flexible method of extending Paraview is to exploit the plugin interface. One

drawback, however, is that the interface places particular demands upon the programmer

and is currently only briefly documented. It is assumed, for example, that the data reside

on a remote server to which the ParaView interface is really only able to communicate

one way (read only). Fortunately, there are now quite a large number of plugin examples

and resources which have been released into the public domain.

2.2 Plugin architecture

To support the requirements of VOX-FE2, six new functions – known as ‘filters’ in VTK

– have been added to the ParaView interface via a plugin. The filters are available via

buttons (where the Qt library is enabled) or from the ParaView Filters menu and are

described briefly below:

• voxfeITKReader: The ‘Reader’ component uses the Insight Toolkit (ITK), if avail-

able, to import image data and convert to a voxel model. The Connected Compo-

nent filter of ITK is employed to remove noise (disconnected voxels) and to check

valid labels. A script header file is then generated, which is assumed to be fixed

(although parameters can be adjusted later). A new type of group header file can

also be read which allows similar materials to be considered together for the pur-
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pose of adding boundary conditions. If ITK is not available, the VOX-FE solver

script/model file can be read directly.

• ExtractBlock: This filter uses vtkExtractBlockFilter, with the important difference

that the ‘Prune Output’ parameter is switched off to prevent further errors down-

stream. The main purpose is to be able to select generic surfaces such as ‘bone’,

which might comprise different user-defined types (trabecular, cortical etc).

• voxfeAddConstraintFilter: ParaView already provides the ability to select and ex-

tract points from the model. This requires extra input from the user, but permits

editing of point selections. The voxfeAddConstraintFilter filter allows additional

data to be added to each selected point which is used to indicate nodal constraints

or loading conditions (forces).

• voxfeGlyphAnnotationFilter (Highlight Boundary Condition (BC)): Points defined

as BCs are passed through the annotation filter automatically to generate a ‘glyph’:

2D triangles and arrows are shown in the display to indicate fixing of nodal axes or

loads. A highlight button allows emphasis on designated BC points and glyphs by

pseudo-random colouring and increased point size (ParaView display only).

• voxfeOutputScriptFilter: This filter generates a file of BC data for input to the

solver.

• voxfeStrainFilter: Solving the FE problem generates a displacement vector for each

node of the model. Executing this filter reads the displacement file, computes strain

parameters for each voxel/element and attaches these data to the underlying VTK

model for colour-map display.

2.3 Test Results

To illustrate the capability of the current system, we devised several simple test models

for which analytical solutions are available. An example – the cantilever beam – is shown

in Figure 1. The beam is assumed to be a bone plug, 10mm long and 1mm in diameter

with properties: Young’s Modulus = 17 GPa, Poisson’s ratio = 0.3.
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Figure 1: A cantilever beam model

One advantage of such a model is that it is reasonably easy to see if a poor solution

is being generated, since we also have a theoretical result to compare against (for exam-

ple, the maximum displacement on the Y-axis should be −4.0 × 10−6m). The solution

would also be expected to improve as the resolution of the model increases. A screenshot

showing the model and overlaid displacement/strain data is shown in Figure 2. A table of

maximum displacements for some different sizes of model is given in Table 1.

Table 1: Maximum displacements for the beam model

Model size (elements) Max Y-Displacement (m)

33,280 −3.71 × 10−6

2,081,280 −3.91 × 10−6

16,583,680 −3.94 × 10−6
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Figure 2: An 8-million element beam model with displacement and strain data overlaid

2.4 Discussion

The new VOX-FE2 plugin has been built and tested on Ubuntu 12/14 and Windows 7

with ParaView v4.3.1 and ARCHER with ParaView v4.1.0. ParaView has matured in

recent years and now has an extensive user manual and wiki alongside user-contributed

data and video tutorials. Many of the aims of the earlier VOX-FE project have been re-

implemented within a single plugin library and a scheme that is clearly documented and

extensible. Besides being cross-platform, the 64-bit code can reasonably accommodate

models of c. 108 elements on current desktop machines.

Although the plugin interface creates a something of a barrier between the user and

the data, the immediate benefit is that a client-server approach is automatically adopted,

so that potentially models of 109 − 1010 elements may be handled, where HPC resources

are available.

The plugin has been built on ARCHER, but following the Phase 2 upgrade in Novem-

ber 2014, we have not yet been able to test the plugin using the new RSIP protocol [3]. On

a desktop machine (with 32GB RAM), however, the VOX-FE2 plugin has been shown to
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handle models of over 100 million nodes.

3 The VOX-FE2 PETSc-based solver

3.1 PARA-BMU

The role of the solver is to determine the final displacements of a constrained bone model

subject to specified of forces. It does this by iteratively solving a system of coupled linear

equations that encode the relationships between the bone elements (the geometry), their

material properties, and any forces and constraints which exist.

Written in C++ and MPI, the old solver (PARA-BMU) could successfully handle

at most a 20 million element model, with a maximum of 3 different material types (for

example bone, marrow and metal). It was designed to parallelise the bone model along

the z-dimension (x- and y-dimensions were treated serially). A model with its greatest

length in the z-dimension would therefore show the best scaling. For a 20 million element

model, the old solver had good scaling up to 256 cores, but struggled to run on more

than 512 cores (see [1], Figure 1). The C++ classes that collectively formed the old

solver code also handled pre- and post-processing, and all MPI communication, including

decomposition of the linear system across processors.

For VOX-FE to be a viable tool for modelling realistic large and complex bone models

the solver needed to be able to:

• Solve models with at least 100 million elements with complex, sparse geometries.

• Parallelise the system along all dimensions, not just the z-dimension, to make the

solution of large models feasible.

• Run efficiently on a large number of cores to take advantage of massively parallel

HPC resources such as ARCHER.

• Capture varying bone densities and soft tissue detail by modelling an arbitrary num-

ber of different material types (at least 255 different types)
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To implement the above functionality, and to ensure future extensibility of the solver,

we decided to replace the old solver with an entirely new design.

3.2 PETSc-based solver

The key idea behind the new solver’s design was to make use of the PETSc library [4].

“PETSc, the Portable, Extensible Toolkit for Scientific Computation developed by Ar-

gonne National Laboratory, is a powerful suite of data structures and routines for the

scalable (parallel) solution of scientific applications”1. Specifically, PETSc’s optimised

parallel vector, matrix and Krylov SubsPace (KSP) routines efficiently set up and solve

linear systems like those generated by VOX-FE. It was therefore a natural choice for

providing the new solver’s core functionality. PETSc also offers:

• A large choice of solution algorithms, allowing users to mix and match different

combinations at runtime.

• The future possibility of increasing parallelism through use of heterogenous archi-

tectures (e.g. GPUs).

The new solver design is kept as simple as possible, so that users could treat it as a

“black box”. Figure 3 shows the architecture of the new solver. Users supply the solver

with a set of input text files (script, model, materials and constraints), which may be

generated using the GUI or written by hand. These are parsed by the solver I/O class

(VoxFE.cpp) and used to drive the main solver class (pFESolver.cpp). This sets up

the model, constructs the relevant system matrices, decomposes the system amongst all

processors and calls PETSc to solve the linear system. The final displacements are output

to a text file, ready for use by the GUI for visualisation, or for remodelling (see Section

4). This separates post-processing tasks from the main function of the solver (unlike in

the old solver).

The current MPI decomposition is a simple contiguous splitting of the equations (or

rows of the PETSc matrix) across processors, with each processor also keeping a local

1http://www.mcs.anl.gov/petsc/
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Figure 3: New solver architecture

copy of the entire model. This works reasonably well for small models with simple, dense

geometries. However, to ensure good load balance for large, sparse, complex models, a

better decomposition scheme will be needed for the system matrices, and efficient mem-

ory utilisation requires that large models be shared amongst processors instead of copied

in entirety to each processor (see Section 3.4 for further discussion).

3.3 Performance results

We tested both solvers with the 8 million element cantilever model shown in Figure 1.

Two different model alignments were used to test how well the new solver performed
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against the old solver when tested under optimal conditions for the old solver (cantilever

with length along z-axis, as shown in the figure) and when otherwise (cantilever with

length along y-axis).

Figures 4 and 5 show the strong scaling performance of the new solver relative to the

old solver for the z- and y-aligned models respectively. In both cases, the new solver has at

least as good scaling as the old solver, despite the old solver’s near-perfect scaling for an

optimally aligned model (Fig. 4). The new solver also has better absolute performance:

it is 2.5x - 4x faster than the old solver for a fixed number of cores and can run on at

least 512 cores. With a non-optimally aligned model (Fig. 5), the new solver clearly

outperforms the old solver: the old solver’s performance degrades from around 32 cores

and it fails to run on 128 cores (or more). In this case, the new solver (using 512 cores) is

around 30x faster than the old solver running at its limit of 64 cores.

The new solver has also been tested on similar cantilever models made up of more

than 4 different material types, showing agreement with theoretical results. We also tested

the use of different solution algorithms (e.g. Conjugate Gradient with a Jacobi precon-

ditioner, or GMRES with ILU2). In all cases, the new solver has consistently performed

well. We have been able to run larger models (20 million elements) on the new solver,

although even larger models will require investigation of the memory consumption of the

new solver, as it currently appears to be in excess of what we expect.

3.4 Discussion

We set out to improve VOX-FE’s ability to solve realistic bone models and this has been

achieved with the new PETSc-based solver. The new solver can handle an arbitrary num-

ber of different materials, parallelise the problem in all dimensions, scale superlinearly to

more than a thousand cores and solve models larger than the old solver could comfort-

ably cope with. The next step in improving the solver’s performance will be to parallelise

the model loading (avoiding the replicated data bottleneck in the current implementation)

and selecting an optimal partitioning of the system using ParMETIS [5].

2Generalized Minimal Residual method with an Incomplete Lower Upper preconditioner.
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Figure 4: Strong scaling of new solver relative to old solver with optimal model alignment
for old solver.

Figure 5: Strong scaling of new solver relative to old solver with non-optimal model
aligned for old solver.
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4 Remodelling

Remodelling describes the natural process of resorption and formation which occurs as

bone responds to the load it experiences, where the parameters controlling the remod-

elling may be affected by age or disease etc. The precise mechanisms are still a matter of

debate, and the quantitative effects on the parameters are currently unknown.

Our approach here is essentially prototypical: given a specimen under load and a min-

imal set of parameters, we would like to assess whether the process can be automated such

that the remodelling history and convergence can be monitored. A key point, however,

is that models should be sufficiently detailed such that the representation of the trabec-

ular architecture is not undermined by evident weaknesses in the structure. A working

hypothesis is that the trabeculae should be at least 5 voxels thick and preferably at least

10 [6].

4.1 Workflow

A flow diagram for remodelling tasks is included in Fig. 6. The solver is the most critical

component in terms of demanding computer resources. Hence the other components

fit around the solver since it is parallelized. It was anticipated that with N processors,

N − 1 would be allocated to the solver and the other algorithms would run in serial on the

remaining processor.

To support the remodelling process, the solver makes two concessions:

• A small text file is generated to flag when the model data have been read.

• A second file is generated to flag when the solution displacement file has been

written.

For the remaining steps (undertaken on the Nth process), a control structure maintains

a record of voxel connectivity through the remodelling cycle and identifies surface voxels.

This component – the control graph – is described below. Through the design of the

plugin (see Section 2), the remaining elements of the cycle were already available to

build as standalone executables, notably:
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Figure 6: Workflow diagram of remodelling

• A utility to read the VOX-FE script/model files and convert to either a METIS graph

format or to a legacy VTK file format.

• The capability to compute strain data for each voxel given dimensions and the

displacements at each node.

The METIS [7] graph partitioning library provides a number of routines to manipulate

graphs and is used to create the initial element adjacency file. METIS is available from

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

4.2 Implementation

On ARCHER, the solver and various utility programs described are controlled through

the use of bash scripting within the job submission file and a separate remodelling script,

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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executed first in the background.

In brief, execution is as follows:

1. The remodelling script starts (if not already running) but then pauses, waiting for

the file ‘InputRead.txt’ to be created.

2. The solver reads the input model and generates a file ‘InputRead.txt’.

3. As the solver continues towards a solution, the remodelling script reads the input

model to create a graph of node connectivity for each voxel.

4. The utility m2gmetis (distributed with Metis) is used to create the ‘dual’ graph, in

this case, a graph/adjacency table of the elements in the model

5. Optionally, the model is re-read to create a legacy VTK file. This allows the re-

modelling process to be easily replayed in ParaView as sequence.

6. The remodelling script pauses until the solver completes, creating a file ‘FECom-

pleted.txt’.

7. The element graph and displacement data are then read into the control graph rou-

tine to compute the remodelling parameter, currently strain energy density (SED),

for each surface voxel.

8. Lower and upper remodelling thresholds are specified in the remodelling script

(at step 1). Surface elements with an SED below the lower threshold are marked

for removal, while those with an SED above the upper threshold are surrounded

by a layer of new elements so that they are no longer at the surface i.e. they are

completely surrounded by 26 neighbours.

9. The new model, incorporating resorption and formation determined at step 8, is

written to the next directory in the iteration sequence.

10. Execution switches to the new directory and repeats from step 1.
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4.3 Control Graph

The control graph reads element adjacency data generated by the METIS utility m2gmetis.

It should be noted that the METIS library cannot handle the graph directly, as the under-

lying graph structure, once created, cannot be updated. Instead, to keep the memory

requirement to a minimum, the code makes use of the property that a given voxel can

only have up to 26 neighbours. Each graph entry (‘vertex’) is identified by a 64-bit inte-

ger ID into a C++ STL map and represents a voxel element. Each element records data

for the following:-

Table 2: Control graph vertex data

Item Size (bytes) Comment

connectivity 4 Each neighbour represented by one bit on 3x3x3 grid

material 1 255 materials is an assumed maximum (0=background)

remodel 1 Specifies whether the given element can be remodelled

(e.g. teeth would not be allowed to remodel)

SED 8 Computed strain energy density

status 2 If the voxel has been added (> 0) or removed (< 0)

component 4 For checking disconnected components

4.4 Bone Remodelling

The graph structure allows surface voxels to be identified easily by checking the con-

nectivity bit pattern. The status member records if voxels have been added or removed.

Where the computed SED:

• is less than the set lower threshold, status is decremented.

• is greater than set upper threshold, all neighbours are filled and new elements are

added to the graph using the current material type.
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One difficulty that arises from removing voxels is that some regions may become

disconnected, potentially leading a singular system of equations during the next solution

step. A two-pass connected components algorithm is employed, first to define compo-

nent labels (searching immediate neighbours) and then, to flatten the equivalence table as

component regions coalesce. Both 6 and 26 neighbour versions of the algorithm are im-

plemented. Finally, the largest component is retrieved and all other component labelled

regions are removed (by setting negative status).

At the end of the remodelling step, a new model file is written to the directory of the

next iteration cycle.

4.5 Discussion

The process outlined above could be streamlined, particularly with regard to (re-)reading

input files. Ideally, the control graph would remain resident throughout, checking peri-

odically for the generation of appropriate files, perhaps, via notifications from the solver

through a socket interface. The current scheme, however, has the advantage of simplicity

and ease of debugging as all intermediate files are available.

Although use of the connected components algorithm is advised to remove separated

bone ‘islands’, the solver has so far proved to be robust to models with small numbers

of disconnected elements. Possibly, this is because such regions are generally well away

from regions of high strain, so that the impact is slight. The less severe 26-face check

is therefore favoured currently, but it should be noted that only the 6-face connectivity

option removes all weakly linked (ie. node or edge only) element connections.

Due to the aforementioned memory usage of the current solver, only models of around

2 million elements have been tested within the remodelling scheme. The wall-clock time

for solving the model shown in Fig. 7, lies between 280-370 seconds (on 16 cores), with

the remodelling itself requiring less than 10 seconds.

It is considered that the remodelling process presented above serves as a basis for

developing a much more powerful scheme, possibly employing METIS to partition the

FE mesh much more optimally (in the sense of reducing MPI communications).

To illustrate the remodelling process, several links to YouTube videos showing re-
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Figure 7: A loaded cube of trabecular bone (data from Biomedtown.org)

modelling of various geometries are given in Appendix A.

5 Summary

We have presented the design and implementation of version 2.0 of VOX-FE, comprising

a ParaView plugin GUI, a new solver based on PETSc, and a set of scripts to carry out it-

erative remodelling. We have verified the correctness and performance of the new version

on both desktop hardware and on ARCHER. As a result, VOX-FE2 is now a much more

portable, high performance, and extensible tool than the legacy version. The new release

is made freely available under a BSD license from http://www.sourceforge.com/p/vox-fe.

We have recently obtained further funding from the ARCHER eCSE scheme (project ID

‘ecse04-11’) to further improve VOX-FE, with the objectives of implementating a new

parallelisation scheme in the solver, adding new functionality to the GUI to make VOX-

Biomedtown.org
http://www.sourceforge.com/p/vox-fe
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FE more usable by a wider community including paleobiologists, and further developing

the remodelling tools to add adaptive determination of the resorption and formation lim-

its. We expect to release version 2.1 containing these improvements at the end of 2015.

A Appendix: VOX-FE videos

• ‘VOXFE’ model: http://youtu.be/fjtjrM1Z1JQ

• Biomedtown cube: http://youtu.be/WVp1u1jlD3g

• ‘O’ model: http://youtu.be/nT4xWlcm7aQ

• Tutorial for GUI plugin: http://youtu.be/DDeAxaZnE8U

http://youtu.be/fjtjrM1Z1JQ
http://youtu.be/WVp1u1jlD3g
http://youtu.be/nT4xWlcm7aQ
http://youtu.be/DDeAxaZnE8U
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