
Desmond Users Guide
Release 3.4.0 / 0.7.2

D. E. Shaw Research

July 11, 2013

CONTENTS

1 Front matter 3
1.1 Notice . 3
1.2 Copyright . 3
1.3 Trademarks . 3

2 Preface 5
2.1 Intended audience . 5
2.2 Prerequisites . 5
2.3 Format conventions . 5
2.4 About the equations . 6

3 Key Concepts 7
3.1 What is Desmond? . 7
3.2 Forces . 8
3.3 Particles . 9
3.4 Force fields . 9
3.5 Space . 10
3.6 Time . 10
3.7 Dynamics . 11
3.8 Using Desmond . 12

4 Running Desmond 15
4.1 About configuration . 15
4.2 Invoking Desmond . 16
4.3 Running Desmond in parallel . 19
4.4 Configuring Desmond applications . 20
4.5 Naming output files . 25
4.6 Configuring the built-in plugins . 25
4.7 Configuring optional sections . 38

5 The Global Cell 39
5.1 Parallelization . 39
5.2 Configuration . 42
5.3 Migration . 43

6 Preparing a structure file 45
6.1 Converting a Desmond 2.0/2.2 structure file . 45
6.2 Preparing a Desmond DMS file . 46

7 Calculating Force and Energy 49

i

7.1 Configuring force fields . 49
7.2 Bonded, pair, and excluded interactions . 51
7.3 Van der Waals and electrostatic interactions . 57
7.4 Nonbonded far interactions . 60

8 Constraints 65
8.1 Single precision resolution and constraints . 67

9 Dynamics 69
9.1 Particles and mechanics . 69
9.2 Integrator . 70
9.3 RESPA . 71
9.4 Pressure . 72
9.5 Temperature . 73
9.6 Dynamical systems . 73

10 Free Energy Simulations 93
10.1 Configuring free energy simulations . 93

11 Enhanced Sampling and Umbrella Sampling 99
11.1 Introduction . 99
11.2 Using the Enhanced Sampling Plugin . 100
11.3 Interpreter . 100
11.4 Metadynamics . 105
11.5 Examples . 106

12 Extending Desmond 109
12.1 Implementation . 109
12.2 Running your plugin . 110

13 Trajectory Format and Analysis 111
13.1 Structure of frameset directories . 111
13.2 Soft catenation option . 112
13.3 Command line tools for framesets . 112
13.4 Python tools for trajectories and framesets . 114

14 Appendix: Units 119

15 Appendix: Configuration syntax 121
15.1 Examples . 122

16 Appendix: Clone Radius Restrictions 125

17 Appendix: DMS file format 127
17.1 Molecules . 127
17.2 Forcefields . 129
17.3 Alchemical systems . 131

18 Legacy Applications: Preparing a Maestro structure file 133
18.1 Format . 133
18.2 Preparing the structure file for Free Energy Simulations . 136

19 Enhanced sampling function reference 143

20 Licenses and Third-Party Software 155
20.1 Licensing Desmond for Non-Commercial Research . 155

ii

20.2 Licensed Companion Software . 158

Bibliography 163

iii

iv

Desmond Users Guide, Release 3.4.0 / 0.7.2

Release 3.4.0 / 0.7.2

Date July 10, 2013

Contents:

CONTENTS 1

Desmond Users Guide, Release 3.4.0 / 0.7.2

2 CONTENTS

CHAPTER

ONE

FRONT MATTER

1.1 Notice

The Desmond User’s Guide and the information it contains is offered solely for educational purposes, as a service to
users. It is subject to change without notice, as is the software it describes. D. E. Shaw Research assumes no respon-
sibility or liability regarding the correctness or completeness of the information provided herein, nor for damages or
loss suffered as a result of actions taken in accordance with said information.

No part of this guide may be reproduced, displayed, transmitted, or otherwise copied in any form without written
authorization from D. E. Shaw Research. The software described in this guide is copyrighted and licensed by D. E.
Shaw Research under separate agreement. This software may be used only according to the terms and conditions of
such agreement.

1.2 Copyright

2012 by D. E. Shaw Research. All rights reserved.

1.3 Trademarks

Ethernet is a trademark of Xerox Corporation.

InfiniBand is a registered trademark of systemI/O Inc.

Intel and Pentium are trademarks of Intel Corporation in the U.S. and other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

All other trademarks are the property of their respective owners.

3

Desmond Users Guide, Release 3.4.0 / 0.7.2

4 Chapter 1. Front matter

CHAPTER

TWO

PREFACE

2.1 Intended audience

This guide is intended for computational scientists using Desmond to prepare configuration and structure files for
molecular dynamics simulations. It assumes a broad familiarity with the concepts and techniques of molecular dy-
namics simulation.

2.2 Prerequisites

Desmond runs on Intel based Linux systems with Pentium 4 or more recent processors; running CentOS 5.4 (RHEL5)
or later. Linux clusters can be networked with either Ethernet or InfiniBand. To build the source code, Desmond is
known to work with gcc Version 4.5.2 and glibc Version 2.5. Certain python scripts require a recent version of Python
2 (version 3 is not supported); we recommend Version 2.7.1 or greater. This guide assumes that someone has prepared
the Desmond executable for you, either by installing a binary release or by building the executable.

2.3 Format conventions

Command lines appear in a typewriter font; in some cases, bolding draws your attention to a particular part of
the command:

$ desmond --include equil.cfg

Placeholders intended to be replaced by actual values are obliqued:

$ desmond --tpp 4 --restore checkpoint_file

Configuration file examples also appear in a typewriter font:

mdsim = {
title = w
last_time = t

1

checkpt = { ... }
plugin = { ... }

}

Configuration files are divided into sections, which can in turn contain other sections; parameters occur at all levels.
When discussed in the context of their particular section, configuration parameters appear by name in a typewriter font,
thus: plugin. When discussed outside of the context of their sections, however, configuration parameters appear as
a keypath, in which the name of each enclosing section appears in order from outermost to innermost, separated by

5

Desmond Users Guide, Release 3.4.0 / 0.7.2

periods. For example, force.nonbonded.far.sigma refers to the sigma configuration parameter in the far
subsection of the nonbonded subsection of the force section of the configuration file.

2.4 About the equations

The equations in this document are concerned with scalars, vectors, and matrices of various sorts. To help clarify the
type of a quantity, equations in this manual use the following conventions:

• An upper or lowercase letter without bolding or arrows, such as A or a, is a scalar.

• An arrow over a variable, such as ~A or ~a, indicates three variables as a three-dimensional vector.

• A boldfaced lowercase letter, such as a, is a vector of unspecified dimension, with ai indicating the ith element
of the vector.

• A boldfaced uppercase letter, such as A, is a matrix of unspecified dimensions, though usually 3⇥ 3, with Aij

being the element of row i and column j in matrix.

Certain quantities that are 3n dimensional vectors, such as r, the positions of n particles, are indexed differently. The
manual does not use ri to refer to one of its 3n components, but instead ~ri denotes the ith three-dimensional vector in
r, which is the position of the ith particle in this case.

6 Chapter 2. Preface

CHAPTER

THREE

KEY CONCEPTS

This chapter explains the basic ideas underlying Desmond and describes how Desmond fits into a workflow.

3.1 What is Desmond?

Desmond is a suite of computer programs for carrying out molecular dynamics simulations. Such simulations model
the motion of a collection of atoms—a chemical system—over time, according to the laws of classical physics.

A collection of atoms representing such real-world components as a protein molecule in water undergoing a structural
change, or a drug molecule interacting with a protein. Desmond models solvents such as water explicitly, as individual
water molecules.

The chemical system exists in a thermodynamic environment, which represents the conditions under which the sim-
ulation is carried out. This environment mimics the experimental conditions: whether the temperature or pressure
is regulated, for example, or whether the system is isolated so that it cannot exchange energy with its environment.
The chemical system occupies a three-dimensional volume of space of a specified size, and each atom is generally
represented by a particle at a specific position in that space. Motion is simulated in discrete timesteps like the frames
of a film. From one step to the next, a tiny slice of time goes by, and atom positions update accordingly. Atoms move;
time advances; atoms move again. Frame by frame, the simulation builds a movie: for example, a microsecond in the
life of a protein.

How the atoms move—in which direction? by how much?—is determined by:

• the initial atom positions and velocities,

• the thermodynamic environment, and

• a molecular mechanics force field.

The molecular mechanics force field is a set of functions and parameters that describe the potential energy of the
interactions between the particles in a chemical system.

In addition to its position, each particle has an associated charge and atomic number, as well as a list of the bonds
that it participates in. Using this information, the force field models the forces exerted on each particle by every other
particle, thus determining each particle’s acceleration.

Simulations such as Desmond’s that use the laws of classical physics can only approximate full quantum mechanical
reality. They bow to the limits of computer performance: solving the full set of quantum mechanical equations would
take far too long. Though merely an approximation, integrating Newton’s laws of motion for so many particles still
means a great many computations for each step forward. Molecular dynamics simulations therefore face a dilemma:

For accurate results, the simulation timestep must be short enough to capture the vibrational frequency of the atoms
you’re modeling. Yet the shorter the timestep, the less simulated time you can compute in a practical period of clock
time.

7

Desmond Users Guide, Release 3.4.0 / 0.7.2

To enhance performance as much as possible, Desmond implements a variety of features. Some, such as an algorithm
used to minimize interprocessor communication, are built into Desmond and require no action on your part. Others
require you to specify their use; for example, you can run Desmond in parallel, using as many processes as your
parallel environment can support. Spreading the many computations among many processes can yield a significant
increase in speed.

Still other performance features, however, don’t make sense for every simulation; therefore, part of configuring a
simulation is to set them as you require. In order to make most effective use of Desmond, then, you’ll need to learn
certain details about the way it works. Where relevant, such performance issues are noted below and throughout the
manual.

In addition to the simulations described above, Desmond has the ability to perform Gibbs free energy simulations,
which compute the change in free energy of a chemical system as it evolves from one state to another. These are
described in detail in Free Energy Simulations.

3.2 Forces

The total force on a particle is the sum of bonded and nonbonded forces. A bonded force is a force due to two or more
atoms that are chemically bound. Bonded forces are of at least three kinds:

Figure 3.1: The various kinds of bonded forces.

• stretch: Depends on the distance between the centers of two atoms sharing a bond.

• bend: Depends on the angle between two bonds shared by one atom with two other atoms.

• torsion: Depends on the torsion angle between two planes each defined by a group of three atoms where two
of the atoms are shared between the groups. A normal torsion is defined by a sequentially connected set of four
atoms, and an improper torsion has a more general relationship among its atoms.

In addition, some force fields define other bonded terms.

Nonbonded force is the sum of two forces: electrostatic and van der Waals. Both kinds of nonbonded forces are a
function of the distance between the two atoms.

In principle, electrostatic and van der Waals forces must be computed between every pair of atoms in the system. In
practice, however, the magnitude of van der Waals forces falls off rapidly with distance, becoming negligible between
pairs of atoms separated by more than a certain distance, referred to as the cutoff radius. Therefore, the simulation
can restrict van der Waals calculations to only nearby atoms, thus improving performance by reducing the number of
computations Desmond must perform.

The cutoff radius cannot be used to limit electrostatic interactions, however, without seriously compromising accuracy.
Instead, the electrostatic interactions are split into those between particles within the cutoff radius, and those between
more distant particles. Modified electrostatic interactions are computed explicitly for the closer particle pairs, while
the distant particle pairs are computed according to a more efficient method, thus further improving performance.

Interactions between pairs of particles separated by less than the cutoff radius are called nonbonded near interactions
or more briefly the near interactions. They comprise both van der Waals forces and the short-range electrostatic forces.

8 Chapter 3. Key Concepts

Desmond Users Guide, Release 3.4.0 / 0.7.2

Electrostatic forces between pairs of particles separated by more than the cutoff radius are referred to as nonbonded
far interactions or far interactions. Instead of computing each pair wise interaction explicitly, Desmond computes far
interactions more efficiently in Fourier space, thus:

1. The application maps charges from particles to nearby grid points needed for the Fourier transform: charge-
spreading.

2. Using this charge density, it determines the nonbonded far potential at each mesh point via Fourier space tech-
niques.

3. It calculates the resulting forces on the particles from the results at the nearby grid points: force interpolation.

Even with optimizations such as the Fourier space computation, far interactions are expensive to compute. Because the
overall force these interactions exert on a particle varies more slowly in time than other interactions, you can configure
Desmond to compute them less often to further accelerate the computation; this is discussed below in Dynamics.

3.3 Particles

Desmond represents each atom in the chemical system as a particle. (Special cases for molecules such as water are
discussed below; see the discussion of “pseudoparticle”, see pseudoparticles.)

The particle:

• models key real-world aspects of an atom: its mass, charge, position, and velocity;

• participates in bonds of specified types; and

• is assigned to certain groups of particles

To elaborate on the last point, the particles are partitioned into groups according to an integer-valued property associ-
ated with each particle. Such a property gives the identifier of the group to which the particle belongs. For example,
all particles with their temperature group property equal to n are considered to be in temperature group n. The various
supported groupings are as follows:

• To understand how energy is distributed throughout the system, each particle is assigned to an energy group by
its grp_energygrp property (ranging from 0 to 255).

• To control the temperature of subsets of particles independently, each particle is assigned to a temperature groups
by its grp_temperature property (ranging from 0 to 15).

• To restrain groups to particles to a predetermined position relative to another particle group or to the simulation
coordinate system, a particle is assigned a center-of-mass group by its grp_cm_moi property (ranging from 0
to 3).

• To define a ligand, used in free energy simulations, particles have a binary valued grp_ligand property
(where 1 is ligand set and 0 is the non-ligand set).

3.4 Force fields

A force field is a model of the potential energy of a chemical system. It’s a set of functions and parameters used to
model the potential energy of the system, and thereby to calculate the forces on each particle.

To accurately simulate different kinds of systems, Desmond supports several variants of the Amber, CHARMM, and
OPLS-AA force field models; see Force fields built into Viparr. To more accurately simulate the behavior of water
or other molecules, certain force fields add electrostatic or van der Waals interaction sites located where no atom
is. Desmond implements these as pseudoparticles. Desmond supports the most common kinds of pseudoparticles,
including those needed for common water models such as SPC, TIP3P, TIP4P, and TIP5P. See details in Virtual sites.
Like particles, pseudoparticles have a mass, charge, position, and velocity; however, their mass is often zero.

3.3. Particles 9

Desmond Users Guide, Release 3.4.0 / 0.7.2

3.5 Space

The volume of space in which the simulation takes place is called the global cell. A three-dimensional volume of
space containing the chemical system. This volume is ordinarily visualized as a three-dimensional rectangular box,
though Desmond can simulate other shapes.

The simulation can change dimensions in the course of running—for example, to satisfy a requirement for a constant
pressure.

Figure 3.2: The global cell is a three dimensional parallelpiped with periodic boundary conditions.

Positions within the global cell are specified in x, y, z coordinates.

Desmond employs a technique known as periodic boundary conditions to wrap each face of the global cell to its
opposite face. That is, particles that move leftwards out of the global conditions cell appear to be moving in at a
corresponding spot on the right-hand face, and vice versa; particles that move out the top appear to enter at the bottom,
and vice-versa; and finally, particles that move out the front appear at the back, and vice-versa. Thus, you can picture
your simulation as an arbitrarily large space tiled by the global cell repeating periodically.

Because the global cell tiles the simulation volume, it must be a shape that can tile a three-dimensional space without
gaps, such as a parallelepiped, a hexagonal prism, or a truncated octahedron.

The global cell also has specified dimensions. It must be large enough that the molecule of interest doesn’t interact
with its counterparts—its periodic images—in other repetitions of the global cell.

When you run a simulation in parallel, Desmond apportions the work among processes by breaking the global cell
into smaller boxes. Therefore, how you configure the global cell can have a significant effect on how efficiently your
simulation runs in parallel. Details of these parallelization parameters, and related ones, are discussed in Configuration.

3.6 Time

The simulation begins at a specified reference time and advances by timesteps. The time at which the simulation
begins.

Ordinarily, a simulation begins at time 0.0, but it need not. For example, if you wish to use the output of one simulation
as the input for the next, thus effectively continuing a simulation, you can specify a reference time equal to the time at
which the previous simulation finished.

Starting with the initial chemical system, Desmond:

1. computes forces on each particle based on all the other particles in the system, and

2. moves the particles according to the results of these computations.

This sequence, forming the basis of the timestep, is repeated again and again. The period of simulated time computed
between each update of the particle positions. The action of the force field on the atoms is a continuous function of
position and time which the simulation samples at regular intervals. Thus, the timestep is analogous to the resolution
of an image in pixels, or the sampling rate of an analog to digital converter. And like those, it presents trade-offs—too
long a timestep sacrifices accuracy; too short, performance.

10 Chapter 3. Key Concepts

Desmond Users Guide, Release 3.4.0 / 0.7.2

For accurate results, the timestep must be short enough to resolve the highest frequency vibrations present in your
system sufficiently for the timestepping scheme you are using. For typical Desmond simulations, timesteps around
1 to 2 femtoseconds (fs) are sufficient. To allow larger timesteps in common situations, Desmond also provides
constraints, discussed in Dynamics.

3.7 Dynamics

The action of the force field on the particles is described by a differential equation that Desmond integrates—
numerically solves—at every timestep, thus computing a new position and velocity for every particle in the system.
The differential equation is based on the laws of Newtonian mechanics applied to particles in the system, but modeling
some physical systems requires augmenting the differential equations. Desmond implements three broad categories:

• Ordinary differential equations that hold certain measures constant—Verlet constant volume and energy, Nosé-
Hoover constant volume and temperature, MTK constant pressure and temperature, and Piston constant en-
thalpy.

• Stochastic differential equations that hold certain measures constant and in which one or more of the terms is a
stochastic process—Langevin constant volume and temperature, and Langevin constant pressure and tempera-
ture.

• Ordinary differential equations coupled to feedback control systems that keep a certain measure within a certain
range—Berendsen constant temperature, and Berendsen constant temperature and pressure.

The particular algorithm that Desmond uses to solves the differential equation is called the integrator. Integrators
are described in detail in Integrator. Desmond allows you to specify other aspects of the motion in your simulation,
as well. For example, if you’re using certain integrators, you may wish to remove the center-of-mass motion of the
chemical system.

Even with optimizations such as the Fourier space computation, far interactions are expensive to compute. They also
change more slowly in time than the other forces. For many simulations, then, you can improve performance by
configuring Desmond to compute the far interactions less often—for example, on alternating timesteps. The integrator
still computes the near interactions every timestep, but it skips the far-range computations half the time, weighting the
results accordingly to compensate for not including them at every timestep.

Typically, near interactions vary at a rate intermediate between bonded forces and far interactions. Given their often
dominant computational expense, Desmond also allows these to be scheduled less often. Desmond allows timestep
scheduling as follows:

• Bonded forces are computed at every timestep. This is then called the inner timestep.

• Nonbonded near forces can be computed at every nth inner timestep, as configured. This is then called the near
timestep.

• Nonbonded far forces can be computed at the same interval as nonbonded near forces, or a multiple of it. This
is then called the outer timestep.

Timestep scheduling appears as a configuration parameter called RESPA, an acronym that stands for reference system
propagator algorithm.

Constraints among particles let you lengthen the timestep by not modeling the very fastest vibrations; the integrator
moves these constrained particles in unison. A variety of geometries can be constrained this way:

• a fan of 1–8 particles, each bonded to a central particle, such as the three hydrogen atoms connected to a carbon
atom in a methyl group; and,

• three particles arranged in a rigid triangle, such as a water molecule.

These constraints are described in detail in Constraints.

3.7. Dynamics 11

Desmond Users Guide, Release 3.4.0 / 0.7.2

When you prepare your structure file, you specify the types of constraints, if any, and the atoms involved in them.
When you configure your simulation, you can specify how precisely to compute the constraints. Whether and how to
use constraints depends on simulation specific factors or the force field you’re using.

3.8 Using Desmond

Desmond is a suite of computer programs. It uses a standard format for input—structure (DMS) files—-and an open
format for output—trajectory files, or frame files. So you can also use other applications with Desmond, both public
domain and commercial.

3.8.1 Input

Desmond requires two files for input: a structure file that defines the chemical system, and a configuration file that sets
simulation parameters.

The structure file specifies what to simulate, the initial state of the system: the size of the global cell; the particles it
contains, their positions and other properties; the force fields to employ; and possibly other details.

Structure files are also called DMS files (file name suffix .dms for DESRES Molecular System).

The configuration file specifies how you want to simulate the chemical system: the reference temperature and pressure,
if any; the integrator to use; the length of the timestep; the fineness of the grid to use for charge-spreading; how many
processes to assign to a given dimension of the global cell; and possibly many other such parameters. By using
different configuration files with the same structure file, you can run different simulations.

3.8.2 Applications and scripts

Desmond consists of three main applications and several companion Python scripts:

• mdsim: The application that performs the molecular dynamics simulation.

• minimize: The application that prepares the molecular dynamics simulation, if necessary, by minimizing ener-
getic strains in the system so that they don’t destabilize the simulation at the first few steps.

• vrun: The application used to analyze framesets output by mdsim.

• Viparr: The Python script that adds force field information to the structure file.

• build_constraints: The Python script that adds constraint information to the structure file.

3.8.3 Output

Timestep by timestep, an atom traces a path through the global cell as the simulation advances.

The path that molecules take through the global cell is the trajectory. Trajectories are writ ten out in a set of files
representing a time series, like the frames of a movie.

Each frame is a file containing the positions and velocities of all the particles and pseudoparticles in the chemical
system at that particular timestep. In addition to particle positions and velocities, frames can include system charac-
teristics such as its total energy, temperature, volume, pressure, and dimensions of the global cell.

You can configure Desmond to output frames—typically at an interval corresponding to a multiple of the outer
timestep, when nonbonded far interactions are computed.

A time-ordered series of frame files representing the dynamics of the chemical system for the specified time period.
Framesets are ordinarily the meaningful unit of analysis for vrun or other analysis applications such as VMD.

12 Chapter 3. Key Concepts

Desmond Users Guide, Release 3.4.0 / 0.7.2

3.8.4 Workflow

The following typical workflow illustrates the roles of Desmond’s three main applications, as well as those of other
cooperating applications:

1. Prepare the structure file. Typically, start with a Protein Data Base (.pdb) file and produce a DMS file.

(a) Depending on its contents, and the manner in which it was created, it may need some repair of artifacts
(e.g. due to x-ray crystallography). Maestro is one tool that can do this; others also exist. Maestro or a
comparable application outputs a structure file typically containing:

• the solute: proteins, ligands, or other molecules of interest

• the solvent: water and often ions such as sodium, potassium, or chloride to ensure that the overall
chemical system is neutral with respect to charge. (A charge-neutral system is desirable for computing
long-range electrostatic interactions.)

The structure file contains all particle and bond information, but has as yet no information about the
force field describing the interactions between particles.

(b) To add the force field information, the structure file is input to Viparr.

You specify the force field you wish to use, and Viparr outputs a structure file with the force field informa-
tion added. It can access a set of databases specifying the required force terms for the various molecules
in the chemical system. Viparr reads the structure file and appends the necessary force terms in a separate
section of the file.

You now have a structure file that defines the particles and forces in your simulation.

(c) If you wish to use constraints in your simulation, you now run build_constraints. By default, the
script constrains the bond length of all bonds involving hydrogen atoms, as well as the angle in all water
molecules. The out put is a new structure file with the constraint terms added. You now have a structure
file that describes the particles and forces in your simulation, as well as any constraints you wish to apply.

2. The simulation still needs to be configured, which involves specifying the values of parameters in a configuration
file. The simplest way is to start with an existing con figuration file and edit it.

Running Desmond provides an overview of configuring the simulation. For details about specific configuration
file parameters, see the chapters that discuss the applicable configuration file sections.

3. Most simulations now require that the energy of the system be equilibrated so that initial forces between atoms
are small. One way to do this is to minimize the potential energy of the system. Desmond provides two means
of doing this. The first is by Brownian motion, through the use of the brownie_NVT or brownie_NPT inte-
grators, or by gradient minimization, through the minimize application. You may not need to use equilibrated
if your system was prepared with care to avoid energetic strains, or if it has already been equilibrated with
another tool.

On the other hand, depending on how the structure file was obtained, you may wish to use minimize even if
you don’t intend to run mdsim, in order to rectify strange conformations resulting from the homology model,
or undesired artifacts resulting from x-ray crystallography.

To minimize the energy of the system, the structure file and associated configuration file are input to minimize,
which changes the atom positions slightly as needed. It then outputs another structure file but does not change
the configuration file.

4. The new structure and the configuration file are now input to mdsim, which executes the simulation (possibly
for days or weeks), writing the results as frame files at the configured intervals of simulated time.

Analyze the results

3.8. Using Desmond 13

Desmond Users Guide, Release 3.4.0 / 0.7.2

5. The frameset and configuration file can now be input to vrun, which analyzes the results according to the
manner specified in the configuration. For example, you can specify that vrun print the energy of the system
for each frame, or the forces on each particle at each frame.

Other tools such as VMD, a freely available visualization application, can be used to analyze results in addition to, or
instead of, vrun.

3.8.5 Customizing Desmond

Desmond modularizes its functionality in the form of extensions.

An extension is a software module that implements a discrete set of capabilities, compiled separately so that it can
be added to, or removed from, an existing application. The capabilities are further divided logically into units of
functionality called plugins. As it runs, the Desmond executable calls plugins as specified in the configuration file
for its application. In this way you can execute the functions that you need while skipping those that you don’t.
Each Desmond application has a main loop which it repeats: one step in the minimization process, one simulation
timestep, or one trajectory frame loaded. Plugins can be called during this loop to perform their work repeatedly as
the simulation unfolds. For example, the plugin eneseq computes system energy, temperatures, pressures, and other
data, breaking down the energy into various categories, then writes the result to the specified output file. For example,
randomize_velocities reinitializes the velocities of the particles in the simulation according to the Boltzmann
distribution for a specified temperature, something you may wish to do once, at the start of the simulation. On the
other hand, trajectory writes all particle positions to the specified output file at specified intervals, which you probably
wish to do more than once, but less often than at every timestep.

The main loop plugins are configured in the section of the configuration named after the application being run (e.g.
mdsim or remd). Not all plugins are active in the main loop. Some plugins provide integrators and additional force
terms. They are either partly or wholly configured in these sections of the configuration.

Plugins provided with Desmond are described in Configuring the built-in plugins.

Desmond already has most or all the functionality required for typical molecular dynamics simulations, but you can
extend this functionality by writing your own plugins to, for example, support new force field terms, add new integra-
tors, or apply arbitrary steering forces to the simulation, all without recompiling the Desmond executable. Implement
the functionality you need as a plugin; then specify the parameters for your plugin in the configuration file. Other
requirements are discussed in Extending Desmond.

14 Chapter 3. Key Concepts

CHAPTER

FOUR

RUNNING DESMOND

This chapter explains the basics of working with configuration files; describes how to invoke the various Desmond
applications, including in parallel; and describes how to configure Desmond applications and built-in plugins, as well
as the optional profiling mechanism.

4.1 About configuration

Desmond reads configuration parameters from a configuration file, specified on the command line.

The simplest way to configure a simulation is to copy one of the sample configuration files provided and edit it. See
the README.txt file for the location of these files. For those who wish to edit extensively or create their own,
configuration file syntax is described in Appendix: Configuration syntax.

Configuration files are divided into sections, with the configuration information for a given application going into
the section named for that application. In addition, other sections configure other aspects of the simulation, such as
the global cell, the force field, constraints (if any), and the integrator. The same configuration file can apply to any
Desmond application.

Note: Schrodinger’s release of Desmond uses a simplified configuration file format, described in Appendix C of their
Desmond User Manual, that differs from Desmond ‘native’ form described below. This simplified configuration file
is converted to the native form whenever the user executes $SCHRODINGER/desmond.

Configuration file sections are:

app = mdsim|remd|minimize|vrun|...
boot = { file = p } # the structure file
global_cell = { ... }
force = { ... }
migration = { ... }
integrator = { ... }
profile = { ... } # for debugging
mdsim = { ... }
vrun = { ... }
minimize = { ... }
remd = { ... }

Each application reads a particle system and a force field from a structure file located at the path p, the details of
which can be found in Preparing a structure file. The structure file defines the global cell dimensions, initial particle
properties, and the specific parameters of the force field.

Many Desmond objects share the following configuration idiom:

15

Desmond Users Guide, Release 3.4.0 / 0.7.2

object = {
first = t

f

interval = t

i

...
}

This describes the pattern of activity of the object, acting only at specific times, the first time at tf and thereafter
periodically with period ti. Setting ti = 0 causes the object to act at every opportunity after tf .

Note: The application might modify tf and ti slightly from their configuration values to make them a multiple of the
current timestep.

Setting tf to inf meaning infinity (see Appendix Appendix: Units) declares that the activity never occurs; but beware:
some plugins use the Boolean parameter write_last_step that when set causes output to occur at the end of the
simulation regardless.

4.2 Invoking Desmond

Desmond applications are invoked from the command line by the desmond executable. Use the --include to
specify the configuration file. For example, to invoke desmond with the configuration file equil.cfg:

$ desmond --include equil.cfg

As indicated above, the configuration specifies the application and the structure file, as in:

app = mdsim
boot = {

file = /path/to/my/input.dms
}

The --cfg option allows you to append additional configuration information to the command line. It’s often used to
specify the structure file. For example, to invoke desmond with the structure file /path/to/my/input.dms:

$ desmond --include equil.cfg --cfg boot.file=/path/to/my/input.dms

This has the same effect as the line from the configuration file above.

Note: Use quotation marks around the parameter to --cfg if it contains any special characters (such as spaces) that
are interpreted by the shell.

You can specify multiple configuration files; this can be useful for configuring a simulation in a modular way.
For example, you might choose to have alternative integrator configurations in two files named nve.cfg and
ber_nvt.cfg, with other configuration parameters in the base configuration file in base.cfg. Then, for a simu-
lation in which you intend to use the Verlet constant volume and energy integrator, you’d invoke:

$ desmond --include base.cfg --include nve.cfg --cfg boot.file=input.dms

Whereas, for a simulation in which you intended to use the Berendsen constant volume and temperature integrator, the
command line would instead be:

$ desmond --include base.cfg --include ber_nvt.cfg --cfg boot.file=input.dms

You cannot specify multiple structure files. The --include and --cfg arguments are evaluated in order, and the
last specified name for the structure file overrides any previous ones.

16 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

The --tpp command line option sets the number of threads per process. If your application is to run on a processor
with multiple cores, you may benefit by setting this value to other than its default of one. Otherwise, the command
line can omit it. The --cpc command line option sets the number of cores per physical chip and as a side effect
ties Desmond threads to processor cores. If --cpc N, where N� 1, is used master and worker threads are bound to
processor cores. If --spin 1 or --spin 2 is used, a faster but more processor intensive thread idle strategy using
spin-locks is employed. When 1, foreground threads will spin, and background threads will sleep; when 2, all worker
threads will spin.

Note: If you run more than one Desmond job on a multiprocessor node, make sure that --cpc is set to 0, otherwise
Desmond processes in the different jobs will use the same core resulting in significant performance degradation.

Note: When running on an interactively used workstation and with more than one Desmond thread, it is better to set
--spin 0.

For example, to start a Desmond application with four threads per process:

$ desmond --tpp 4 --include example.cfg --cfg boot.file=input.dms

Note: Under most circumstances, it’s best to run desmondwith one thread per process and one process per processor
core.

Each application logs its configuration at startup, so users can observe the net result of the configuration options. This
includes displaying a list of the loaded plugins with full paths, so that you can see all the code that Desmond can
access. (Plugins are described in Configuring the built-in plugins.)

Table tab:clo lists the full set of supported options. All command line options have the same effect for all applications
except --restore, which pertains to the mdsim and remd applications only, enabling them to start from a check-
point file. It is an error to provide a command line option that is not recognized by Desmond or one of its components.
Command line options can be given in any order.

Table 4.1: Desmond command line options
argument description
--tpp N Sets the number of threads per process. Defaults to 1.
--cpc N Gives the number of cores per physical chip. Defaults to 0.
--spin N Sets the worker thread idle strategy. Defaults to 0. If 1 or 2 then use spin-lock based

idle strategies. Sets the name of the communications plugin to use for parallel jobs.
--destrier name Defaults to serial.
--include file name Adds configuration information from the given file. Can be given any number of times.
--cfg string Adds configuration information from the given string. Can be given any number of

times.
--restore file Restarts the mdsim or remd applications from a checkpoint. Because these

applications are expected to run for long periods of time, during which hardware might
fail, they can be set to produce a checkpoint file periodically, from which you can restart

4.2.1 Restoring from a checkpoint

You can configure the mdsim or remd applications to create a checkpoint file at regular intervals as it runs. When
you wish desmond to start from a checkpoint file created during an earlier run, use the restore flag to specify the file
name.

For example, to restore from a checkpoint:

4.2. Invoking Desmond 17

Desmond Users Guide, Release 3.4.0 / 0.7.2

desmond --tpp 4 --restore checkpoint_file

Note: To avoid an application error, set the --tpp and other thread specific flags the same way it was set for the
original simulation. desmond must initialize the parallel environment before it can read the checkpoint file.

You need not specify other configuration options; they’ve been saved. When restoring from a checkpoint file, only
certain options can be changed from the configuration of the original simulation: last_time (see mdsim and remd),
checkpt.interval (see Checkpointing), and certain plugin options (for example, the name and interval for
eneseq and trajectory).

4.2.2 Using plugins

Desmond applications use certain plugins for various diagnotics and interventions. Plugins can be implemented as
part of an application (called built-in plugins), or in external files (called extensions).

Desmond locates extensions (files containing plugins) by means of either of two environment variables
DESMOND_PLUGIN_PATH and DESRES_PLUGIN_PATH. You can specify more than one path to search for plugins
by separating them with colons, as in:

DESMOND_PLUGIN_PATH=/this/is/the/first/path:/this/is/the/second

The line above specifies two directories, which are searched for plugins in the given order. Many plugins are compiled
with Desmond already and are therefore available to all its applications; these are discussed in Configuring the built-
in plugins. In addition, you can implement your own plugins, or use those developed by third parties. Extending
Desmond’s functionality in this way is discussed in Extending Desmond.

Each application has a main loop, consisting of one minimization or simulation step (mdsim, remd, and minimize)
or processing one trajectory frame (vrun). You can configure a plugin to run once at the beginning of a simulation,
or periodically at an interval of one or more steps.

Each application’s plugin section of the configuration contains a list under the key plugin that gives the names of
main loop objects to create.

For example, the plugins to call when the mdsim application runs appear in a list like the one below:

mdsim = {
plugin = {
list = [key

1

... key
n

]
key

1

= {
type= type

1

...
}
...
key

n

= {
type= type

n

...
}
...

}
}

The key names appearing in the plugins list are arbitrary (though, for a given section, they must be unique). For each
key, keyi, Desmond creates a main loop object of type typei. The remainder of the table under keyi contains the
object’s configuration:

18 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

mdsim = {
plugin = {
list = [my_status]
my_status = {

type=status
first=0
interval=1

}
}

}

In this case, the mdsim application will create an object of type status, which is set to run every picosecond.

Note: Main loop plugin objects are evaluated in the order in which they’re listed in the configuration. In certain cir-
cumstances, listing plugins in a different order can yield different results: for example, if your simulation calls both the
randomize_velocities and eneseq plugins. Because randomize_velocities generally changes the ki-
netic energy of the system, different kinetic energies and temperatures are reported if the randomize_velocities
plugin is listed before eneseq rather than after—the dynamics of the system will be the same, but the reported tem-
peratures will be different. Configuring the built-in plugins describes the built-in main loop plugins.

4.3 Running Desmond in parallel

Desmond can be run either in serial or in parallel, in environments ranging from laptops to large Linux clusters. High-
performance parallel systems consist of nodes connected together in a network, containing one or more processors each
of which consisting of one or more processor cores or cores. In the following we will frequently refer to processor
cores as processors where confusion is unlikely.

When you run Desmond in parallel, specify the number of Desmond processes you want to run according to the
particulars of your parallel environment.

You can run Desmond in parallel—that is, run multiple Desmond processes—and also run each process with multiple
threads (using the --tpp command line parameter). In order to run Desmond in multi-threaded mode efficiently,
you’ll need to request as many total processor cores as the total number of threads. For example, if you are running on
a system with 8 processors cores per node, and specify 2 processes per node, then you should set the --tpp parameter
no larger than 4. The details of selecting the number of nodes and processes per node are system dependent and are not
discussed further. When running a simulation in parallel, Desmond processes exchange the information by means of a
parallel communication interface (typically, MPI), implemented with a plugin called a destrier. That implementation
is registered under a symbol (normally, either mpi or serial) by which it can be selected by giving an application
the destrier flag:

$ desmond --destrier mpi --tpp 1 --include example.cfg

Without the --destrier flag, a Desmond application defaults to serial. The details of Desmond installations and
parallel environments vary, but a plugin containing a destrier implementation in a file named destrier.so, and
registered as mpi, must either be built-in (that is, compiled as part of the Desmond executable), or located in an
extension specified by the path given in your DESMOND_PLUGIN_PATH environment variable.

• --destrier serial: runs Desmond applications with a single process. This gives you a means to check
your code and find any other problems while your installation creates a usable parallel environment.

• --destrier mpi: uses the MPI destrier variant, a common parallel programming specification, imple-
mented as a library of C, C++, or Fortran functions.

• --destrier other: You can create your own destrier plugin by modifying the examples provided for the
serial and mpi plugins. Register the resulting plugin under the name of your choice, supplying that name as the

4.3. Running Desmond in parallel 19

Desmond Users Guide, Release 3.4.0 / 0.7.2

argument to the --destrier parameter.

The parallel environment is initialized before checkpoint information is read. Therefore, if you’re restoring from a
checkpoint, the --destrier flag must be set in the same way it was when you started the original simulation.

Note: The mpi destrier plugin requires Open MPI version 1.4.3 or later. If you wish to use a different parallel
communication interface, you’ll need to compile your own plugin.

4.4 Configuring Desmond applications

The main Desmond applications are mdsim, minimize, remd, and vrun, as described in Applications and scripts.
Configuration parameters for each of these applications are described below.

4.4.1 mdsim

mdsim is Desmond’s main molecular dynamics simulation code. It’s configured as shown in:

mdsim = {
title = w

last_time = t

1

plugin = { ... }
checkpt = { ... }

}

Table 4.2: Configuration for mdsim
name description
title A short string to include in various output files—by default, “(no title)”. [string]
last_time Time at which to stop the simulation, in picoseconds, relative to the reference time given as part

of the global cell configuration (see Configuration). [time]
plugin Description of the main loop plugins to call during simulation. See Using plugins. [configuration]
checkpt Checkpoint configuration. See Checkpointing. [configuration]

Checkpointing

Because mdsim can run for a long time, during which hardware can fail, checkpointing allows you to restart a simu-
lation from a backup file called a checkpoint. A checkpoint file is a snapshot of the entire state of the computation and
can therefore be quite a large file. However, because their purpose is to restart an interrupted simulation, checkpoint
files can be discarded after the simulation completes. Desmond checkpoints are designed such that the state of a sim-
ulation restarted from checkpoint is bitwise identical to the state of simulation at the point when the checkpoint file is
written.

Configuration information for checkpointing appears as shown in:

checkpt = {
first = t

f

interval = t

i

name = p

write_first_step = b

f

write_last_step = b

1

}

20 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

Setting checkpt = none shuts off checkpointing.

A checkpoint is written at simulation time tf and thereafter with a period ti or at the wall clock interval tw as measured
from the start of each invocation of the simulator. The output file name convention is followed for the checkpoint files;
see Naming output files.

You can cause mdsim to write a checkpoint file initially and finally by setting bi and bf respectively to true.

Table 4.3: Configuration for checkpointing
name description
first First time to create a checkpoint. [time]
interval Periodic interval at which to create checkpoints. [time]
wall_interval Periodic interval at which to create checkpoints; wall clock time in units of seconds.

[time]
name Output filename to use for the checkpoint files. [filename]
write_first_step Whether to write a checkpoint file before the first step is taken. [Boolean]
write_last_step Whether to write a checkpoint file after the last step is taken. [Boolean]

4.4.2 remd

The remd application in Desmond implements the replica exchange protocol, sometimes known as parallel tempering.
The number of replicas that can be simulated is limited only by the number of processors available and that an equal
number of processors must be assigned to each replica. The only restriction on the replicas themselves is that they
must all have the same number of particles. Thus, remd can be used for the usual temperature exchange method, as
well as exchanges between systems with different Hamiltonian parameters.

remd runs as a single parallel application, just like mdsim and vrun, producing a single checkpoint file if check-
pointing is enabled. Each replica runs as a normal simulation, with swaps of coordinates taking place as specified by
the user through the configuration. When an exchange is attempted between two replicas, the usual Metropolis crite-
rion is applied to determine if the exchange should be accepted or accepted, according to the following prescription:
with

Q = (�
1

U
11

+ �
2

U
22

� �
1

U
12

� �
2

U
21

) + (�
1

P
1

� �
2

P
2

)(V
1

� V
2

) , (4.1)

where randN is a random variate on (0, 1], Uij is the potential energy of replica i in the Hamiltonian of replica j, Pi is
the reference pressure of replica i, Vi is instantaneous volume of replica i, and �i is the inverse reference temperature
of replica i. If Q > 0 accept the exchange, or if Q < �20 reject it, otherwise accept the exchange if randN < exp(Q).

An example remd configuration is shown in following Example; all parameters are required. The parameters are
summarized in Configuration for remd.

remd = {
title = w

last_time = t

1

checkpt = { ... }
plugin = { ... }
first = t

f

interval = t

i

seed = s

exchange_type = neighbors|random
cfg = [c

1

... c

r

]
}

4.4. Configuring Desmond applications 21

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 4.4: Configuration for remd
name description
title A short string to include in various output files. Optional—by default, “(no title)”. [string]
last_time Time at which to stop the simulation, in picoseconds, relative to the reference time given as part

of the global cell configuration (see Configuration). [time]
checkpt Checkpoint configuration. See Checkpointing. [configuration]
plugin See Using plugins. [configuration]
first Time of first exchange attempt [Time]
interval Time between exchange attempts [Time]
type Either exchanges only between neighboring replicas or exchanges between any pair of replicas

[neighbors | random]
seed random number seed for the Metropolis criterion [Integer]
cfg configuration overrides for each replica [List of configurations]

Exchanges are attempted starting at chemical time given by first, and at intervals of interval thereafter. If type is
neighbors, then on each exchange attempt, all replicas will attempt an exchange with either of their neighbors in
a linear order with 50and accept based on the Metropolis criterion above. If type is random, then only two out of
all replicas will attempt an exchange, but those two replicas could be any of the replicas in the ensemble. Exchanges
are implemented by swapping the positions of a pair of replicas. If an exchange is accepted, the velocities of the
replicas are rescaled to the temperature of the host replica; otherwise, the positions are simply swapped back. Thus,
in any replica, the temperature and Hamiltonian will stay the same, but the dynamics will be discontinuous as new
coordinates are swapped in via exchanges.

The cfg configuration in remd serves two purposes. First, the number of entries in the list, r, serves to specify how
many replicas are to be run in the simulation. Second, each entry in remd.cfg overrides the configuration for the
corresponding replica, in the same way that the cfg command line option overrides a setting for an mdsim run. For
example,

cfg = [
{integrator.temperature.T_ref=300 plugin.eneseq.name=0.ene}
{integrator.temperature.T_ref=303.3333 plugin.eneseq.name=1.ene}
{integrator.temperature.T_ref=306.6667 plugin.eneseq.name=2.ene}
{integrator.temperature.T_ref=310 plugin.eneseq.name=3.ene}

]

has four replicas: replica 0 will see a configuration with the integrator temperature set to 300, replica 1 will get a
temperature of 303.3333, and so forth. Also in this example, a plugin variable is overridden on a per replica basis.
Overrides to the remd section itself should not qualified with the prefix remd. as one would have expected.

4.4.3 remd-graph

The remd-graph app driver is a generalization of the remd driver intended to give advanced users more control
over the set of possible exchanges in the network of replicas. The configuration for remd-graph is identical to that
of remd, except that the type and cfg sections are replaced by a new section called graph:

remd-graph.graph = {
edges = [
{ type=linear nodes=[T1 T2 T3] }
{ type=all-to-all nodes=[T1 T4 T5] }
...

]
T1 = { ... }
T2 = { ... }
T3 = { ... }
T4 = { ... }

22 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

T5 = { ... }
}
remd-graph.deltaE = { # optional section

first = t

f

interval = t

i

name = p

}

The graph section of the remd-graph config must contain an edges section, which is a list of edge declarations.
Each edge declaration has two fields: nodes, which is a list of symbolic replica names, and type, which specifies
how those replicas are connected. In an edge declaration of type linear, edges are created between the nodes
that are neighbors in the corresponding nodes list; for type all-to-all, edges are created between all nodes in
the declaration. The set of all edges is the union of the edges in all the declarations. In our example, we have edges
T1-T2 and T2-T3 coming from the first declaration, and edges T1-T4, T1-T5, and T4-T5 coming from the second
declaration, for a total of five edges.

The number of replicas in the simulation is given by the number of unique node names in the edges declarations. For
each name, the graph section may also contain config overrides, keyed to the name of the replica.

Once the set of edges is established, remd-graph performs replica exchange by selecting an edge at random from
the full set of edges.

remd-graph gives users the option of reporting the energy differences between all pairs of configurations in the edge
list of the graph. The timing of the output is controlled by the tf and ti parameters, according to the usual conventions,
and written to the path p. For each edge, say T1-T2 for example, a pair of values �E

+

,�E� is reported where

�E
+

= U
12

� U
11

�E� = U
21

� U
22

and the Uij are the potential energies from Equation (4.1).

Table 4.5: Configuration for remd-graph
name description
graph.edges A list of edge descriptions describing the edge set of the graph. [List]
deltaE Description of the deltaE output. Optional—by default, disabled. [configuration]
deltaE.first Time of first output [Time]
deltaE.interval Time between outputs [Time]
deltaE.name Output filename to use for writing the output file. [filename]

4.4.4 minimize

minimize performs steepest descent minimization followed by LBFGS minimization. Configuration parameters are
shown in following example; all parameters are optional; the defaults should be adequate for most systems.

minimize = {
migrate_interval = i

m = m

maxsteps = s

max

tol = ⌧

stepsize = l

switch = g

sdsteps = s

0

debug = d

dt = t

plugin = { ... }
}

4.4. Configuring Desmond applications 23

Desmond Users Guide, Release 3.4.0 / 0.7.2

minimize requires an integrator section, even though all parameters in that section are ignored during the calculation.
We recommend that you use the same configuration for minimization and dynamics, appending the minimize section
to the mdsim configuration discussed above.

minimize handles constraints differently from mdsim; for a discussion, see Adding constraints.

Table 4.6: Configuration for minimize
name description
plugin See Using plugins. [configuration]
migrate_interval Number of minimization steps between each migration event. Optional—by default, 1.

[Integer > 0]
m Number of state vectors to use during L-BFGS minimization. Optional—by default, 3.

[Integer} > 0]
maxsteps Maximum number of steps to iterate. Optional—by default, 200. [Integer]
tol Stopping tolerance for gradient norm. Optional—by default, 1.0. [Energy/Length > 0]
stepsize Norm of first step. Optional—by default, 0.005. [Length > 0]
switch Minimum gradient before switching to L-BFGS. Optional—by default, 100.0.

[Energy/Length > 0]
sdsteps Minimum number of initial steepest descent steps. Optional—by default, 0. [Integer]
dt A fake time scale for the minimize step. Optional—by default, 1.0. [time > 0‘]

4.4.5 vrun

The vrun application is used to analyze structure files and trajectories. It loads successive trajectory frames (written
by mdsim or per-replica frames written by remd) and triggers plugins to act on those frames.

Configuration information is shown in:

vrun = {
title = w

plugin = { ... }
input = bootfile | frameset
frameset = {
name = p

first = t

f

interval = t

i

last_time = t

1

}
}

Loads a configuration, or sequence of configurations, given by the set of frames from a trajectory file. p is expected to
be a path to a frameset, a trajectory output. If not given, then the initial configuration is processed as loaded.

Table 4.7: Configuration for vrun
name description
plugin See Using plugins. [configuration]
title A string to be included in various output files. Optional—by default, “(no title)”.

[string]
input Input mode: either ‘frameset’ or ‘bootfile’. [String]
frameset.name Path to the input trajectory. Optional. [filename]
frameset.first Start processing frames after this chemical time. [time]
frameset.interval Skip this much chemical time between frames. [time]
frameset.last_time Stop processing after this chemical time. [time]

24 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

4.5 Naming output files

Output files are created according to a format string having terms that are expanded on a per-file basis. These terms
are of the form @X, where X is a single character; they expand as listed in Terms for naming output files.

Table 4.8: Terms for naming output files
Term Expands to
@B A boot timestamp: a date string, resolved to the second, taken from the start time of one of the parallel

processes.
@S A sequence number: an integer, starting at zero and incrementing each time this filename is

expanded, producing an ordered sequence of files rather than overwriting the same file.
@P The UNIX process ID of the process writing the file, as a hexadecimal integer.
@R The rank—a unique identifier within a parallel run—of the process writing the file.
@F{S} The result of passing S to strftime.
@@ The @ character.

For example, if you wish to write an output file several times during a run, the filename my_output-@S creates
a sequence of files named my_output-0, my_output-1, and so on. The last-used value of the sequence number
is saved in the checkpoint file. To ensure that unique files are created with each Desmond run, give files names such
as: my_output-@B, thus causing each to be named with a unique timestamp. (If the runs are expected to take less
than one second to complete, unique file names would require a different strategy; perhaps: my_output-@B-@P.)

A filename can encode the current date and time in various formats. For example, you can use a file name of the
form my_output-@F{%Y-%m-%d} to name a file according to the current date: my_output-2010-04-23. You
could name your checkpoint file in this way if you wanted to ensure that no more that one checkpoint file is written per
day. Plugins that periodically update an output file—for example, eneseq, compute_forces, energy_groups,
and gibbs.output—can use an empty string as a filename; in this case, data is written to the standard output.
However, maeff_output and checkpt require real file names.

4.6 Configuring the built-in plugins

Desmond is compiled with various plugins, which are therefore available to all Desmond applications. These plugins
offer a range of commonly useful functionality; configuration information for them all is discussed below.

4.6.1 anneal

The Desmond anneal plugin periodically updates the temperature setting of the anneal integrator during an mdsim
run. The anneal integrator is actually a thin shell around any other Desmond integrator. Hence, there are two places in
the configuration that need to be changed in order to use the anneal plugin.

Integrator setup

The integrator section of the configuration normally has the following form:

integrator = {
type = name

name = { ... } # integrator-specific options
... other non-specific integrator options

}

In order to enable the anneal plugin, the above should be changed as follows:

4.5. Naming output files 25

Desmond Users Guide, Release 3.4.0 / 0.7.2

integrator = {
type = anneal
anneal = { type = name

name = { ... } } # integrator-specific options
... other integrator options

}

This wraps whatever integrator symbol was asking for inside the anneal integrator and thereby makes it responsive to
requests for temperature changes.

Plugin setup

Within the application specific plugin section, the following specifies the component of annealing that schedules
the temperature changes:

app.plugin = {
list = [... key ...]
key = {
type = anneal
first = t

0

interval = �

schedule = {
time = [t

1

t

2

... t

N

]
value = [T

1

T

2

... T

N

]
}

}
}

• t
0

: first time to reset the thermostat temperature

• �: interval between thermostat resets. There is a small performance cost to resetting the thermostat, so its
recommended that the delta be set no smaller than the natural thermalization time of the system, typically on
the order of 1 ps.

• schedule: When the plugin is invoked, as specified by first and interval, a target temperature is com-
puted based on the current chemical time t. If t < t

1

, no action is taken. If t � tN , the target temperature will
be TN , the last temperature in values. Otherwise, the target temperature is computed by linearly interpolation
between the time points ti, ti+1

that bracket the current time:

T = Ti + (Ti+1

� Ti)
(t�t

i

)

(t
i+1�t

i

)

For example, the following schedule would heat a system from 0 to 500 K during the first 20 ps, then cool it to 300 K
during the subsequent 80 ps, and maintain it at 300 K thereafter:

mdsim.plugin.*key*.schedule = {
time = [0 20 100]
value = [0 500 300]

}

4.6.2 Biasing Force

The BiasingForce plugin can be used to restrain two groups of atoms within a chemical system with respect to
each other, in displacement, distance, and/or orientation. It can also be used to restrain the position and orientation of a
group of atoms within the molecular system with respect to the simulation box. Unlike most plugins, its configuration
is given in the force section of the configuration (note below).

26 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

force.term = {
list = [... key ...]
key = {
type = BiasingForce
cm_moi = [{

groups = [A B]
displace_coeff = [k

x

k

y

k

z

]
displacement = [x

0

y

0

z

0

]
distance_coeff = k

d

distance = R

0

orient_coeff = [!

1

!

2

!

3

]
Euler_angles = [✓

0

�

0

0

]

use_lab_frame_for_displacement = Boolean

pull_displacement = [v

x

v

y

v

z

]
pull_distance = v

d

pull_Euler = [d✓

dt

d�

dt

d

dt

]
} # Multiple biasing potentials, supplied as a list, can be applied.
...]
output = {

first = t

f

interval = t

i

name = filename

}
t0 = t0

}
... # Other force terms

}

The units of the parameters in the configuration are given in Table. tbl:BiasingForceUnits.

Table 4.9: Units of the parameters in
biasing force.

quantity unit
t0 picosecond

kx, ky , kz kcal·mol-1·Å-2

x
0

, y
0

, z
0

Å
kd kcal·mol-1·Å-2

R
0

Å
!
1

, !
2

, !
3

kcal·mol-1

✓
0

, �
0

,
0

degree (not radians)
vx, vy , vz Å·picosecond-1

vd Å·picosecond-1

d✓
dt , d�

dt , d
dt degree·picosecond-1

The biasing force in the above configuration will restrain particles in cm_moi group B with respect to particles in
cm_moi group A. Group A consists of all atoms whose grp_bias property is set to the integer value A; Group B
those set to the integer value B (see Preparing a structure file). The allowed values of grp_bias are 0, 1, 2, and 3 and
by default all particles in the chemical system are in center of mass group 0. If A = �1, however, BiasingForce
will restrain group B with respect to the simulation box.

4.6. Configuring the built-in plugins 27

Desmond Users Guide, Release 3.4.0 / 0.7.2

The BiasingForce plugin works by imposing the following restraining potential on the molecular system:

E
biasing

=

x
2

(

~RAB · ~qA1

� x)2 +
y
2

(

~RAB · ~qA2

� y)2 +
z
2

(

~RAB · ~qA3

� z)2 (4.2)

+

d
2

(RAB �R)

2

+

!
1

2

((G~qB1

) · ~qA1

� 1)

2

+

!
2

2

((G~qB2

) · ~qA2

� 1)

2

+

!
3

2

((G~qB3

) · ~qA3

� 1)

2

where RA (RB) is the center of mass of group A (B), RAB = (xAB , yAB , zAB) = RB �RA, qA↵,↵ = 1, 2, 3 (qB↵)
are the principal axis of group A (B), and G is the rotational matrix that will superimpose the qB‘s onto qA‘s when B
is in the relative orientation with respect to A, as specified by the Euler angles (✓,�,).

In E
biasing

, the first three terms restrain the relative displacement between the centers of mass of groups B and A, to
the desired displacement (x, y, z). The term in the second line restrains the scalar center-of-mass distance RAB of the
two groups A and B and R is the target displacement. The three terms in the third line restrain the relative orientations
of the particles in group B with respect to those in group A.

If the parameters pull_displacement are set to 0, the desired displacement—(x, y, z) in Equation (4.2)—are
taken to be (x

0

, y
0

, z
0

) in the configuration, and they will not change in the course of the simulation. But if they
are not zero, the biasing force will be used to pull the two groups from the initial positions at the specified rates
v = (vx, vy, vz), and the target displacement, R(t), at time t is given by

~R(t) = (x(t), y(t), z(t)) = ~RAB(0) + ~v t

where RAB(0) is the initial displacement between A and B at the beginning of the simulation.

The same convention applies to pull_distance and pull_Euler.

The parameter use_lab_frame_for_displacement is false by default. If it is set to true, the displacement
between groups B and A will be measured in the reference frame of the simulation box, and will not be projected onto
the reference frame formed by the principal axes of group A. Namely, the three terms in the first line of Equation (4.2)
are replaced in this case by

x
2

(xAB � x)2 +
y
2

(yAB � y)2 +
z
2

(zAB � z)2

A maximum of 4 cm_moi groups can be defined for a chemical system. Because the center-of-mass and moment-of-
inertia are computed for these groups of atoms in order to apply the biasing potential, the user must avoid imposing
the biasing potential upon a group of atoms that can wrap around the periodic box since in this case, the center-of-
mass and the moment-of-inertia are ill-defined. There is a limit of 4 biasing potentials in the cm_moi list of the
force.BiasingForce configuration.

The user can monitor the action of the biasing potential from the data written at the specified time intervals to the
output file. The header in the output file reports the number of atoms in each cm_moi group; the user should verify
that these match the intended grouping. Following this is a header line that labels each column of the subsequent
data. Each row of data corresponds to one moment in time, beginning with the properties of the first cm_moi group,
followed by those of the ensuing groups. The data reported are as follows:

• xci, yci, zci, where i = 0, 1, ...: the center-of-mass coordinates of the ith cm_moi group in units of Å.

• p1xi, p1yi, p1zi: the unit vector of the first principal axis of the ith cm_moi group.

• p2xi, p2yi, p2zi, p3xi, p3yi, p3zi: the unit vectors of the second and third principal axes of the ith cm_moi
group.

• I1i, I2i, I3i: the diagonal moment-of-inertia tensor of the ith cm_moi group, corresponding to the principal
axes in the same order. They are in units of amu⇥Å.

From these data together with the parameters in the biasing potential configuration, it is straightforward to compute
the energy contributions from the biasing potential at each recorded moment.

28 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 4.10: Configuration for BiasingForce
name description
cm_moi Biasing force definition for a list of cm_moi groups [List]
groups The groups to restrain [List]
displace_coeff Force coefficients for displacement restraints [List of 3

Energy/Length2]
displacement Relative displacement between the two groups [List of 3 Lengths]
distance_coeff Force coefficient for distance restraint [Energy/Length2]
distance Distance between the two groups [Length]
orient_coeff Force coefficients for orientational restraints [List of 3 Energies]
Euler_angles Euler angles between the two groups [List of 3 Degrees]
use_lab_frame_for_displacement If true, the displacement between the groups are measured in the

reference frame of the simulation box [Boolean]
pull_displacement Velocity of pulling in displacement [List of 3 Length/Time]
pull_distance Velocity of pulling in distance [Length/Time]
pull_Euler Velocity of pulling in orientation [List of 3 Degree/Time]
t0 The time to begin apply pulling, as specified by

pull_displacement, pull_distance, and pull_Euler. This is not to be
confused with the biasing force itself, which is applied from the
beginning of the simulation. [Time]

output.first The time to write the first biasing results [Time]
output.interval The interval at which to write the biasing results [Time]
output.name The name of the file to which to write the energy estimates

[Filename]

4.6.3 e_bias

The e_bias plugin applies a constant electric field with the direction and magnitude given by E_applied. The
schedule subsection can be set to none; if so, the field remains constant over time; otherwise, it’s scaled by the
values given in schedule.value.

force.term = {
list = [... key ...]
key = {
type = e_bias
E_applied = [E

x

E

y

E

z

] # Applied field in kcal/mol/A/e
schedule = {

time = [t

1

t

2

... t

N

] # Times in picosecond
value = [S

1

S

2

... S

N

]
}

}
... # other force terms

}

With e_bias, a particle carrying charge q experiences a force

~F = (qEx(t), qEy(t), qEz(t))

where the electric field at time t is given by E↵(t) = E↵S(t)for↵ = x, y, z

The time-dependent scaling factor S(t) is determined by the schedule. If schedule=none, then S(t) = 1 for all t.

4.6. Configuring the built-in plugins 29

Desmond Users Guide, Release 3.4.0 / 0.7.2

Otherwise, S(t) at time t is given by piecewise linear interpolation:

S(t) =

8
<

:

Si + (Si+1

� Si)
t�t

i

t
i+1�t

i

if t 2 [ti, ti+1

)

S
1

if t < t
1

SN if t � tN

(4.3)

e_bias is often used to model electric potentials across membranes.

Table 4.11: Configuration for e_bias
name description
E_applied Applied electric field in kcal/mol/Å/e [List of 3 Energy/Length/ElectronCharge]
schedule.time Times at which scale factors are specified [List of Times]
schedule.value Scale factors to apply at corresponding times. Same length as schedule.time list [List of

Scalars]

4.6.4 energy_groups

Periodically writes energy to the output file p, broken down across particles by energy group (given by the
grp_energygrp particle property) and across potential energy terms by each term’s Hamiltonian category. The
energy group of a particle is determined by the structure file. The category of a potential energy term is a fixed string
identifier assigned to that kind of term (for example, stretch terms are in the stretch category as documented in
Force terms).

Additionally, the 3⇥3 instantaneous pressure tensor and the nonbonded correction energy are printed if specified. The
nonbonded correction energy is the sum of the nonbonded tail correction and the electrostatic self-energy correction
(see Nonbonded tail corrections and Electrostatic self-energy correction).

app.plugin = {
list = [... key ...]
key = {
type = energy_groups
first = t

f

interval = t

i

name = p

options = [pressure_tensor corr_energy self_energy]
}

}

The output format is a sequence of ascii blocks of plain text. Each block begins with a line of the form

time=t en="
v

E_p="
p

E_k="
k

E_x="
x

P=P V=V

giving the chemical time, the raw potential, the potential, kinetic, and extended energies, as well as the pressure
and volume. The raw potential energy is potential energy without the electrostatic self-energy or the nonbonded tail
corrections.

What follows is then a break down of the raw potential energy by energy group. The kinetic energy is broken down
into the kinetic energy per group. The potential energies are broken down (by column) according to their interacting
pairs of groups and (by row) their Hamiltonian category. This output takes the form of a table, where the columns
are the energy of interaction between the particles of the different energy groups and the rows are the categories of
interaction types. Summing the elements of this table vertically and horizontally gives the total, uncorrected energy
of the system (addtional energy corrections arise from nonbonded interactions). Vertical subtotals (the total energy of
interaction between two energy groups) and horizontal subtotals (the total interaction energy for all terms of this sort)
are also included in the output.

30 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 4.12: Configuration for energy_groups
name description
first First time for this action. [Time]
interval Time between actions. [Time]
name The output file name. [String]
options Whether to print pressure tensor (pressure_tensor), the correlation energy (corr_energy), and/or the

self energy (self_energy) [List of strings]

4.6.5 compute_forces

The compute_forces plugin Writes a per-particle listing of forces to an output trajectory frameset p. It is primarily
useful for diagnostics.

app.plugin = {
list = [... key ...]
key = {
type = compute_forces
first = t

f

interval = t

i

name = p

mode = m

}
}

Table 4.13: Configuration for compute_forces
name description
first First time for this action. [Time]
interval Time between actions. [Time]
name The directory name of the trajectory frameset. [String]
mode append‘‘|‘‘noclobber‘‘|‘‘clobber, same as Configuration for trajectory [String]

4.6.6 eneseq

The eneseq plugin Writes energy, temperatures, pressures, and other summary data to an output file. Configuration
information is given in:

app.plugin = {
list = [... key ...]
key = {
type = eneseq
first = t

f

interval = t

i

sync_io = b

s

name = p
}

}

The energy is broken down into components and printed in columns of the eneseq file indexed by simulation time
(column time):

• conserved: The sum of potential, kinetic, and extended system energy (E = Ek + Ep + Ex), usually (it is
possible that there are additional “internal energy terms” added to the conserved quantity, but currently this only
arises in the case of some polarization schemes). For many integration methods, this quantity is asymptotically

4.6. Configuring the built-in plugins 31

Desmond Users Guide, Release 3.4.0 / 0.7.2

conserved as the simulation timestep goes to 0 and serves as a check on the correctness of the trajectory (column
E).

• potential: The value of U(r) (column E_p).

• kinetic: The value of K(p) =
P

i k~pik2/(2mi) (column E_k).

• extended: The energy associated with the extended variables of the dynamical system being integrated (column
E_x).

• center of mass: The value of k
P

i ~pik
2 / (2

P
i mi), which is the center of mass kinetic energy of the entire

system (column E_c). To the extent that the system forces violate Newton’s third law, and no steps are taken to
periodically remove center of mass motion, this quantity can grow over time.

• force correction: The value of ��2t
P

i k~fik2/(8mi), where ~fi is the force on particle i. Because its addition
to the energy gives an exactly (up to arithmetic) conserved quantity in systems where the potential is purely
harmonic integrated with velocity Verlet, this quantity is sometimes of technical interest (column E_f).

The eneseq plugin also reports pressure P, volume V and temperature T, as well as a temperature for each temperature
group identified in the structure file T_N.

The header of the eneseq, excerpted with a few columns below, gives the number of particles N_atoms, the number
of degrees of freedom N_dof, the total charge q_i and squared charge q_i, together with other sometimes pertinent
information.

5dhfr production parameters
Simulation started on Wed May 19 15:36:52 2010

sum_i q_i = -10.999998, sum_i q_i^2 = 7582.727781
N_atoms = 23558
N dof = 70674 (70674)
n_pressure_grp = 23558
n_frozen_atoms = 0

0:time (ps) 1:E (kcal/mol) 2:E_p (kcal/mol) 3:E_k (kcal/mol) ...
0.000 -7.24497189e+04 -7.24497189e+04 0.00000000e+00 ...
0.050 -7.39533259e+04 -8.30207059e+04 9.06738003e+03 ...

Note: Not all integration schemes have a conserved energy. Details are discussed in Dynamics.

Note: When performing initial velocity thermalization, place this plugin before the eneseq plugin on the list of
plugin names.

Table 4.14: Configuration for eneseq
name description
first First time for this action. [Time]
interval Time between actions. [Time]
name The output file name. [String]

4.6.7 maeff_output

The maeff_output plugin writes a structure file in the deprecated Maestro file format using current simulation
coordinates. It preserves non-coordinate information from the structure file. Configuration information is given in:

32 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

app.plugin = {
list = [... key ...]
key = {
type = maeff_output
first = t

f

interval = t

i

name = p

write_last_step = b

1

periodicfix = b

p

}
}

Table 4.15: Configuration for maeff_output
name description
first First time for this action. [Time]
interval Time between actions. [Time]
name The output file name. [String]
write_last_step Whether to write a structure file at the last step. [Boolean]
periodicfix Whether to wrap atom positions across periodic boundaries to minimize bond lengths.

[Boolean]

4.6.8 posre_schedule

The posre_schedule plugin scales the strength of position restraints according to a time schedule. It is useful for
slowly turning off position restraints during a simulation. The following Example shows the configuration:

app.plugin = {
list = [... key ...]
key = {
type = posre_schedule
schedule = {

time = [t

1

t

2

... t

N

]
value = [S

1

S

2

... S

N

]
}

}
}

Table 4.16: Configuration for posreschedule
name description
time Times at which scale factors are specified. [List of Times]
value (must be same Scale factor to apply to position restraints. Required. length as time list) [List of Scalars]

The scale factor S used at time t is given by piecewise linear interpolation as in Equation (4.3).

For example, if a schedule has time points [1 10] and values [1.0 0.0], then the scale factor will be 1.0 for
times before 1 ps, 0.0 for times after 10 ps, and in between, the scale factor will decrease linearly.

4.6.9 pprofile

The pprofile plugin computes pressure profiles, which gives the surface tension in a molecular system as a function
of the z coordinate. Pressure profile analysis can give insight into the role of the lipid environment on embedded
proteins. Configuration of the pprofile plugin is shown in the Example.

4.6. Configuring the built-in plugins 33

Desmond Users Guide, Release 3.4.0 / 0.7.2

app.plugin = {
list = [... key ...]
key = {
type = pprofile
first = t

f

interval = t

i

eval_interval = t

e

nslabs =
N

name = p

include = [...] # optional
exclude = [...] # optional

}
}

Table 4.17: Configuration for pprofile
name description
first first output time [Time]
interval interval between outputs [Time]
eval_interval time interval between virial calculations [Time]
nslabs number of simulation cell partitions [Integer]
name frameset output directory [String]
include if present, include only the given force terms in the virial calculation [List of strings]
exclude if present, do not include the given force terms in the virial calculation; it is an error to

specify both include and exclude in the same pprofile instance [List of strings]

At each application, the pprofile plugin divides the simulation cell into a number of slabs parallel to the z axis.
Contributions to the pressure from particles located within each slab are computed, where each particle’s position is
wrapped to the central global cell. These values are output to a frameset.

The time between pressure profile calculations can be specified; in addition, the time between profile output can be
given separately, in which case the average of the values collected over the preceeding interval will be written.

Output frameset contains the following fields:

• FORMAT: the string “PPROFILE_V1”.

• CHEMICALTIME: the simulation time at which the data was written.

• NSLABS: the number N of partitions of the simulation cell.

• NEVALS: the number of virial evaluations that have been averaged to compute the data in the frame.

• UNITCELL: the global cell dimensions at the current time.

• CORRECTION: the x, y, and z diagonal components of the long range correction to the pressure from the
nonbonded tail correction (see Nonbonded tail corrections).

• kinetic: 3N doubles listing the x, y, and z diagonal components of the pressure for each slab due to particle
kinetic energy.

• C: 3N doubles listing the x, y, and z diagonal components of the pressure for each slab due to interactions in
Hamiltonian category C.

• total: 3N doubles listing the x, y, and z diagonal components of the pressure for each slab (totaled over
categories and kinetic).

Some force components, especially far_terms, are expensive to compute and vary slowly with time. One can im-
prove the efficiency of the pressure profile calculation by instantiating the pprofile plugin twice, with one instance
evaluating the non-far_terms components relatively frequently, and the other instance evaluating the far_terms
components relatively infrequently. For example:

34 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

app.plugin = {
list = [... slow fast ...]

slow = {
type = pprofile
first = 0
interval = 10
eval_interval = 0.2
nslabs = 8
name = pp-slow.dtr
include = [far_terms]

}

fast = { # fast
type = pprofile
first = 0
interval = 10
eval_interval = 0.01
nslabs = 8
name = pp-fast.dtr
exclude = [far_terms]

}
}

4.6.10 randomize_velocities

The randomize_velocities plugin periodically thermalizes velocities. Configuration is shown in:

app.plugin = {
list = [... key ...]
key = {
type = randomize_velocities
first = t

f

interval = t

i

seed = s

temperature = T

}
}

You can use this plugin to perform initial velocity randomization, by setting the value of first to zero, interval
to infinity, and temperature to the desired temperature. The plugin can also serve as a rough implementation of an
Andersen thermostat.

Table 4.18: Configuration for randomize_velocities
name description
first First time for this action. [Time]
interval Time between actions. [Time]
seed Seed for the random number generator. [Integer]
temperature The target temperature. [temperature]

4.6.11 remove_com_motion

The remove_com_motion plugin periodically removes net center of mess motion from the system velocities.
Configuration is shown in:

4.6. Configuring the built-in plugins 35

Desmond Users Guide, Release 3.4.0 / 0.7.2

app.plugin = {
list = [... key ...]
key = {
type = remove_com_motion
first = t

f

interval = t

i

}
}

Although most systems in their exact mathematics have no net center of mass motion, numerical implementations
might have nonzero motion. Most dynamical systems do not explicitly remove center of mass motion. This plugin
will periodically subtract off any net center of mass motion from the system.

Table 4.19: Configuration for re-
move_com_motion

name description
first First time for this action. [Time]
interval Time between actions. [Time]

4.6.12 trajectory

The trajectory plugin writes trajectory data using current simulation coordinates. It is configured as shown in the
Synopsis.

app.plugin = {
list = [... key ...]
key = {
type = trajectory
first = t

f

interval = t

i

name = d

write_velocity = b

v

mode = m

periodicfix = b

p

center = [c

1

... c

m

]
glue = [g

1

... g

n

]
write_last_step = b

l

}
}

Data is written as a set of frames in the directory, d, (following output file naming conventions; see Naming output
files), with individual frames written as files within that directory as described in Trajectory Format and Analysis.

The periodicfix, center, and glue options together describe how simulation coordinates should be prepro-
cessed before being written to the frameset. If periodicfix is turned off and no centering or glue is applied, all
atom coordinates are wrapped to the central unit cell, irrespective of bonds between atoms. This makes visualization
and trajectory analysis difficult. The periodicfix option instructs Desmond to re-wrap atoms so that no bond is
longer than half the length of of any global cell vector. Note that the bonds considered are those of the bond section
of the structure file, not the stretch_harm or any other force field terms. The glue option extends the list of
bonds supplied by the structure file with fictitious bonds that can improve the wrapping behavior. For example, if a
protein is composed of four disconnected monomers that nevertheless stay non-covalently bound to each other during
a simulation, it will be desirable to keep them together during wrapping. Without glue, however, if one monomer
strays close to the edge of the periodic cell, it will be wrapped to the other side while the other three monomers remain
where they are. To correct this behavior, one could use a glue configuration of the form glue=[[n1 n2 n3 n4]

36 Chapter 4. Running Desmond

Desmond Users Guide, Release 3.4.0 / 0.7.2

], where each n is from a different monomer. This would create fictitious bonds n1�n2, n1�n3, and n1�n4. Note
that it is important to choose particles for the glue that are as close as possible to each other in the input structure.

After the bond fixing step, the centering step is performed if any particles in the center configuration have been
specified. A single translation is applied to the entire system in order to bring the geometric center of the center atoms
to the origin.

The last transformation applied to the coordinates, assuming periodicfix is enabled, is to take connected sets of
atoms and translate each set as a group so that their geometric centers are located within the central unit cell. Here,
again, the definition of connected use both the input structure bonds as well as bonds supplied by glue.

Table 4.20: Configuration for trajectory
name description
first First time for this action. [Time]
interval Time between actions. [Time]
name The output directory name for the frameset. [String]
write_velocity Whether to include velocity information in output frames. [Boolean]
mode Open mode for the frameset: “append”, open for append; “noclobber”, open for writing,

fails if the directory exists; and “clobber”, open for writing, recursively deleting the
directory if it exits.

periodicfix Whether to wrap atom positions across periodic boundaries to minimize bond lengths.
[Boolean]

center Set of atoms specified by global ids (GIDs) whose coordinates should be used to center
trajectory frames. Requires periodicfix to be true. [List]

glue A list whose elements are lists of GIDs; each GID list is to be kept together during
centering and periodicfix application. Requires periodicfix to be true. [List of
lists]

write_last_step Whether to write a frame at the last step. [Boolean]

4.6.13 status

The status plugin periodically outputs to the log the simulation speed in terms of simulation time per unit of wall
clock time, and at the end of the simulation writes a cumulative speed. It’s configured as shown:

app.plugin = {
list = [... key ...]
key = {
type = status
first = t

f

interval = t

i

verbose = b

v

}
}

Table 4.21: Configuration for status
name description
first First time for this action. [Time]
interval Time between actions. [Time]
verbose Print out running cumulative speed information. Optional—by default, false. [Boolean]

4.6. Configuring the built-in plugins 37

Desmond Users Guide, Release 3.4.0 / 0.7.2

4.7 Configuring optional sections

Certain sections of the configuration can be omitted entirely. One such section is the profile section, which can
sometimes be useful for debugging and tuning performance.

4.7.1 profile

Each Desmond application can generate a runtime profile of time spent in various activities, output at the end of the
run, thus helping you to tune your simulation for best performance. These activities usually correspond to functions,
families of related functions, or blocks of code dedicated to a particular task.

This feature is primarily to assist developers; the activities are described by short names that are somewhat self-
explanatory.

The profile section is optional. If omitted, no profile is generated. Profile configuration is given in:

profile = {
show_tree = b

t

show_flat = b

f

min_calls = c

min

max_depth = d

max

}

Two profile views can be output: a tree view and a flat view, both analogous to the output of the well-known profiler
gprof.

The tree view gives times for various activities in a hierarchy, since activities can contain sub-activities (or children).
The accumulated time for each activity is the total time spent in that activity and its children. An activity can occur in
more than one place in the hierarchy.

The flat view removes the hierarchy and lists one line per activity, accumulating times spent in an activity which may
be the result of different parent activities. Additionally, the time printed for the flat view is given as the difference
between the time spent in that activity and the total time spent in the children of that activity, and hence the total time
in the flat view should be roughly equal to the total runtime of the application, minus some startup and shutdown
overhead.

The Boolean variables bt and bf control which views are presented. By default, both are true.

To control the complexity of the output, users can pick a maximum depth of the tree view, d
max

, and a minimum
number of occurrences, c

min

, below which the activity is not reported. (For example, most initialization activities
occur just once, so c

min

= 2 suppresses them.)

When profiling a simulation run in parallel, profile prints the profile for process 0. If the simulation is sufficiently
load-balanced, this is representative of the whole computation.

Table 4.22: Configuration for profile
name description
max_depth Maximum depth of the tree view. Optional—by default infinite [Integer]
min_calls Minimum number of occurrences to report. Optional—by default 1 [Integer]
show_tree Whether to display the tree view. Optional—by default, true. [Boolean]
show_flat Whether to display the flat view. Optional—by default, true. [Boolean]

38 Chapter 4. Running Desmond

CHAPTER

FIVE

THE GLOBAL CELL

This chapter discusses Desmond’s parallelization strategies and describes how to configure the global cell.

5.1 Parallelization

As described in Space, the global cell is Desmond’s representation of the space occupied by the chemical system. It
fills an infinite volume by tiling the space periodically with repetitions of the global cell.

To parallelize the computations, Desmond decomposes the work spatially. Therefore, configuring the global cell
appropriately requires an understanding of several of Desmond’s parallelization mechanisms.

The global cell is divided into regular three-dimensional volumes called boxes. Each box is assigned to a single
Desmond process, which maintains the information describing each particle located within that box.

Note: For an efficiently parallelized simulation in Desmond, we recommend no more than one process (one box) per
processor.

The box encompassing the volume of space in which a particle is located is called its home box. The home box
determines which process owns the particle—that is, maintains its mass, charge, position, velocity, and other associated
data.

Interactions between particles can cross box boundaries, of course; communication across box boundaries can be
necessary for other reasons, too. This means that communication must occur between processes. Interactions that
require communication between processes have a strong effect on how well your simulation performs in parallel—how
much it can take advantage of the multiple processes available to it. Communication between processes is necessary
to resolve two common situations:

• A particle near the face of a box is bonded with a particle in a neighboring box, or close enough to it that the
electrostatic or van der Waals forces between them are computed explicitly—that is, within the cutoff radius
(see Space).

• A particle that was not originally inside the cutoff radius drifts inside it from one timestep to the next.

To ensure that a given process can access all the data it needs to compute such interactions, Desmond copies data for
any particle that’s outside the home box, but within a given distance of its edge. Such copies are called clones, and
this distance is the clone radius.

For example, if particle A near the edge of its home box A participates in a bond with particle B just outside home box
A, then process A has access to data associated with both particles: A, which it owns; and B, which it clones. Because
each face of the global cell wraps to its opposite, particles are also cloned when they are close enough to particles
on the opposite face of the global cell, as well as the edges of their home box. If you’re running Desmond serially
(a single process), the home box equals the global cell, and this is the only manifestation of clones in the simulation.

39

Desmond Users Guide, Release 3.4.0 / 0.7.2

Figure 5.1: An 2D illustration with nine particles, labeled A through I, in a 2x1 global cell partitioned between two
processes into two homeboxes. Below, per process views of space with copies of remote and local particles in each
processes clone buffer. The interaction between A and B is computed on the process containing their midpoint.

40 Chapter 5. The Global Cell

Desmond Users Guide, Release 3.4.0 / 0.7.2

In the example illustrated in the 2D illustration, either process could, in principle, compute the AB interaction. In
Desmond, the process that does so is the one whose home box contains the midpoint between the two particles. After
computing forces on the clone, it sends the result to process B, which sums A’s result with its own before computing
B’s new position and velocity.

More generally, the process that computes an interaction of a group particles is the one whose home box contains the
(unweighted) midpoint of that group.

At the end of a timestep, after new particle positions are computed, some particles will have moved out of their
previous home boxes into neighboring ones. Migration is the process by which particles are reassigned to the processes
responsible for their new home boxes.

You can configure Desmond to migrate particles every time it updates particle positions—at each inner timestep—a
setting called eager migration. However, during migration, processes need to exchange a lot of data, so it’s desirable
to minimize its occurrence.

Lazy migration lets you avoid some communication overhead by reassigning particles to home boxes less often than
every time particle positions are updated. Position updates can then occur without migration. (The migration schedule
is described in Migration.)

But if particles aren’t reassigned to new processes every time positions are updated, then inevitably, between migration
events, some particles will approach each other and drift within the cutoff radius. Then the near interactions between
the pair will have to be calculated.

How often this happens depends on the size of the cutoff radius, and how volatile the simulation is: the faster particles
move, the more often pairs of particles will end up in separate home boxes.

For efficiency, Desmond maintains a list—the pairlist—of particle pairs that might need to be used to evaluate the
effects of nonbonded near interactions. The pairlist must contain particle pairs that are now outside the cutoff radius,
but might approach each other closely enough to interact in upcoming timesteps, before the next migration.

Instead of the cutoff radius, therefore, the pairlist contains particle pairs separated by less than the lazy radius. The
lazy radius sets the maximum distance of all pairs of particles included in the pairlist at the time of its assembly (the
most recent migration).

The lazy radius is determined implicitly from the margin parameter, �, by R
lazy

= R
cut

+�. If no particle has moved
a distance more than �/2 since the last update, the pairlist still contains all pairs of particles within R

cut

of each other.
In typical simulations it is highly unlikely that particles move faster than 50Å/ps (by a probabilistic argument involving
the number and masses of all particles, based on the Maxwell-Boltzmann distribution), hence � � 50ti, where ti
is the interval between migrations, is sufficient to ensure correct calculations. Because R

lazy

� R
cut

, additional
work (roughly of order O(R2

cut

�)) is needed to iterate over uninteresting pairs for near interactions, so, for good
performance, you must strike a balance. A typical value used is � = 0.625Å with a pairlist update every 12 fs, though
this can miss pairs occasionally. The pairlist is updated at each migration event.

The cutoff radius is a therefore key factor in setting the correct lazy radius, and the lazy radius in turn is a key factor
in setting the clone radius, in particular. For correct pairlist assembly R

lazy

 R
clone

.

To determine which process computes an interaction between two particles, Desmond uses the midpoint method: it’s
the process whose home box contains the midpoint between the two. If the midpoint of a pair of particles within the
lazy radius lies in a particular home box, then in order for both particles (owned and cloned) to be accessible to the
appropriate process, the clone radius must be at least half of the lazy radius. While the clone radius is set as part of
configuring the global cell, the cutoff and lazy radii are specified in the force section of the configuration; for details,
see Calculating Force and Energy.

Note: When migrating eagerly (ti = 0), one can set � = 0, R
cut

= 2 ·R
clone

.

Note: Ordinarily, near interactions restrict the size of the clone radius more than any other consideration. For all
restrictions on the size of the clone radius, see Appendix: Clone Radius Restrictions. For setting these three radii, the

5.1. Parallelization 41

Desmond Users Guide, Release 3.4.0 / 0.7.2

following rule of thumb is useful for most simulations:

1. Choose the cutoff radius R
cut

.

2. Choose the margin �.

3. Set the clone radius R
clone

to half of R
lazy

= R
cut

+�.

5.2 Configuration

Configuring the global cell involves setting:

• the reference time, and

• the clone radius.

In addition, if you’re running Desmond in parallel, you can also:

• specify how you wish to partition the global cell among the processes, and

• provide an estimate of average particle density per homebox.

These parameters are discussed below. The global cell’s section in the configuration file appears as shown in the
following Synopsis, Configuring the global cell:

global_cell = {
reference_time = t

r

r_clone = R

clone

partition = [n

1

n

2

n

3

]
margin = �
est_pdens = d

}

The global cell is centered at the origin, with edge vectors given by the lattice vectors, ~a, ~b, ~c, read from the structure
file. This is described Global cell.

The global cell is responsible for the time coordinate, t, initialized to tr. The integers n
1

, n
2

, n
3

specify how the
global cell is partitioned among processes, with each process assigned a home box:

• n
1

is the number of processes along the X axis of the global cell.

• n
2

is the number of processes along the Y axis of the global cell.

• n
3

is the number of processes along the Z axis of the global cell.

By definition, then, n
1

n
2

n
3

is the total number of Desmond processes.

Note: The number of processes along each axis may be constrained by the requirements of the nonbonded terms if a
discrete Fourier transform is used to implement Ewald summation (see Nonbonded far interactions); if not, it outputs
an error message and halts.

Assuming a homogeneous particle density throughout the global cell, it’s most efficient if the relative number of boxes
along each axis is as close as possible to the relative proportions of the global cell, so that each box is as close as
possible to a cube. This minimizes the surface-to-volume ratio of each box. A surface represents a boundary between
boxes, so a minimal surface minimizes interprocessor communication. For example, for a relatively homogeneous
system with dimensions 90 Å ⇥ 90 Å ⇥ 50 Å running on 32 processes, a partition of n

1

= 4, n
2

= 4, n
3

= 2 is most
efficient.

42 Chapter 5. The Global Cell

Desmond Users Guide, Release 3.4.0 / 0.7.2

If you’d like Desmond to set the number of processes assigned to a given axis, then instead of setting it explicitly set
the corresponding parameter to zero. To allow Desmond to determine how to partition the global cell along all three
axes, therefore, set n

1

, n
2

, n
3

to 0, 0, 0. Desmond can nearly always determine an efficient global cell partitioning.

When the global cell isn’t a rectangular volume, Desmond issues a warning. For example, a hexagonal prism has X
and Y vectors of the same length, but the Z axis could be any length. In this case, if you set n

1

, n
2

, n
3

to 0, 0, 0,
Desmond generates a partition, but prints: Automatic partitioning is untested for global cells with off-diagonal boxes.
If you see this warning, check the partitioning to ensure that it meets the criteria discussed above.

The margin, �, is a user provided upper bound on the maximum distance any particle will move between migration
steps events. Certain data structures within Desmond (such as pairlists) will rely on � to be faithful.

To tune various internal parameters for best performance, Desmond needs an estimate of particle density est_pdens
per home box. By default, Desmond sets d by computing an average density from the structure file. For most simu-
lations, it’s safe to omit est_pdens, in which case Desmond uses its default. However, if the density of particles in
the system is highly inhomogeneous, set d to:

• the maximum number of particles that could exist in a single home box,

• multiplied by the number of home boxes,

• divided by the volume of the global cell.

Configuring the global cell is summarized in:

Table 5.1: Configuration for global cell
name description
reference_time Start time for the simulation. [Time]
r_clone Radius of particle / home box visibility. [Length > 0]
margin A user-promised maximum displacement of any particle between migration events.

[Length > 0]
partition Number of process subdivisions along each axis. Optional; by default, 0,0,0—meaning

that Desmond sets them. [List of three Integers]
est_pdens Average number of particles per unit volume. Optional; by default, computed from the

structure file. [1/Length3 > 0]

5.3 Migration

Migration is configured as shown in:

migration = {
first = t

f

interval = t

i

}

Desmond partitions particles across processors by a spatial decomposition. As such, when particle positions change,
home box ownership must be recalculated and interprocess communication must occur to make each process aware of
new particles in its view. This is called migration.

Since it is a significant computational and communicative task, which need not be performed at every position update,
this task is scheduled independently of position changes. The parameters tf and ti set the time for the first migration
update and the interval of time between later migration update.

5.3. Migration 43

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 5.2: Configuration for migrate
name description
first Approximate amount of time of the first migration. [Time >= 0]
interval Approximate amount of time between subsequent migrations. [Time >= 0]

44 Chapter 5. The Global Cell

CHAPTER

SIX

PREPARING A STRUCTURE FILE

Starting with version 2.4, Desmond switched the format of its structure file from Maestro to a new format called
DMS. The DESRES Molecular Structure (DMS) file format is a set of schemas for storing coordinate and forcefield
information about a single biomolecular system in an SQLite-format database. SQLite[sqlite] is a in-process library
that implements a self-contained, serverless, zero-configuration, transactional SQL database engine. The code for
SQLite is in the public domain and is thus free for use for any purpose, commercial or private.

Note: Legacy Applications: Preparing a Maestro structure file provides additional information on the format and
contents of MAE files.

Note: As of 3.3.3.0, Desmond can read the old MAE format files. An optional configuration parameter boot.type
(which defaults to dms), can be set to mae, which directs Desmond to read the boot.file in MAE format.

SQLite reads and writes directly to ordinary disk files. A complete SQLite database with multiple tables, indices, trig-
gers, and views, is contained in a single disk file. The database file format is cross-platform—it is portable between 32-
and 64-bit systems, between big- and little-endian architectures, and between Unix and Windows operating systems.

All data in a DMS file lives in a flat list of two-dimensional tables. Each table has a unique name. Columns in the
tables have a name, a datatype, and several other attributes, most importantly, whether or not the column is the primary
key for the table. Rows in the tables hold a value for each of the columns. Table names, column names, and datatypes
are case-preserving, but case-insensitive: thus “pArTiCLE” is the same table as “particle”, and “NAME” is the same
column as “name”.

For more about the DMS format, see Appendix: DMS file format.

There are two main ways to prepare a DMS file for Desmond. The first method is to convert an existing MAE file and
all its forcefield data to DMS using the mae2dms tool described below. The second method is to construct a DMS
file containing just the minimal set of molecular structure information, and build a forcefield for that structure using
Viparr.

6.1 Converting a Desmond 2.0/2.2 structure file

If you already have an MAE file, prepared either with viparr.py from Desmond 2.0/2.2 or with Schrodinger’s
Maestro tool, you can convert to to DMS using mae2dms. mae2dms preserves all forcefield information, including
bonded terms, vdw tables energy and temperature groups, constraints, cmap tables, and position restraints. Force field
terms that were present and supported in Desmond 2.2 should be properly handled by mae2dms; any forcefield type
that was not present in Desmond 2.2 is not likely to be recognized and converted.

45

Desmond Users Guide, Release 3.4.0 / 0.7.2

Alchemical MAE files require special attention. Before running mae2dms, run the prep_alchemical_mae pro-
gram on the MAE file. This program interprets the fepio_fep sections of the MAE file and converts the MAE file
to a form more amenable to conversion to DMS format.

Once you have successfully converted a forcefield-containing MAE file to DMS, you are ready to begin equilibration
and minimization.

6.2 Preparing a Desmond DMS file

Preparing a DMS file from scratch can be divided into four main steps. First a DMS file must be constructed that
contains all the atoms and bonds in the structure, including ions, waters, protons, etc., along with a specification of
the global cell. Second, this DMS file serves as the input to Viparr, which adds forcefield information. Third, the
build_constraints program is used to constrain bonds between hydrogen and heavy atoms. Finally, additional
atom properties may be specified in order to perform specialized tasks such as energy group analysis or biasing force
application.

6.2.1 Constructing an input DMS file for Viparr

The simplest method for preparing an input DMS file for Viparr is to use VMD. VMD provides a number of tools for
building structures in psf | pdb format. Once you have a molecule in VMD containing the full set of atoms and
bonds, you can write out the structure in DMS format using the dms file plugin.

Alternatively, a DMS file may be produced by any tool that can write to the SQLite file format. The input DMS file
for Viparr must contain particle, bond, and global_cell tables. The particle table must contain at a
minimum the anum column for atomic number; resid, resname, chain, and segid columns will also be used
if provided to distinguish residues from each other. See Appendix Appendix: DMS file format for the specification of
these columns and tables.

Viparr uses atomic numbers and bond structure (graph isomorphism) to match residues to templates. Thus if you have
nonstandard atom or residue PDB names, you do not need to modify them, and you do not need to be concerned about
the atom and residue names used in the force field. You can, however, modify atom and residue names for your own
purposes, if you wish. In particular, Viparr identifies the N- and C-terminus versions of the residues correctly, as well
as protonated and deprotonated versions of a residue, even if you do not identify them as such.

6.2.2 Running Viparr

Once you have a complete structure in DMS format, use Viparr to add forcefield information. The command line for
running Viparr is:

$ viparr input.dms output.dms [-d ffdir]* [-f ffname]*

Here, ffdir is path to a forcefield directory, and ffname is the the subdirectory of $VIPARR_FFDIR containing a
forcefield directory. The available force fields are listed in Force fields built into Viparr.

Multiple forcefields can be provided; this allows one, for example, to use either tip3p or tip4p with the charmm27
forcefield by specifying -f charmm27 -f tip3p or -f charmm27 -f tip4p, respectively, as command
line options. When multiple force fields match a given residue in the structure, the first forcefield takes precedence.
All specified force fields must have consistent van der Waals combining rules; water models can be used with any
force field. When a bond exists between two residues, both residues must be matched by exactly one of the specified
force fields.

46 Chapter 6. Preparing a structure file

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 6.1: Force fields built into Viparr
Force field name Description

amber03 Amber
amber94 Amber
amber96 Amber
amber99 Amber
amber99SB Amber
amber99SB-ILDN Amber with modifications
charmm22nocmap CHARMM 22 without CMAP terms
charmm22star CHARMM 22 with modifications
charmm27 CHARMM 27
charmm32 CHARMM 32
charmm36_lipids CHARMM 36 lipids
charmm36_nucleicacids CHARMM 36 nucleic acids
oplsaa_impact_2001 OPLS-AA 2001
oplsaa_impact_2005 OPLS-AA 2005
spc Water model
spce Water model
tip3p Water model
tip3p_charmm Water model
tip4p Water model
tip4pew Water model
tip5p Water model

6.2.3 Adding constraints

Like other force field terms, constraint terms must be specified explicitly; in this way, Desmond is unlike other molecu-
lar dynamics applications that infer the existence of constraints based on molecular topology and configuration options.
You add constraints to a structure file using the build_constraints program provided with Desmond.

Note: Viparr does not update the constraint tables in a dms file, so if you use Viparr to update a structure file that
included constraints, you’ll need to add the constraints again.

build_constraints examines a structure file for atom groups of the following forms:

• AHn: An atom other than hydrogen, bonded to n hydrogen atoms.

• HOH: An oxygen atom bonded to two hydrogen atoms and no other atoms.

Desmond’s implementation of constraints is described in Constraints.

The atom identities are determined from the atomic number of each atom, while the bonds are determined from the
bond table. build_constraints then constructs a new constraints table (replacing any existing table by
that name) and populates it with the detected constraint groups.

By default, the stretch and angle force terms corresponding to groups that are constrained by the constraint groups are
also modified: the constrained column of stretch_harm and angle_harm records is set to 1. This is done
because evaluating forces on constrained groups is wasted effort: the constrained lengths and angles are not allowed to
change. However, the constrained bonds and angles cannot be completely removed from the structure file, because the
minimize application does not currently evaluate constraint terms, but instead evaluates the forces in the constrained
bond and angle terms.

The mdsim application, on the other hand, ignores the constrained bond and angle terms, and prints a message at
startup indicating how many terms have been ignored.

6.2. Preparing a Desmond DMS file 47

Desmond Users Guide, Release 3.4.0 / 0.7.2

6.2.4 Running the build_constraints program

To run build_constraints:

$ build_constraints [options] input.dms output.dms

The options are:

• -k: Leave constrained bonds and angle terms unmodified rather than setting their constrained column to 1.

• -x C: Don’t build any constraints of type C.

48 Chapter 6. Preparing a structure file

CHAPTER

SEVEN

CALCULATING FORCE AND ENERGY

This chapter provides a high-level overview of configuring force fields; then discusses the computations involved in,
and how to configure, the various interactions. It also describes additional off-atom interaction sites.

7.1 Configuring force fields

Force fields are configured as shown in:

force = {
bonded = {
exclude = [...] # optional
include = [...] # optional

}
virtual = {
exclude = [...] # optional
include = [...] # optional

}
constraint = {
exclude = [...] # optional
include = [...] # optional
...

}
polar = {
exclude = [...] # optional
include = [...] # optional
...

}
nonbonded = { ... } # vdW and es
term = { ... } # force plugins
ignore_com_dofs = b

i

}

Many molecular force fields approximate the total potential energy of a chemical system as a sum of the form:

U = U
bonded

+ U
vdW

+ U
es

(7.1)

These are the bonded, van der Waals, and electrostatic terms, respectively.

The bonded term arises from the covalent bond structure of the molecules. This term includes stretch terms involving
two particles connected by a bond, angle terms involving three particles connected by two bonds, and dihedral (torsion)
terms involving four particles connected by a chain of three bonds.

During startup, Desmond scans the records in the bond_term table and creates a corresponding bonded force
term. The names of these terms are printed to the log by Desmond during startup. The bonded.include and

49

Desmond Users Guide, Release 3.4.0 / 0.7.2

bonded.exclude configurations allow you to override the set of bonded terms that will be created. These en-
tries are lists, and are empty by default. A value of “*” in bonded.exclude will turn off all bonded force terms.
Putting the name of a specific term in bonded.exclude will turn off just that term. Putting the name of the term
in bonded.include will override bonded.exclude and ensure that the force term gets evaluated. Similarly
for the include and exclude lists in virtual (records from the virtual_term table) and constraint
(records from the constraint_term table), as well as polar (records from the polar_term table). The van
der Waals and electrostatic terms are known as nonbonded terms because they include all pairs of particles in the sys-
tem that are not bonded. More precisely, they include all pair interactions that are not explicitly excluded by the force
field. Many force fields also define a scaling for the 14 (that is, atoms separated by three bonds) van der Waals and
electrostatic interactions, called partial 14 interactions. This is a scaling to reduce the strength of these interactions
since they are correlated with the bonded terms. In Desmond, these 14 interactions are implemented in the same way
as bonded interactions and it is simplest to think of them in this way. (For example, their interactions are not subject
to a distance cutoff, and they are treated as bonded terms in multiple timestepping integration.)

Equation (7.1) can now be refined:

U = U
bonded

+

X

(i,j)2N

U
vdW

+

X

(i,j)2N

qiqjerfc(rij/
p
2�)/rij

+

X

(i,j)

qiqjerf(rij/
p
2�)/rij �

X

(i,j)/2N

qiqjerf(rij/
p
2�)/rij

where N is the set of pairs that are non-excluded pairs. The term U
bonded

includes the partial-14 interactions. The
second term is the van der Waals term and the remaining three terms comprise the electrostatic term. The near
nonbonded terms (second term) and (third term) for pairs in N are calculated together in the same cutoff-limited
compute kernel in Desmond and is called the nonbonded near calculation. The far nonbonded term (fourth term) is
computed by means of the PME or k-GSE algorithms. Finally, the term (fifth term) represents the far exclusion, which
subtracts the far term contribution of excluded pairs.

Most molecular dynamics force fields have the property that the dynamics they produce has no net center of mass
translation. Hence, the degrees of freedom of the system are effectively reduced by 3. The flag ignore_com_dofs
causes 3 to be subtracted from any appropriate degree of freedom counters within Desmond (such counters are used
by some integrators and by some output diagnostics). Changing this flag would, for example, alter reported simula-
tion temperatures obtained by dividing kinetic energy by degrees of freedom. For large systems, its effects become
negligible.

Table 7.1: Configuration for force
name description
bonded.exclude bonded terms to turn off. Optional—by default, empty [List of names]
bonded.include bonded terms which must be turned on (overrides exclude). Optional—by default,

empty [List of names]
virtual.exclude virtual terms to turn off. Optional—by default, empty [List of names]
virtual.include virtual terms which must be turned on (overrides exclude). Optional—by default,

empty [List of names]
constraint.exclude constraint terms to turn off. Optional—by default, empty [List of names]
constraint.include constraint terms which must be turned on (overrides exclude). Optional—by

default, empty [List of names]
polar.exclude polarization terms to turn off. Optional—by default, empty [List of names]
polar.include polarization terms which must be turned on (overrides exclude). Optional—by

default, empty [List of names]
nonbonded configuration of the nonbonded forces. Can be set to none for no nonbonded

forces. [configuration]
term configuration of a set of special force terms provided typically by a general force

plugin. [configuration]
ignore_com_dofs A user assertion that, at least up to exact arithmetic, the dynamics do not have any

net center of mass motion. [Boolean]

50 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

7.1.1 Force terms

This section is a specification of force term plugins similar in layout to the application specific plugin section.

force.term = {
list = [... key ...]
key = {
type = type

... # term specific configuration options
}

}

Examples of such terms that we have seen so far are BiasingForce, described in Biasing Force and e_bias,
described in e_bias.

7.2 Bonded, pair, and excluded interactions

This section describes the built-in bonded term objects that can be used in a Desmond application, specified by records
in the bond_term table of the DMS file.

7.2.1 Stretch terms

The vibrational motion between two atoms (i, j) is represented by a harmonic potential as:

Vs(rij) = fc(rij � r
0

)

2

where fc is the bond force constant in units of Energy/Length2 and r
0

is the equilibrium bond distance. Terms in
stretch_harm are evaluated using this potential.

Table 7.2: Schema for the stretch_harm table
name type description

r0 FLOAT equilibrium separation (LENGTH)
fc FLOAT force constant (ENERGY / LENGTH2)
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
constrained INTEGER if nonzero, constrained; default 0

Stretch terms that overlap with constraints should have the constrained field set to 1. Applications that evaluate
constraint terms need not evaluate stretch_harm records that are marked as constrained.

These terms are in the stretch Hamiltonian category.

7.2.2 Angle terms

The angle vibration between three atoms (i, j, k) is evaluated as:

Va(✓ijk) = fc(✓ijk � ✓
0

)

2

where fc is the angle force constant in Energy/Radians2 and ✓
0

is the equilibrium angle in radians. Beware, the
explicit use of the ✓ijk angle will introduce discontinuities in the potential at ✓ijk = ±⇡. Terms in angle_harm are
evaluated using this potential.

7.2. Bonded, pair, and excluded interactions 51

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 7.3: Schema for the angle_harm table
name type description

theta0 FLOAT equilibrium angle (DEGREES)
fc FLOAT force constant (ENERGY / RADIAN2)
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
p2 INTEGER 3rd particle
constrained INTEGER constrained if nonzero; default 0

The p0 particle forms the vertex. Angle terms that overlap with constraints should have the constrained field set to 1.
Applications that evaluate constraint terms need not evaluate angle_harm records that are marked as constrained.

These terms are in the angle Hamiltonian category.

7.2.3 Proper dihedral terms

Desmond implements two functional forms for calculating proper and improper torsion potential terms. The first is:

Vt(�ijkl) = fc0 +
6X

n=1

fcn cos(n�ijkl � �
0

)

where fc0 . . . fc6 are dihedral angle force constants in units of Energy and �
0

is the equilibrium dihedral angle in
radians. The � angle is formed by the planes p0–p1–p2 and p1–p2–p3. Terms in dihedral_trig are handled by
this potential function.

Table 7.4: Schema for the dihedral_trig table.
name type description

phi0 FLOAT phase (DEGREES)
fc0 FLOAT order-0 force constant (ENERGY)
fc1 FLOAT order-1 force constant (ENERGY)
fc2 FLOAT order-2 force constant (ENERGY)
fc3 FLOAT order-3 force constant (ENERGY)
fc4 FLOAT order-4 force constant (ENERGY)
fc5 FLOAT order-5 force constant (ENERGY)
fc6 FLOAT order-6 force constant (ENERGY)
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
p2 INTEGER 3rd particle
p3 INTEGER 4th particle

These terms are in the dihedral Hamiltonian category.

7.2.4 Improper dihedral terms

The second dihedral functional form is:

Vt(�ijkl) = fc(�ijkl � �
0

)

2 (7.2)

where fc is the dihedral angle force constant in units of Energy/radians2 and �
0

is the equilibrium dihedral angle in
radians. The � angle is formed by the planes p0–p1–p2 and p1–p2–p3. Terms in improper_harm are handled by
this potential function.

52 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

The harmonic dihedral term given in Equation (7.2) can lead to accuracy issues if fc is too small, or if initial conditions
are poorly chosen due to a discontinuity in the definition of the first derivative with respect to i in �ijkl near �

0

± ⇡.

Table 7.5: Schema for the improper_harm table.
name type description

phi0 FLOAT equilibrium separation (DEGREES)
fc FLOAT force constant (ENERGY / DEGREE2)
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
p2 INTEGER 3rd particle
p3 INTEGER 4th particle

These terms are in the improper Hamiltonian category.

7.2.5 CMAP torsion terms

CMAP is a torsion-torsion cross-term that uses a tabulated energy correction. It is found in more recent versions of
the CHARMM forcefield. The potential function is given by:

Vc(�,) =
4X

n=1

4X

m=1

Cnm

✓
 � L

�

◆n�1

✓
�� �L
��

◆m�1

where Cnm are bi-cubic interpolation coefficients derived from the supplied energy table, � is the dihedral angle
formed by particles p0 . . . p3, and is the dihedral angle formed by particles p4 . . . p7. The grid spacings are also
derived from the supplied energy table. Terms in torsiontorsion_cmap are handled by this potential function.

The cmap tables for each term can be found in cmapN, where N is a unique integer identifier for a particular table
(multiple cmap terms in torsiontorsion_cmap can refer to a single cmapN block). The format of the cmap
tables consists of two torsion angles in degrees and an associated energy. cmap tables must begin with both torsion
angles equal to -180.0 and increase fastest in the second torsion angle. The grid spacing must be uniform within each
torsion coordinate, but can be different from the grid spacing in other torsion coordinates. More information can be
found in [Bro-2004].

Table 7.6: Schema for each of the tables holding the
2D cmap grids

name type description
phi FLOAT phi coordinate (DEGREES)
psi FLOAT psi coordinate (DEGREES)
energy FLOAT energy value (ENERGY)

The CHARMM27 forcefield uses six cmap tables, which have names cmap1, cmap2, ..., cmap6 in DMS.

7.2. Bonded, pair, and excluded interactions 53

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 7.7: Schema for the torsiontorsion_cmap
table

name type description
cmap INTEGER name of cmap table
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
p2 INTEGER 3rd particle
p3 INTEGER 4th particle
p4 INTEGER 5th particle
p5 INTEGER 6th particle
p6 INTEGER 7th particle
p7 INTEGER 8th particle

These terms are in the cmap Hamiltonian category.

7.2.6 Position restraint terms

Particles can be restrained to a given global coordinate by means of the restraining potential:

Vr(x, y, z) =
1

2

(fcx(x� x
0

)

2

+ fcy(y � y
0

)

2

+ fcz(z � z
0

)

2

)

where fcx, fcy , fcz are the force constants in Energy/Length2 and x
0

, y
0

, z
0

are the desired global cell coordinates
(units of Length). Terms in posre_harm are evaluated using this potential.

Table 7.8: Schema for the posre_harm table
name type description

fcx FLOAT X force constant in ENERGY/LENGTH2

fcy FLOAT Y force constant in ENERGY/LENGTH2

fcz FLOAT Z force constant in ENERGY/LENGTH2

p0 INTEGER restrained particle
x0 FLOAT x reference coordinate
y0 FLOAT y reference coordinate
z0 FLOAT z reference coordinate

These terms are in the posre Hamiltonian category.

7.2.7 Exclusions

Exclusion terms in exclusion are used to prevent calculation of certain non bonded interactions at short ranges.
The excluded interactions are typically those that involve particles separated by one or two bonds, as these interactions
are assumed to be adequately modeled by the stretch and angle terms described above.

Table 7.9: Schema for the exclusion ta-
ble

name type description
p0 INTEGER 1st particle
p1 INTEGER 2nd particle

Desmond requires that p0 < p1 for each term, and every p0, p1 pair should be unique.

Exclusions are in the far_exclusion Hamiltonian category.

54 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

7.2.8 Pair 12–6 terms

Pair terms in pair_12_6_es allow for modifying the normally calculated nonbonded interactions either by scaling
the interaction energy, or by specifying new coefficients to use for a particular pair. This partial or modified energy is
calculated in addition to the normally calculated interaction energy.

The functional form of the pair potential is:

Vp(rij) =
aij
r12ij

+

bij
r6ij

+

qij
rij

The aij , bij , and qij coefficients are specified in the pair_12_6_es table.

Table 7.10: Schema for the pair_12_6_es table
name type description

aij FLOAT scaled LJ12 coeff in ENERGY LENGTH12

bij FLOAT scaled LJ6 coeff in ENERGY LENGTH6

qij FLOAT scaled product of charges in CHARGE2

p0 INTEGER 1st particle
p1 INTEGER 2nd particle

Pair terms contribute the van der Waals interaction to the pair_vdw Hamiltonian category and the electrostatic
interaction to pair_elec.

7.2.9 Flat-bottomed harmonic well

Desmond supports a variant of the usual harmonic stretch, angle, improper, and position restraint terms in which a
region of the potential near the equilibrium position is flat. All flat-bottomed potentials transition to the harmonic
region with a continuous first derivative; i.e., forces are everywhere continuous. The Hamiltonian categories of the
flat-bottomed terms are, correspondingly, stretch_fbhw, angle_fbhw, improper_fbhw, and posre_fbhw.

The flat-bottomed harmonic stretch term supports specification of an interaction between groups of particles, where
the force acting on the particles is based on the distance between the geometric centers of the particles in the respective
groups. A given particle can participate in multiple groups. The flat-bottomed harmonic stretch term also differs from
the other potentials in that it transitions from a harmonic to a linear potential at large separation.

The harmonic stretch term is designed to model ambiguous NOE distance restraints. The treatment of ambiguous
NOE data was discussed by Nilges in his JMB _245_, p. 645, 1995, and is also presented in Nilges’s contribution
(chapter 13) in the book “Computational Biochemistry and Biophysics”, edited by Becker, et al, (2001).

In an ambiguous distance restraint the measured NOE distance is assigned to a r^REXP-summed distance with expo-
nent REXP = -6. In what follows we leave REXP flexible, although its meaning is not well defined for values other
than -6. The restraint energy calculation has the following form:

d = 0
for all i in A and all j in B:

xij = min_image(xi-xj)
yij = min_image(yi-yj)
zij = min_image(zi-zj)
rij = sqrt(xij^2 + yij^2 + zij^2)
d += rij^REXP

end for
d = d^(1/REXP)

7.2. Bonded, pair, and excluded interactions 55

Desmond Users Guide, Release 3.4.0 / 0.7.2

The energy is then computed as:

E = fc ⇥

8
>>><

>>>:

(L� d)2 d < L

0 L <= d <= U

(d� U)

2 U < d <= U + s

a+ b(d� U) + c/(d� U) U + s < d

where continuity of energy and derivatives dictate that

a = s(3s� 2b)

c = s2(b� 2s)

In the above, ‘s’ and ‘b’ correspond to ‘sigma’ and ‘beta’ in the stretch_fbhw schema.

Table 7.11: Schema for the stretch_fbhw table
name type description

lower FLOAT lower bound for flat-bottomed region in LENGTH
upper FLOAT upper bound for flat-bottomed region in LENGTH
sigma FLOAT width of harmonic region in LENGTH for r > upper
beta FLOAT slope of linear region in ENERGY/LENGTH
fc FLOAT overall proportionality constant in ENERGY/LENGTH2

group1 INTEGER tag for first group with specified parameters
group2 INTEGER tag for second group with specified parameters

Table 7.12: Schema for the stretch_fbhw_term ta-
ble

name type description
p0 INTEGER particle id
group INTEGER group for given particle

The functional form of the flat-bottomed harmonic angle term is V = |d|2 where

d =

8
><

>:

(✓ � ✓
0

+ �) where ✓ � ✓
0

< ��
0 where � � <= ✓ � ✓

0

< �

(✓ � ✓
0

� �) where � <= ✓ � ✓
0

and theta0 is in radians.

Table 7.13: Schema for the angle_fbhw table
name type description

fc FLOAT force constant in ENERGY/RADIANS2

theta0 FLOAT equilibrium angle in DEGREES
sigma FLOAT half-width of flat-bottomed region in DEGREES
p0 INTEGER first particle
p1 INTEGER second particle
p2 INTEGER third particle

The functional form of the FBHW improper term is V = fcd2 where

d =

8
><

>:

(�� �
0

+ �) where �� �
0

< ��
0 where � � <= �� �

0

< �

(�� �
0

� �) where � <= �� �
0

56 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

The improper dihedral angle phi is the angle between the plane ijk and jkl. Thus fc is in ENERGY and phi0 is in
RADIANS.

Table 7.14: Schema for the improper_fbhw table
name type description

fc FLOAT force constant in ENERGY/RADIANS2

phi0 FLOAT equilibrium improper dihedral angle in DEGREES
sigma FLOAT half-width of flat-bottomed region in DEGREES
p0 INTEGER first particle
p1 INTEGER second particle
p2 INTEGER third particle
p3 INTEGER fourth particle

The functional form of the FBHW posre term is V = fc/2d2 where

d =

(
|r � r0|� � where |r � r0| > �

0 where |r � r0| <= �

This is not as general as the fully harmonic position restraint term in that you can’t specify different force constants
for the three coordinate axes.

Table 7.15: Schema for the posre_fbhw table
name type description

fc FLOAT force constant in ENERGY/LENGTH2

x0 FLOAT equilibrium x coordinate in LENGTH
y0 FLOAT equilibrium y coordinate in LENGTH
z0 FLOAT equilibrium z coordinate in LENGTH
sigma FLOAT radius of flat-bottomed region in LENGTH
p0 INTEGER restrained particle

7.3 Van der Waals and electrostatic interactions

The nonbonded forces are configured as shown in:

force.nonbonded = {
n_zone = n

z

sigma = �

r_cut = R

cut

near = {
type = near-type

...
}
far = {
type = far-type

...
}

}

Van der Waals interactions decay rapidly with distance, whereas electrostatic interactions are split into a rapidly de-
caying part (near) and a slowly decaying part (far). Near nonbonded interactions are computed by summing them over
all pairs (except the excluded ones) within a distance R

cut

of each other. Far electrostatic interactions are computed
by an Ewald summation technique specified in the far configuration (see Nonbonded far interactions) and a sum over
certain designated electrostatic correction terms.

7.3. Van der Waals and electrostatic interactions 57

Desmond Users Guide, Release 3.4.0 / 0.7.2

The electrostatic potential is decomposed as:

qiqj
rij

= qiqjerfc(rij/
p
2�)/rij + qiqjerf(rij/

p
2�)/rij

where qi and qj are the charges of particles i and j, and erf(r) and erfc(r) are the error function and the complementary
error function, respectively. The term involving erfc falls off quickly with distance; it is usually computed by an
interpolating function, truncated to 0 for rij > R

cut

. The erf term is essentially the far interaction. The value of � is
typically chosen such that erfc(r/

p
2�) is small at the cutoff radius R

cut

(a common choice is � = R
cut

/(3
p
2 which

assumes erfc(3) = 2.209⇥ 10

�5 is sufficiently small).

Note: Setting � = 1 makes erfc = 1 and erf = 0, so that the electrostatic potential is computed entirely as a cutoff
pairwise interaction; users operating in this regime should consider setting nonbonded.far to none.

Because the nonbonded forces are partitioned into near (van der Waals and electrostatic) and far (electrostatic) com-
ponents, they share a number of arguments in common, such as the splitting parameter, � and the near cutoff radius
R

cut

.

Table 7.16: Configuration for nonbonded
name description
r_cut Distance at which near interactions vanish. [Length > 0]
n_zone Number of polynomial regions for potential interpolation functions. [Integer > 0]
sigma Electrostatic splitting parameter. [Length > 0]
near Configuration for the near nonbonded. Can be set to none. [configuration]
far Configuration for the far nonbonded. Can be set to none. [configuration]

7.3.1 Near interactions

force.nonbonded.near = {
type = default|table|force-only
taper = none|shift|c1switch|c2switch
r_tap = R

tap

average_dispersion = ⌫ # optional
}

nonbonded.near.type specifies the method used to compute nonbonded near interactions. Some of these meth-
ods are built-in and some are provided by extensions. The built-in ones:

• default: van der Waals using a tuned Lennard-Jones computational pipeline and an interpolating function for
electrostatics.

• table: an alternate implementation providing greater flexibility at the expense of performance by using interpo-
lating functions for both.

• force-only: similar to the default, but without energy evaluations. Provides increased performance.

Where energies do not need to be calculated you can achieve significantly greater performance by using the
force-only form of the nonbonded interaction. This form of the nonbonded interaction cannot be used where
energies need to be evaluated as with the energy_groups plugin.

table is an alternative to default which employs an interpolation scheme for both van der Waals and electrostatic
computations. This allows a tapering method to be applied to all near nonbonded interactions. This is computationally
slower.

58 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

The Lennard-Jones 12–6 potential between two particles is:

VLJ(rij) =
aij
r12ij

+

bij
r6ij

where rij = kri � rjk is the distance between two particles i and j. Coefficients aij and bij depend on the types of the
particles i and j. Desmond reads per-particle van der Waals properties, ai and bi for particle i, and constructs aij and
bij by a function of the per-particle coefficients called a combining rule (specified in the structure file).

Each near nonbonded potential function (electrostatic or van der Waals), �(r), is truncated by a cutoff to � = 0 for
r > R

cut

. If R
cut

is selected too aggressively R
cut

< 9, then discontinuities in � at r = R
cut

can have detrimental
effects on the simulation.

For those potential functions that are computed by a piecewise polynomial interpolation function (for the default
near term this is only the electrostatic potential), you can alleviate this detrimental effect somewhat by choosing a
tapering strategy, where the potential �, being approximated by ˜�, is first replaced with a function �T and ˜� constructed
to approximate �T , instead. Three strategies are available for constructing �T : shift,

�T (r) = �(r)� �(R
cut

)

which vertically shifts the function so that �T (r) = 0 for r = R
cut

, c1switch and c2switch,

�T (r) = (1� x)2(1 + 2x)�(r)

�T (r) = (1� x)3(1 + 3x+ 6x2

)�(r)

respectively, for R
tap

 r < R
cut

where x = (r �R
tap

)/(R
cut

�R
tap

), and �T (r) = �(r) for r < R
tap

.

In practice, tapering is not usually necessary for typical cutoff values (R
cut

= 10Å is typical).

Piecewise polynomial interpolation is used as an approximation for some potentials in the near term (which ones
dependent on the kind of near term chosen). The interpolation is actually a piecewise cubic spline interpolation ˜� of
� constructed as function of r2, interpolating through points of the form r2 = R2

cut

m/nz , where 0  m  nz . As
such, the accuracy of the approximation is controlled through nz (set by the parameter n_zone). Although a simple
error bound is difficult to express for general �, for power-law potentials, � / r�C for some C, the relative error of
approximation is roughly given by

�����
˜�(r)� �(r)

�(r)

����� ⇠
C(C + 2)(C + 4)(C + 6)

4

4

4!

✓
R2

cut

nzr2

◆
4

.

The relative error of ˜� decreases with the fourth power of nz and increases with the fourth power of C (using inter-
polation to compute van der Waals potentials, hence, would require a much greater nz). Meanwhile, increasing nz

increases the size of the table of spline coefficients (as well as the size of the linear system numerically solved to set
those coefficients).

The near nonbonded force calculation skips over excluded pairs, if any. Additionally, for all excluded pairs (i, j), a far
exclusion calculation subtracts the contribution from the potential term qiqjerf(rij/

p
2�)/rij , and its associated force

from the energy and the forces. Like the near nonbonded terms, this function is evaluated by a cutoff interpolation
function. Because the calculation is cut off for large r, in practice the distance between excluded pairs of particles is
always within a sensible R

cut

.

Table 7.17: Configuration for near
name description
taper Tapering strategy to use. [none | shift | c1switch | c2switch]
r_tap Distance at which to begin the tapering strategy. [Length  r

cut

]
average_dispersion Correction factor for long-range van der Waals interactions. Optional—by default,

calculated. [Length6 > 0]

7.3. Van der Waals and electrostatic interactions 59

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 7.18: Schema for the vdw_12_6 nonbonded
type

name type description
sigma FLOAT VdW radius in LENGTH
epsilon FLOAT VdW energy in ENERGY

The functional form is V = aij/|r|12+bij/|r|6, where aij and bij are computed by applying either the combining rule
from nonbonded_info or the value from nonbonded_combined_param to obtain � and ✏, then computing
aij = 4✏�12 and bij = �4✏�6.

For both default and table, the van der Waals contributions are in the nonbonded_vdw Hamiltonian category,
while the near electrostatic contributions are in nonbonded_elec. (force-only contributes to no category, and
this is debatably a bug.)

7.3.2 Nonbonded tail corrections

The truncation of van der Waals forces to a cutoff neglects the energy of the r�6 term over the volume beyond
r > R

cut

. This term decays as R
cut

, and thus can be significant enough to warrant a tail correction term to the total
energy of the system (as well as an associated correction to the pressure). The tail correction represents an averaged
r�6 interaction between particles outside of R

cut

from each other. The term depends on the number of particles in the
system, the average dispersion, and the current system volume, the precise form depending on the means by which the
term has been tapered.

• none

U
tail

= � 2⇡
3

⌫N2

V
1

R3
cut

• shift

U
tail

= � 4⇡
3

⌫N2

V
1

R3
cut

• c1switch or c2switch

U
tail

= � 2⇡
3

⌫N2

V
1

R3
tap

⇣
1� 3

R
1

0

↵t(x)
(1+↵x)4 dx

⌘

where ↵ = R
tap

/R
cut

� R
tap

and t(x) = (1 � x)2(1 + 2x) or t(x) = (1 � x)3(1 + 3x + 6x2

) correspond to
c1switch or c2switch respectively.

The average dispersion, ⌫, is used to calculate energy and virial corrections due to cutoff in the van der Waals inter-
actions whenever such interactions are present in the force field and used by the selected nonbonded type. If omitted,
Desmond calculates ⌫ based on the van der Waals terms and the atom types in the system.

7.4 Nonbonded far interactions

The nonbonded far electrostatic forces are configured as shown in:

force.nonbonded.far = {
type = gse|pme
n_k = [k

x

k

y

k

z

]
transform = c2c|r2c|r2c_2round|auto # optional
keep_nyquist = b

n

optional
... # gse or pme specific options

}

The far interactions are computed by using an Ewald mesh calculation. The built-in methods support both smooth
particle mesh Ewald (PME) and k-space Gaussian split Ewald (k-GSE) according to the type parameter. In these

60 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

methods, particle charges are spread onto a three-dimensional Cartesian mesh and a Poisson equation is solved on this
mesh. The resulting potentials are used to compute the forces and energy of each particle. The Poisson equation is
solved efficiently using fast Fourier transforms.

The splitting parameter, �, first referenced in Van der Waals and electrostatic interactions, determines the far electro-
static potential:

V
far

=

qiqj
rij

erf(rij/(
p
2�))

Both methods compute the sum of far interactions for all pairs of particles, including those pairs that are excluded. Thus
it is necessary to subtract the portion of the energy and forces due to the exclusions with a far exclusion computation.

The Ewald mesh dimensions are specified as the number of subdivisions ki along the axes of the global cell. The
spacing of mesh points along the ~a axis, for example, is k~ak/k

1

. A mesh spacing between 0.6 Å and 1.5 Å usually
gives a good balance between accuracy and efficiency. The subdivisions are required to be integers of the form
ki = 2

a
3

b
5

c
7

d (for nonnegative integers a, b, c, and d) that are also multiples of the global cell partition along
the corresponding axes (see The Global Cell); the smallest such integer that provides a suitable mesh spacing is
recommended.

The Fourier c2c and r2c differ in their efficiency depending on the underlying networking hardware. Since the type
of the network is not available to Desmond, the user is responsible for picking the correct value of transform. For
low-latency networks such as available with InfiniBand, we have found that setting transform=c2c gives the
best performance at high levels of parallelism, with transform=r2c performing better at low levels of paral-
lelism and transform=r2c-2round at very low levels. For high-latency networking hardware such as Gigabit
Ethernet, setting transform=r2c has been found to give good performance in most cases. The default setting
of transform=auto uses a heuristic method to set the value according to the above advice, but the user is still
responsible for ensuring that this selection is optimal for his situation. Almost never should it be required to set
keep_nyquist=true, since the amplitude of the farfield electrostatics should be small at the Nyquist frequency
and if it is not signals a problem with the configuration of the simulation.

Additional parameters particular to the method type are also specified in this configuration section, as described below.

Table 7.19: Configuration for far
name description
type Type of Ewald summation method to use. [gse | pme]
n_k Number of fourier mesh points along each global cell axis. [List of Integers > 0]
transform c2c: complex-to-complex transform, r2c | r2c-2round variants of real-to-complex

transform. Optional—by default auto. [c2c | r2c | r2c_2round | auto]
keep_nyquist If true keep Nyquist value in transform, default is false. [Boolean]

Both PME and GSE nonbonded far computations are in the far_terms Hamiltonian category.

7.4.1 Particle mesh Ewald

Particle-mesh Ewald computations are configured as shown in:

force.nonbonded.far = {
type = pme
... # common options
order = [o

x

o

y

o

z

]
}

For PME, point charges are spread to the mesh by convolving them with cardinal B-spline functions (scaled to the
mesh dimensions) in real space and then sampled on the mesh. The Fourier transform then implements a spectral
convolution with a kernel. Finally, forces and energies are accumulated using another B-spline convolution in real

7.4. Nonbonded far interactions 61

Desmond Users Guide, Release 3.4.0 / 0.7.2

space. The spectral convolution kernel is that of a Gaussian charge density of width deconvolved twice by the B-spline
functions.

It is necessary to choose an order for the B-splines i, for each dimension. Orders of 4–7 are supported. As a balance
between accuracy and efficiency, order 5 (quartic interpolation) is recommended for most applications.

Table 7.20: Configuration for pme
name description
order Order of interpolation along each axis. [List of Integers: 4 <= integer <= 7]

For more information, see [Ess-1995].

7.4.2 Gaussian split Ewald

Gaussian split Ewald computations are configured as shown in:

force.nonbonded.far = {
type = gse
... # common options
sigma_s = �

s

r_spread = R

spread

}

k-GSE spreads the point charges by a real-space convolution with a Gaussian of width �s, sampling the result on the
mesh. The mesh charges are spectrally convolved with a kernel by means of the Fourier transform. The forces and
energies are then accumulated using another real-space convolution by a Gaussian of width s. The spectral convolution
kernel is a Gaussian of width k = �2�s, which is a Gaussian of width deconvolved twice by a Gaussian of width s.
Because the charge-spreading and force and energy-accumulation steps are done in real space with a localized (but not
compactly supported) function, a cutoff, R

spread

, is used to truncate the Gaussian to zero. Experiments have shown
that spreading the charge onto more than 250 mesh points does not significantly improve accuracy.

Thus R
spread

is typically selected to contain a sphere of approximately 250 mesh points; for example:

R
spread

= h

✓
250

4⇡/3

◆ 1
3

where h is the smallest mesh spacing along any axis. The value of �s is then chosen such that erfc(r/
p
2�s) is small

at the radius R
spread

.

Table 7.21: Configuration for gse
name description
sigma_s Bandwidth parameter for Gaussian charge density interpolation. [0 < Length < �/

p
2]

r_spread Cutoff parameter for Gaussian charge density interpolation. [Length > 0]

For more information, see [Sha-2005].

Note: Normally, the GSE is not used in Desmond simulations.

62 Chapter 7. Calculating Force and Energy

Desmond Users Guide, Release 3.4.0 / 0.7.2

7.4.3 Electrostatic self-energy correction

The Gaussian spreading of point charges creates non-physical self interaction energies, where a point charge interacts
with itself. To remove these contributions a self-energy correction is added to the potential.

U
self

= �
✓

1p
2⇡

q
2

�
+ ⇡

q2
1

��2V

◆

where q
2

=

P
i q

2

i and q
1

=

P
i qi with the sums taken over all the particles in the system. The first term is simply the

interaction of a Gaussian cloud with itself. The second term, which is only relevant for systems that are not charge-
neutral, is an additional interaction between a Gaussian cloud and a uniform background charge of density ⇢ = q

1

/V .
This background charge, in non-neutral simulations, is required to cancel the non-zero contributions from the system
charges, which would otherwise cause the Ewald sum to blow up.

7.4.4 Virtual sites

Virtual sites, a form of pseudoparticle, are additional off-atom interaction sites that can be added to a molecular system.
These sites can have charge or van der Waals parameters associated with them; they are usually massless. The TIP4P
and TIP5P water models are examples that contain one and two off-atom (virtual) sites, respectively. Because these
sites are massless, it is necessary to redistribute any forces acting on them to the particles used in their construction.
(A consistent way to do this can be found in [Gun-1984].) The virial in most cases must also be modified after
redistributing the virtual site force.

The types of virtual site placement routines are described below.

lc2 virtual site

The lc2 virtual site is placed some fraction a along the vector between two particles (i, j).

~rv = (1� c
1

)~ri + c
1

~rj

Table 7.22: Schema for virtual_lc2 records
name type description

c1 FLOAT coefficient 1
p0 INTEGER pseudoparticle id
p1 INTEGER parent atom i
p2 INTEGER parent atom j

Pseudoparticle p0 is placed at the fractional position c1 along the interpolated line between p1 and p2.

lc3 virtual site

The lc3 virtual site is placed some fraction a and b along the vectors between particles (i, j) and (i, k) respectively.
The virtual particle lies in the plane formed by (i, j, k).

~rv = (1� c
1

� c
2

)~ri + c
1

~rj + c
2

~rk

7.4. Nonbonded far interactions 63

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 7.23: Schema for the virtual_lc3 table
name type description

c1 FLOAT coefficient 1
c2 FLOAT coefficient 2
p0 INTEGER pseudoparticle id
p1 INTEGER parent atom i
p2 INTEGER parent atom j
p3 INTEGER parent atom k

fdat3 virtual site

The fdat3 virtual site is placed at a fixed distance d from particle i, at a fixed angle ✓ defined by particles (v, i, j) and
at a fixed torsion � defined by particles (v, i, j, k).

~rv = ~ri + a~r
1

+ b~r
2

+ c~r
2

⇥ ~r
1

where ~r
1

and ~r
2

are unit vectors defined by

~r
1

/ ~rj � ~ri

~r
2

/ ~rk � ~rj � (~rk � ~rj) · ~r1~r1

The coefficients a, b and c above are defined as a = d cos(✓), b = d sin(✓) cos(�) and c = d sin(✓) sin(�).

Table 7.24: Schema for the virtual_fdat3 ta-
ble

name type description
c1 FLOAT d coefficient
c2 FLOAT ✓ coefficient
c3 FLOAT � coefficient
p0 INTEGER pseudoparticle id
p1 INTEGER parent atom i
p2 INTEGER parent atom j
p3 INTEGER parent atom k

out3 virtual site

The out3 virtual site can be placed out of the plane of three particles (i, j, k).

~rv = ~ri + c
1

(~rj � ~ri) + c
2

(~rk � ~ri) + c
3

(~rj � ~ri)⇥ (~rk � ~ri)

Table 7.25: Schema for the virtual_out3 ta-
ble

name type description
c1 FLOAT coefficient 1
c2 FLOAT coefficient 2
c3 FLOAT coefficient 3
p0 INTEGER pseudoparticle id
p1 INTEGER parent atom i
p2 INTEGER parent atom j
p3 INTEGER parent atom k

64 Chapter 7. Calculating Force and Energy

CHAPTER

EIGHT

CONSTRAINTS

This chapter describes the constraints available to eliminate the fastest vibrational motions and how to configure them.

By applying constraints that eliminate the fastest vibrational motions, simulations can be run using longer timesteps—
typically 2 or 2.5 fs instead of 1 fs. Constraints are configured as shown in:

force.constraint = {
tol = �

maxit = m

use_reshake = b

r

use_Reich = b

R

exclude = [...] # optional
include = [...] # optional

}

Constraints fix the distances between pairs of particles according to a topology of rigid rods:

||ri � rj || = dij

||rk � rl|| = dkl

. . .

The topologies that can be constrained are:

• AHn: n particles connected to a single particle, with 1  n  8.

• HOH: three mutually connected particles.

The schemas in the DMS file for AHn and HOH constraints are shown in Schema for the constraint_ahN tables and
Schema for the constraint_hoh (rigid water) table, respectively. Each record in the AHn table gives the length of the
bonds between a single parent atom and n child atoms. Each record in the HOH table gives the angle between the two
O-H bonds and the respective bonds lengths.

65

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 8.1: Schema for the constraint_ahN ta-
bles

name type description
r1 FLOAT A-H1 distance
r2 FLOAT A-H2 distance
...
rN FLOAT A-HN distance
p0 INTEGER id of parent atom
p1 INTEGER id of H1
p2 INTEGER id of H2
...
pN INTEGER id of HN

Table 8.2: Schema for the constraint_hoh (rigid water)
table

name type description
theta FLOAT H-O-H angle in DEGREES
r1 FLOAT O-H1 distance
r2 FLOAT O-H2 distance
p0 INTEGER id of heavy atom (oxygen)
p1 INTEGER id of H1
p2 INTEGER id of H2

A constrained particle is no longer free; each such particle has 3 �m/2 degrees of freedom, where m is the number
of independent constraints involved; for example, a pair of particles having only one distance constraint between them
has five degrees of freedom. Constraints thus affect the calculation of the instantaneous temperature and pressure,
which depend on the number of degrees of freedom. Constraints are implemented in Desmond by the M-SHAKE
algorithm, iteratively obtaining corrections to particle positions (as well as secondary corrections to momenta). The
implementation is controlled by two parameters, a relative tolerance, �, and a maximum iteration count, m. Iteration
ceases if each particle-pair distance is within a factor of 1 + � of its constrained distance. A value of � = 10

�8 is
suitable for most simulations. The convergence rate is high enough that usually fewer than five steps are needed. In
the event that the constraint iteration fails, Desmond prints a warning to the simulation log.

Regardless of the precision (single or double) used for the atomic coordinates, the M-SHAKE implementation per-
forms its calculations in double precision. If the atomic coordinates are in single precision, some error is inevitably
introduced when these M-SHAKE results are converted to atomic coordinates, which could, in principle be recovered
at the next M-SHAKE update. This cumulative error is recovered by employing a novel algorithm we call reshake, at
the cost of additional arithmetic.

An alternative constraint algorithm is used for water constraints, since the constrained molecule is a rigid body. This
algorithm, due to Reich [Rei-1994], derives a fixed rigid motion approximation to the constrained motion, generally
needing fewer arithmetic operations to preserve constraints to full precision.

Table 8.3: Configuration for constraint
name description
exclude constraint terms to turn off. Optional—by default, empty [List of names]
include constraint terms which must be turned on (overrides exclude). Optional—by default, empty

[List of names]
tol Relative tolerance for the constraint algorithm. [Real > 0]
use_Reich employ Reich’s rigid motion constraint algorithm for HOH constraints. Optional–by default

true. [Boolean]
use_reshake Compensate for double to single precision rounding effects. Optional—by default true.

[Boolean]

66 Chapter 8. Constraints

Desmond Users Guide, Release 3.4.0 / 0.7.2

8.1 Single precision resolution and constraints

The degree to which a set of distance constraints can possibly be satisfied is a function of the resolution of the rep-
resentation of particle positions. When the atomic coordinates are represented by single precision numbers, there is
some possibility that numerical errors, coming from constraints with poor position resolution, can accumulate during
the course of the simulation.

Particle positions are represented in a local coordinate system whose origin depends on the owning process. The
dimensions of that local cell are proportional to the distances, along Cartesian axes, between representable positions
in real space, and thus inversely proportional to resolution. Thus, when the dimensions of the local cell increase, by
running on larger systems or with fewer processors, the resolution decreases.

Time resolution is also relevant. Clearly, the more time steps used for a given simulated time, the more space resolution
errors accumulate, but empirically, the relationship is not as linear as this rationale suggests (see below). In terms of
an overall energy drift, more constraint errors manifest as a negative (downward) drift in conserved energy. In fact,
should one see a substantial negative energy drift, one should suspect constraint accuracy.

In order to guide users away from such problems, we have made a table of the energy drifts (in Kelvin/ns) which result
from the simulation of a cubic cell of water at standard density for various local cell sizes and (inner) timesteps. For
each size and step, ten NVE simulations were run with random initial velocities (drawn from a Maxwell-Boltzmann
distribution at 300 K). All force interactions were shut off and the constraint convergence tolerances were set very
stringently (twelve M-SHAKE iterations always), and thus the simulation is purely that of free motion of rigid wa-
ter molecules, the only possible source of energy being the resolution errors from the constraint calculations. The
simulations were run for 25 ps of simulated time. With the first 5 ps discarded, the total (kinetic) energy profile of
each simulation was fit to a line and the drift reported is the mean slope of the ten simulations (standard deviation in
parentheses). For larger time steps and smaller box sizes, the simulation energy profiles resembled unbiased random
walks and fit poorly to lines, as indicated by standard deviations which are larger than their means in these regimes.

Although real simulations will include interactions and other molecules, we believe that for simulations where water
is the solvent, running at typical temperatures, Influence of finite precision resolution and timestep on energy drift
captures the ballpark drift contribution one can expect to see from constraint resolution issues.

Table 8.4: Influence of finite precision resolution and timestep on energy drift

step/size 10 Å 20 Å 30 Å 40 Å 60 Å 80 Å
2.0 fs -0.08(0.44) 0.01(0.19) 0.03(0.13) -0.04(0.10) -0.04(0.11) 0.02(0.07)
1.0 fs -0.25(0.47) 0.01(0.27) -0.09(0.17) -0.07(0.14) -0.46(0.14) -1.22(0.07)
0.5 fs -0.10(0.55) -0.57(0.28) -1.97(0.26) -4.58(0.62) -14.21(0.48) -31.06(0.62)
0.25 fs -1.7(2.3) -14.3(2.3) -42.0(3.2) -80.6(1.3) -166.6(2.1) -238.6(3.0)

8.1. Single precision resolution and constraints 67

Desmond Users Guide, Release 3.4.0 / 0.7.2

68 Chapter 8. Constraints

CHAPTER

NINE

DYNAMICS

This chapter summarizes the basic concepts of particle dynamics and describes how to configure the migration interval,
timestep scheduling, pressure, and temperature. It also describes each of the available dynamical systems, and how to
configure them.

9.1 Particles and mechanics

Molecular systems are collections of particles evolved by some variant of the dynamics of Newtonian mechanics.
Newtonian mechanics can be summarized by a few conserved quantities (usually a scalar with units of energy and
a probability density). Certain variations to the equations of motion can be used to control certain macroscopic
parameters of the system; for example, the volume of cell or the temperature of the particles. This section reviews
basic mechanical and statistical concepts of particle motion; later sections describe these different kinds of dynamics.

9.1.1 Particles

The basic data describing each particle are its position and momentum vectors, r and p, and a set of (usually) fixed
particle properties ranging from the parameters of certain particle interactions (charge, mass, van der Waals radius) to
discrete parameters indicating membership in some group or another (for example, this particle is part of a ligand and
this particle is not).

Given a set of particles, the kinetic energy is:

K(p) =
NX

i=1

k~pik2/(2mi)

where mi is the mass of the particle i. A force field refers to a potential energy function U(r) = U(~r
1

, . . . ,~rN), which
makes the total energy, E, of the particles:

E(r,p) =
NX

i=1

k~pik2/(2mi) + U(r)

A basic problem of molecular dynamics is the time-integration of the Newton equations of motion,

˙~ri = ~pi/mi

˙~pi = �r~r
i

U(r) = Fi(r)

whose exact solutions conserve E(r,p).

In Desmond, particles are placed in the global cell with periodic boundary conditions. This means that long-range
interactions (for example, electrostatic interactions) are, in principle, summed over all periodic images of the global

69

Desmond Users Guide, Release 3.4.0 / 0.7.2

cell, making the potential energy properly a function of both r and the 3⇥ 3 matrix B = [~a,~b,~c], where ~a,~b, and ~c are
the lattice vectors of the cell. Usually this dependence on B is suppressed, unless variations in the cell shape need to
be considered.

9.1.2 Chemical systems

In addition to the energy of the particles, a number of other macroscopic properties of the system are of interest,
particularly pressure and temperature. These quantities are only properly defined in reference to very large systems
with ergodic dynamics, aver aged over statistically significant lengths of time. However, instantaneous microscopic
versions of these quantities can be defined.

The instantaneous temperature, T , of a group of particles is given by:

1

2

kBT =

1

Nf

X

i

k~pik2/(2mi)

where kB is the Boltzmann constant and Nf counts the number of degrees of freedom of the particles (for N free
particles Nf = 3N). The instantaneous pressure is given by P = Tr {P} /3, the average of the main diagonal
components of the 3⇥ 3 tensor:

P(r,p,B) = |B|�1

X

i

�
~pi~pi/mi �r~r

i

U(r,B)~rti
�
�rBU(r,B)Bt

!

Variations of the Newton equations are often made through additional ordinary or stochastic variables coupled dynam-
ically to the positions and momenta or via feedback control interventions which adjust the positions and momenta.
These variations are typically designed to ensure certain statistical properties of the macroscopic quantities.

9.2 Integrator

Simulation dynamics are specified in a section named integrator, in which one specifies the conditions for evolving the
system forward in time. The integrator is configured as shown in:

integrator = {
dt = �

t

respa = { ... }
pressure = { ... }
temperature = { ... }
type = key # dynamics type
key = { ... } # specific options

}

The type value specifies the dynamical system defining the system’s evolution (see Dynamical systems). Additionally,
the type value is used as a key for any additional parameters that the selected system requires.

�t is the amount of simulated time between particle position updates. Every position update is:

~ri(t+ �t) = ~ri(t) + ~pi(t+ �t/2)�t/mi

followed by a modification to account for any constraints (see Constraints).

Because Desmond supports multiple timestepping, the full timestep, �t, between successive simulation steps might
not be �t but instead some integer multiple of it. �t is sometimes called the inner timestep and �t = n�t is called the
outer timestep.

70 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 9.1: Configuration for integrate
name description
dt The time length of a position update step. [Time > 0]
respa breakdown of the integrator timestep. [configuration]
pressure configuration of the system pressure. [configuration]
temperature configuration of the system temperature. [configuration]
type Type of dynamical system to integrate. [Symbol]

9.3 RESPA

Timestep scheduling is configured as shown in:

integrator.respa = {
near_timesteps = i

n

far_timesteps = i

f

outer_timesteps = i

o

}

Most Desmond integrator types (and force configurations) support a splitting of the force field into three computa-
tional categories with separate scheduling of each. The divisions are bonded, nonbonded near (van der Waals and
short-range electrostatic interactions), and nonbonded-far (long-range electrostatic interactions). Additionally, certain
dynamical events, typically corresponding to the dynamics of extended variables, such as a thermostat, occur outside
of a complete NVE step.

The scheduling of these different categories is controlled by these values. During the course of a simulation, positions
and momenta are updated according to the velocity Verlet algorithm:

~pi(t+ �t/2) = ~pi(t) + ~fi(t)�t/2 (9.1)

~ri(t+ �t) = ~ri(t) + ~pi(t+ �t/2)�t/mi (9.2)

~pi(t+ �t) = ~pi(t+ �t/2) + ~fi(t+ �t)�t/2.

The force is split into three components f(t) = f b(t) + fn(t) + ff (t), where each of f b, fn, and fn is computed every
�t, in�t, and if�t units of time based on the current value of r(t) for if phases of time repeated io/if times for a total
of io phases, or an outer time step of �t = io�t. It is required that in divide if and that if divide io.

Another way to think of this is that (unless otherwise specified) each full time step is built from a sequence of io po-
sition updates interspersed with momentum updates. Each position update is identical and takes the form of Equation
(9.2). Each momentum update takes the form of Equation (9.1) using the weighted combination

fi(t) = f b(t) + oiinf
n
(t) + of if f

f
(t)

where the oq are both 1 for the first step and thereafter oq = 1 every iq steps and 0 otherwise. If there are no outer step
dynamics, and io = kif then the full integration step is equivalent to the concatenation of k the integration steps one
obtains with io = if . We illustrate a (in, if , io) = (2, 4, 8) schedule in the RESPA schematic example.

Multiple timestepping is effectively disabled by setting in = if = io = 1, which makes the force and extended
dynamics purely a function of current position, f(t) = f(r(t)), and not the phase of time.

9.3. RESPA 71

Desmond Users Guide, Release 3.4.0 / 0.7.2

Figure 9.1: A schematic representation of a (in, if , io) = (2, 4, 8) RESPA schedule. Stacks of circles represent
momentum updates with bonded, near, and far force components. Squares represent position updates.

Table 9.2: Configuration for respa
name description
near_timesteps The number of position updates per nonbonded near force calculation. [Integer > 0,

divides far_timesteps]
far_timesteps The number of position updates per nonbonded far force calculation. [Integer > 0,

divides the outer_timesteps]
outer_timesteps The number of position updates per application of additional “outer step” dynamics.

[Integer > 0]

9.4 Pressure

Some dynamical systems change the unit cell vectors of the global cell, thus changing the size and possibly the shape
of the cell during the integration to realize a constant pressure ensemble. The pressure section gives the parameters
for such systems.

Pressure is configured as shown in:

integrator.pressure = {
isotropy = isotropic|semi_isotropic|anisotropic|constant_area
max_margin_contraction = c

max

P_ref = P

0

tension_ref = t

33

}

isotropy constrains the changes allowed for the global cell:

• isotropic: The cell scales uniformly along all three axes.

• semi-isotropic : The X and Y axes scale uniformly, while the Z axis scales independently.

• anisotropic: The cell scales independently along all three axes.

• constant area: The cell scales along its Z axis only.

As the cell changes shape, its clone radius changes as well. If the new radius is less than a factor of c
max

times the
old radius, certain lazily updated quantities (such as particle pairlists) are immediately recomputed. P

0

and t
33

are
parameters that appear in the equations of certain dynamical systems. Their roles in those systems are described in
Dynamical systems.

72 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 9.3: Configuration for pressure
name description
isotropy The allowed class of cell changes. [Symbol]
max_margin_contraction The amount of relative contraction beyond which all particle ownerships must

be recalculated. [Real]
P_ref The reference pressure for the cell. [Pressure > 0]
tension_ref The reference tension for the cell. Optional—by default, 0. [Pressure*Length

> 0]

9.5 Temperature

Each particle in a structure file is assigned a property called its temperature group. The following synopsis shows how
to assign reference temperatures to sets of temperature groups:

integrator.temperature = {
T_ref = T

T_groups = [{
T_ref = T

1

groups = [g
1

...]
} ... {
T_ref = T

k

groups = [g
k

...]
}]

}

The reference temperature T is taken as the temperature of any component in the system which does not have some
other temperature assignment that overrides it. For nearly all uses this is the only variable that needs to be set. However,
for certain exceptional applications it is possible to assign alternative temperatures to system components (what this
means physically is the province of the user). It is also sometimes desirable, in systems sampling from contant
temperature ensembles to assign separate thermostats (or no thermostat) to subsets of the particles. The T_groups
section is an optional means for exercising this fine control. The elements of the T_groups list correspond to
logically distinct thermostats that apply to the temperature groups listed in groups and these groups can be assigned
their own reference temperatures, Tj . Subsequent sections in this chapter will be written at this finer level of control
and use �(i) to denote the element of temperature in which the ith particle’s temperature group occurs (in other words,
�(i) = j means particle i is governed by thermostat j in temperature- controlled simulations). We set �(i) = 0 when
the group is not assigned a reference temperature.

Note: Desmond prints a warning if some particles in the simulation have not been assigned a reference temperature.

Table 9.4: Configuration for temperature
name description
T_ref The global reference temperature. [Temperature > 0]
T_groups[i].T_ref The reference temperature for thermostat i. Optional–defaults to the global

reference temperature. [Temperature > 0]
T_groups[i].groups The temperature groups regulates by thermostat i. [List of Integers � 0]

9.6 Dynamical systems

Three kinds of dynamical systems are available in Desmond:

9.5. Temperature 73

Desmond Users Guide, Release 3.4.0 / 0.7.2

• ordinary differential equations (ODEs) with certain energy and measure-conserving properties,

• stochastic differential equations (SDEs) with invariant measures, and

• stochastic differential equations coupled to feedback control systems

This section describes the supported systems in a mathematically exact and unconstrained form, omitting the details
of the integration method and the complexities of incorporating constraints.

A simulation is evolved according to a dynamical system specified by the integrator.type variable, which is a name.
This name selects the system to be used and is also treated as a key in the integrator section under which the parameters
for the specified system can be found.

9.6.1 V_NVE: Verlet constant volume and energy

The V_NVE dynamical system is configured as shown in:

integrator.V_NVE = {}

No parameters are needed. The system is the ODE:

˙~ri = ~pi/mi

˙~pi = �r~r
i

U(r)

which conserves the scalar:

Ho(r,p) =
X

i

k~pik2/(2mi) + U(r)

and the phase space density (differential form):

⌦

0

=

Y

i

d3~rid
3~pi

where d3~ri and d3~pi are the volume elements of the position and momentum of particle i. Thus, the trajectory, if
ergodic, is expected to sample uniformly from a surface of constant H

0

(r,p).

9.6.2 NH_NVT: Nosé-Hoover constant volume and temperature

The NH_NVT dynamical [Mar-1992] system is configured as shown in:

integrator.NH_NVT = {
thermostat = {
mts = m

tau = [⌧
1

... ⌧

n

]
}

}

This system supplies a thermostat using a Nosé-Hoover chain (with extended system variables) for each of the elements
of the integrator.temperature list (the length of which must match that of the thermostat list). For each
thermostat and each ⌧i parameter, a pair of variables ⇣i, ⌫i) is introduced for a total of 2nk additional variables (k

74 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

being the number of thermostats). The dynamics are given by the ODE:

˙~ri = ~pi/mi

˙⇣ji = ⌫ji /w
j
i

˙~pi = �r~r
i

U(r)� ~pi⌫
�(i)
1

/w�(i)
1

⌫̇j
1

=

X

i|�(i)=j

k~pik2/mi � Cj
1

� ⌫j
1

⌫j
2

/wj
2

⌫̇ji = (⌫ji)
2/wj

i�1

� Cj
i � ⌫ji ⌫

j
i+1

/wj
i+1

⌫̇jn = (⌫jn)
2/wj

n�1

� Cj
n

where wj
i = Cj

i (⌧i)
2 with Cj

1

= kBTjNj and Cj
i>1

= kBTj , where Nj is the number of degrees of freedom of the
governed particles j. Recall from Temperature that �(i) denotes the thermostat which governs particle i.

This system preserves the scalar:

H(r, ⇣,p, ⌫) = H
0

(r,p) +
X

ij

(⌫ji)
2/(2wj

i) +

X

ij

Cj
i ⇣

j
i

and the phase space density:

⌦ = exp

0

@
X

j

(kBTj)
�1

X

i

Cj
i

Y

ij

d⇣ji d⌫
j
i

1

A
⌦

0

In particular, if T
1

= . . . = Tk = T , then the density,

⌦

0
= exp

0

@�(kBT)
�1

0

@H
0

(r,p) +
X

ij

(⌫ji)
2/(2wj

i)

1

A

1

A
Y

ij

d⇣ji d⌫
j
i⌦0

is preserved. Hence, the trajectories of these equations, if ergodic, sample (r, p) from the canonical ensemble with
temperature T .

The current numerical implementation of the ODE updates each Nosé-Hoover chain as a separate step from the gov-
erned position and momentum variable updates. Because these updates are inexpensive, they can be done multiple
times, m, with a smaller timestep proportionate to 1/m, for higher accuracy. In practice, we usually set m = 2.

Table 9.5: Configuration for NH_NVT
name description
thermostat.mts The number of discrete updates within the chain. [Integer > 0]
thermostat.tau The time constants determining the length and masses of the chain variables. [List of

Time > 0]

9.6.3 Anti_NVT: Antithetic constant volume and temperature

The Anti_NVT dynamical system is configured as shown in:

integrator.Anti_NVT = {
thermostat = {
bath_dof = N

b

optional
seed = s # optional

}
}

9.6. Dynamical systems 75

Desmond Users Guide, Release 3.4.0 / 0.7.2

This system supplies the antithetic thermostat, a thermostatting dynamics to be described in a forthcoming manuscript.
It supplements the underlying Verlet dynamics described in V_NVE: Verlet constant volume and energy with a discrete
thermostatting scheme. The kinetic energy K of a system with N degrees of freedom sampling the canonical ensemble
with temperature T is Gamma-distributed:

K ⇠ �

✓
N

2

, kBT

◆

Recalling from Temperature that �(i) denotes the thermostat which governs particle i, the kinetic energy of the parti-
cles in the jth temperature group is

Kj =

X

i|�(i)=j

||~pi||2

2mi

The antithetic thermostat couples each temperature group with a stochastic thermal bath by operating on their com-
bined energy

Ej ⌘ Kj +Bj

where the bath energy Bj is a random variable sampled directly from the gamma distribution

Bj ⇠ �

✓
N

b

2

, kBTj

◆
.

N
b

is the number of degrees of freedom of the bath specified by the user. If it is not specified, it defaults to zero,
resulting in Bj = 0 and a deterministic algorithm.

Let Fj(·) and F�1

j (·) denote the cumulative distribution function (c.d.f.) and quantile function, respectively, of the
Gamma distribution

�

✓
Nj +N

b

2

, kBTj

◆

where Nj is the number of degrees of freedom of the governed particles in temperature group j. Recall from ele-
mentary probability theory that the c.d.f. is a mapping from energies in [0,1) to probabilities in [0, 1). The mapping
gives the probability that a random variable sampled from � will be less than or equal to a given energy. The quantile
function is the inverse map from probabilities to energies.

The effect of the antithetic thermostat is to change the total energy Ej of each energy group and its associated bath
every full timestep �t according to:

E0
j = Fj

�
1� F�1

j (Ej)
�

This is accomplished by uniformly scaling the particle momenta p within each thermostat at each full timestep �t:

~pi
0
=

s
Fj

�
1� F�1

j (Ej)
�

Ej
~pi

�
wherej = �(i)

�
.

This system does not preserve a scalar quantity. In the absence of the NVE dynamics, the discrete antithetic dynamics
would preserve the phase space density

⌦ = exp

0

@�
X

j

1

kBTj

X

i|�(i)=j

||~pi||2

2mi

1

A
⌦

0

The combined dynamics, however, does not in general preserve this density. The resulting phase space density is not
easily expressed in the general case. Only when T

1

= . . . = Tk = T does this system preserve the phase space density

⌦ = exp(�H
0

(r,p)/(kBT))⌦0

76 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

Thus, the trajectories of this system are expected to produce samples from the canonical ensemble with temperature T .
Note that the preserved density is independent of the bath size N

b

. Increasing the bath size merely serves to decrease
the magnitude of the momentum rescalings to mitigate the perturbation to the dynamics. In Desmond, the net energy
(or heat) added or subtracted by the antithetic thermostat is accounting for in the extended variable energy term, which
results in a conserved energy useful for diagnostic purposes.

Table 9.6: Configuration for Anti_NVT
name description
thermostat.bath_dof The number of degrees of freedom in the stochastic baths. Optional–defaults to 0.

[Integer > 0]
thermostat.seed The random number seed for Gamma-distributed variables. Optional unless

bath_dof is given. [Integer > 0]

9.6.4 L_NVT: Langevin constant volume and temperature

The L_NVT dynamical system is configured as shown in:

integrator.L_NVT = {
thermostat = {
tau = ⌧

seed = s

}
}

It supplies a thermostat using the Langevin method for all of the elements of the integrator.temperature list.

This dynamical system adds a damping term and a stochastic force to the atoms. The amount of stochastic force used
is a function of the Tj for the jth thermostat, while the damping 1/⌧ is uniform across all thermostats. The mean
collision time for water, roughly 1/62 ps, is often used for ⌧ .

The dynamics are given by the SDE:

˙~ri = ~pi/mi

˙~pi = �r~r
i

U(r)� (~pi + �i
˙~Si(t))/⌧

where each component of the random vector ~S(t) is a standard Wiener process, W (t), having the probability density:

Prob(w  W (t)  w + dw) =
1p
2⇡t

exp(�w2/(2t))dw

and �i =
p
2mikBTj⌧ where particle i is in the jth thermostat (temperature Tj). The Wiener distribution is seeded

by s.

Although this SDE does not have a conserved scalar, it does have an invariant phase space density, given by:

⌦ = f(r,p)
Y

i

d3~rid
3~pi

where f satisfies the PDE:

0 =

X

i

✓
1

mi
~pi ·r~r

i

f �r~r
i

U(r) ·r~p
i

f +

✓
r~p

i

· (~pif) +
1

2

�2

ir2

~p
i

f

◆
/⌧

◆

If T
1

= . . . = Tk = T , then:

f = exp(�H
0

(r,p)/(kBT))

9.6. Dynamical systems 77

Desmond Users Guide, Release 3.4.0 / 0.7.2

Thus, the trajectories of this system are expected to produce samples from the canonical ensemble with temperature
T .

In Desmond, the net energy (or heat) subtracted by the stochastic portions of the SDE are accounted for in the extended
variable energy term, which results in a conserved energy useful for diagnostic purposes.

Table 9.7: Configuration for L_NVT
name description
thermostat.tau The decay time (inverse damping constant) of the particle momenta. [Time > 0]
thermostat.seed The random number seed for normally distributed random variables. [Integer]

9.6.5 Piston_NPH: constant pressure and enthalpy

The Piston_NPH dynamical system is configured as shown in:

integrator.Piston_NPH = {
barostat={
tau = ⌧

p

T_ref = T

b

optional
}

}

This is the simplest dynamical system that changes the cell according to a conservative dynamics. More complex
systems that change the cell have many similarities with Piston_NPH and share its definitions.

Usually energy is the conserved quantity, but in this case the conserved quantity is enthalpy.

To describe the equations of motion in Piston_NPH, recall the definition B = [~a,~b,~c], a 3⇥3 matrix with the system’s
unit cell vectors as columns; the volume of the system is the determinant |B|.

Since changes in the global cell affect long-range interactions, we expose the dependence of the potential function on
B, writing U(r,B) for the potential energy (and writing H

0

(r,B,p) =
P

i kpik2/(2mi) + U(r,B)). The dynamics
of the cell are expressed through some number of new scaling variables, s

1

, . . . , sd, and their relative momenta,
⌘
1

, . . . , ⌘d, depending on the pressure.isotropy. For a given isotropy, we define the maps B, A, and a (a is
the adjoint of A), as shown in these equations:

Isotropic

B(s
1

) =

0

@
s
1

0 0

0 s
1

0

0 0 s
1

1

A
[~a,~b,~c] (9.3)

A(⌘
1

) =

0

@
⌘
1

0 0

0 ⌘
1

0

0 0 ⌘
1

1

A

a

0

@
m

11

m
12

m
13

m
21

m
22

m
23

m
31

m
32

m
33

1

A
= m

11

+m
22

+m
33

78 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

Semi-isotropic

B(s
1

, s
2

) =

0

@
s
1

0 0

0 s
1

0

0 0 s
2

1

A
[~a,~b,~c] (9.4)

A(⌘
1

, ⌘
2

) =

0

@
⌘
1

0 0

0 ⌘
1

0

0 0⌘
2

1

A

a

0

@
m

11

m
12

m
13

m
21

m
22

m
23

m
31

m
32

m
33

1

A
=

✓
m

11

+m
22

m
33

◆

Anisotropic

B(s
1

, s
2

, s
3

) =

0

@
s
1

0 0

0 s
2

0

0 0 s
3

1

A
[~a,~b,~c] (9.5)

A(⌘
1

, ⌘
2

, ⌘
3

) =

0

@
⌘
1

0 0

0 ⌘
2

0

0 0⌘
3

1

A

a

0

@
m

11

m
12

m
13

m
21

m
22

m
23

m
31

m
32

m
33

1

A
=

0

@
m

11

m
22

m
33

1

A

Constant area

B(s
1

) =

0

@
1 0

0 1 0

0 0 s
1

1

A
[~a,~b,~c] (9.6)

A(⌘
1

) =

0

@
0 0 0

0 0 0

0 0 ⌘
1

1

A

a

0

@
m

11

m
12

m
13

m
21

m
22

m
23

m
31

m
32

m
33

1

A
= m

33

The ODE for the Piston_NPH dynamical system is:

˙~ri = ~pi/mi +A(⌘)~ri/W

ṡi = ⌘isi/W

˙~pi = �r~r
i

U(r,B(s))� (1 + 1/Ng)A(⌘)~pi/W

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~p
t
i/mi

!

where:

P
0

(B) = (P
0

� Tr

�
TB�1

)I+ (TB�1

)

t

with P
0

given by the pressure.P_ref parameter and

T =

0

@
0 0 0

0 0 0

0 0 t
33

1

A

9.6. Dynamical systems 79

Desmond Users Guide, Release 3.4.0 / 0.7.2

with t
33

given by the pressure.tension_ref parameters. The barostat mass, W , is given by W = (3Ng +

d)kBTb⌧2p , where Ng is the number of constraint terms (or molecular groups) of the system and d is the number of
independent ⌘ variables. This system is not thermostated, so the roles of Tb and ⌧p are redundant for this system.
However, other systems use the same barostat framework and do apply a thermostat to the barostat.

This system preserves the scalar:

Hp(r, s,p, ⌘) = H
0

(r,B(s),p) +
X

i

⌘2i /(2W) +

�
P
0

� Tr

�
TB(s)�1

 �
|B(s)|

and the phase space density (by isotropy type):

isotropic

⌦p = s2
1

ds
1

d⌘
1

⌦

0

semi-isotropic

⌦p = s
1

dY

j=1

dsjd⌘j⌦0

anisotropic

⌦p =

dY

j=1

dsjd⌘j⌦0

constant area

⌦p = ds
1

d⌘
1

⌦

0

Like a V_NVE simulation, the exact trajectory, if ergodic, is expected to sample from a surface of constant
Hp(r, s,p, ⌘), weighted by ⌦p.

Table 9.8: Configuration for Piston_NPH
name description
tau Used to set the mass. [barostat.Time > 0]
barostat.T_ref Equilibrium temperature (used to set the mass). Optional–defaults to the global reference

temperature. [Temperature > 0]

9.6.6 MTK_NPT: Martyna-Tobias-Klein, constant pressure and temperature

The MTK_NPT dynamical system [Mar-1994] is configured as shown in:

integrator.MTK_NPT = {
barostat = {
tau = ⌧

p

T_ref = T

b

thermostat = {

80 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

mts = m

b

tau = [⌧

b

1

... ⌧

b

n

]
}

}
thermostat = {
mts = m

1

tau = [⌧

1

... ⌧

n

]
}

}

The Martyna-Tobias-Klein dynamical system is a combination of Piston_NPH (see Piston_NPH: constant pressure
and enthalpy) and NH_NVT (see NH_NVT: Nosé-Hoover constant volume and temperature) dynamics. There is also
an additional Nosé-Hoover chain, with nb additional pairs of variables (⇣bi , ⌫

b
i) that govern the barostat degrees of

freedom. To include this chain in sums or products over chains, treat the index of the sum or product as ranging over
the numbers 1, . . . , k (for the particle Nosé-Hoover chains) and the letter b.

The ODE for this system is

˙~ri = ~pi/mi +A(⌘)~ri/W

ṡi = ⌘isi/W

˙⇣ji = ⌫ji /w
j
i

˙~pi = �r~r
i

U(r,B(s))� (1 + 1/Ng)A(⌘)~pi/W � ~pi⌫
�(i)
1

/w�(i)
1

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~p
t
i/mi

!
� ⌘⌫b

1

/wb
1

⌫̇j 6=b
1

=

X

i|�(i)=j

k~pik2/mi � Cj
1

� ⌫j
1

⌫j
2

/wj
2

⌫̇b
1

=

X

i

⌘2i /W � Cb
1

� ⌫b
1

⌫b
2

/wb
2

⌫̇ji = (⌫ji�1

)

2/wj
i�1

� Cj
i � ⌫ji ⌫

j
i+1

/wj
i+1

⌫̇jn = (⌫jn�1

)

2/wj
n�1

� Cj
n

where Cb
1

= kBTbd and Cb
i>1

= kBTb, where d is the number of independent variables in the barostat (according to
its isotropy type) and wj

i = Cj
i (⌧

j
i)

2. (Note: the astute reader may observe that our equations vary from the original
MTK equations in the handling of the 1/Ng-terms in the ˙~pi and ⌘̇ equations.)

Recalling the definitions of the invariant scalar and phase space density from Piston_NPH (see Piston_NPH: constant
pressure and enthalpy), the above ODE preserves the scalar:

H(r, s, ⇣,p, ⌘, ⌫) = Hp(r, s,p, ⌘) +
X

ij

(vji)
2/(2wj

i) +

X

ij

Cj
i ⇣

j
i

and the phase space density:

⌦ = exp

0

@
X

j

(kBTj)
�1

X

i

Cj
i ⇣

j
i

1

A
Y

ij

d⇣ji d⌫
j
i⌦p

In particular, if T
1

= . . . = Tk = Tb = T , then the density shown below is preserved:

⌦

0
= exp

0

@�(kBT)
�1

0

@Hp(r, s,p, ⌘) +
X

ij

(⌫ji)
2/(2wj

i)

1

A

1

A
Y

ij

d⇣ji d⌫
j
i⌦p

9.6. Dynamical systems 81

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 9.9: Configuration for MTK_NPT
name description
barostat.tau Used to set the mass (see Piston_NPH). [Time > 0]
barostat.T_ref Equilibrium temperature (see Piston_NPH and NH_NVT). Optional—defaults to

the global reference temperature. [Temperature > 0]
barostat.thermostat Description of the barostat chain (see NH_NVT). [Nosé-Hoover chain]
thermostat Description of the particle thermostat (see NH_NVT). [Nosé-Hoover chain]

9.6.7 L_NPT: Langevin constant pressure and temperature

The L_NPT dynamical system is configured as shown in:

integrator.L_NPT = {
barostat = {
tau = ⌧

p

T_ref = T

b

thermostat = {
tau = ⌧

b

seed = s

b

}
}
thermostat = {
tau = ⌧

seed = s

}
}

The Langevin constant pressure and temperature dynamical system [Fel-1995] is a combination of the L_NVT (see
L_NVT: Langevin constant volume and temperature) stochastic dynamics and Piston_NPH (see Piston_NPH: constant
pressure and enthalpy). An additional stochastic differential equation governs the barostat degrees of freedom.

The SDE for this system is:

˙~ri = ~pi/mi +A(⌘)ri/W

ṡi = ⌘isi/W

˙~pi = �r~r
i

U(r,B(s))� (1 + 1/Ng)A(⌘)~pi/W � (~pi + �i
˙~S(t))/⌧

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~p
t
i/mi

!
� (⌘ + �b ˙S(t))/⌧b

where each of the components of the vectors S and ~Si is a standard Wiener process and �b =
p
2WkBTb⌧b.

Although this SDE does not have a conserved scalar, it does have an invariant phase space density, given by:

⌦ = f(r, s,p, ⌘)⌦p

82 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

where f satisfies the PDE:

0 =

X

i

✓
1

mi
~pi +A(⌘)~ri/W

◆
·r~r

i

U(r)

+

X

i

(1 + 1/Ng) (A(⌘)~pi/W) ·r~p
i

f

+

X

i

✓
r~p

i

· (~pif) +
1

2

�2

ir2

~p
i

f

◆
/⌧

+ a

(P (r, s, B(s))� P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~p
t
i/mi

!
·r⌘f

+

X

i

⌘isi/Wrs
i

f + ((r⌘ · (⌘f) +
1

2

�2

br2

⌘f))/⌧b

If T
1

= . . . = Tk = Tb = T , then:

f = exp(�Hp(r, s,p, ⌘)/(kBT)))

is the invariant phase space density.

As with L_NVT, the energy (or heat) added or subtracted by the stochastic portions of the SDE are accounted for in
the extended variable energy term, resulting in a conserved energy useful for diagnostic purposes.

Table 9.10: Configuration for L_NPT
name description
barostat.tau Used to set the mass (see Piston_NPH). [Time > 0]
barostat.T_ref Equilibrium temperature (see Piston_NPH and L_NVT). Optional–defaults to the

global reference temperature. [Temperature > 0]
barostat.thermostat Description of the thermostat of the barostat (see L_NVT). [Langevin parameters]
thermostat Description of the thermostat for the particles (see L_NVT). [Langevin

parameters]

9.6.8 Ber_NVT: Berendsen constant volume and temperature

The Ber_NVT dynamical system [Ber-1984] is configured as shown in:

integrator.Ber_NVT = {
tau = ⌧

min_velocity_scaling = s

min

max_velocity_scaling = s

max

}

Berendsen constant volume and temperature simulations do not sample microstates according to their probability
distribution in a canonical ensemble. Instead, this dynamics keeps the kinetic energy of the system close to the average
kinetic energy in the corresponding canonical ensemble by means of feedback control. It can be used to equilibrate a
system in short simulations.

It is recommended that Berendsen integrators be run with the net center of mass motion periodically removed from
the system to prevent certain long-term degenerate behaviors.

The instantaneous temperature, T ⇤
j , of the atoms governed by thermostat j (with reference temperature Tj) is related

to their kinetic energy by:

Kj =

X

i|�(i)=j

k~pik2/(2mi) =
1

2

NjkBT
⇤
J

9.6. Dynamical systems 83

Desmond Users Guide, Release 3.4.0 / 0.7.2

where Nj is the number of degrees of freedom of thermostat j.

In a Berendsen constant volume and temperature simulation, the particle velocities are rescaled at each full timestep,
�t, to bring the instantaneous temperature T ⇤

j closer to the target temperature Tj : if T ⇤
j > Tj , the particle velocities

are scaled down; if the T ⇤
j < Tj , the particle velocities are scaled up. Velocities are rescaled gradually, according to a

linear rate given by ⌧ .

�T ⇤
j =

�t

⌧
(Tj � T ⇤

j)

To elaborate, scaling the particle velocities by sj scales the kinetic energy and instantaneous temperature by s2j , thus
�T⇤j = (s2j � 1)T ⇤

j serves to determine sj . However, such a procedure tends to be unstable unless the center of mass
motion of the entire system is simultaneously removed. With the mass and velocity of each thermostat defined by:

Mj =

X

i|�(j)=j

mi

and

Mj
~Vj =

X

i|�(j)=j

~pi/mi

The velocity of the system, after rescaling, is:

~V (s) =
1

M

X

j

sjMj
~Vj

where M =

P
j Mj . The new particle momenta are given by:

~pnewi = s�(i)~pi �mi
~V (s)

where s is determined by solving the following nonlinear equation:

�KJ = s2jKj � sjMj
~Vj · ~V (s) +

1

2

Mjk~V (s)k2 �Kj =
�i

⌧

✓
1

2

kBTjNj �Kj

◆

Table 9.11: Configuration for Ber_NVT
name description
tau Relaxation time. [Time > 0]
min_velocity_scaling Minimum factor for scaling particle velocities in one timestep. [0 < Real < 1]
max_velocity_scaling Maximum factor for scaling particle velocities in one timestep. [1 < Real]
thermostat Description of the thermostat for the particles (see NH_NVT). [List of Langevin

parameters]

9.6.9 Ber_NPT: Berendsen constant temperature and pressure

The Ber_NPT dynamical system is configured as shown in:

integrator.Ber_NPT = {
barostat = {
tau = ⌧

p

kappa = 

min_contraction_per_step = s

p

min

max_expansion_per_step = s

p

max

}

84 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

tau = ⌧

min_velocity_scaling = s

min

max_velocity_scaling = s

max

}

Just as a Berendsen NVT simulation does not sample according to canonical distributions, a Berendsen NPT simula-
tion does not sample according to probability distributions in isothermal-isobaric equilibrium ensemble. It employs
feedback control systems which try to keep the instantaneous temperature and pressure close to their reference values.
Temperature control is carried out similarly to Ber_NVT; we discuss only the pressure control here.

Pressure control is performed by scaling the dimensions of the cell at each full timestep �t. If the instantaneous scalar
pressure P = Tr {P} /3 is greater than the target pressure P

0

, the cell is expanded to release the extra pressure; if
P < P

0

, the cell is contracted to build up pressure. The scaling is done gradually, according to a given parameter, ,
which estimates of the compressibility of the system:

 =

1

|B|
@|B|
@P

and a relaxation time ⌧p:

�P =

�t

⌧p
(P

0

� P) = ��|B|
|B|

1



In the isotropic case, this is achieved by scaling each axis of the global cell by a factor s, given by:

s =

✓
1� (P

0

� P)

�t

⌧p

◆ 1
3

⇡ 1� 1

3

(P
0

� P)

�t

⌧p

More generally (for non-isotropic cases), we scale B to B(s), where s satisfies:

a(A(s))= a

✓
I� �t

3⌧p
(PoI�P)

◆

and the forms of a, A, and B are determined by the isotropy.

Note: Berendsen is not expected to work with constant area isotropy.

To avoid changing the box dimensions too much in a single step, each scaling factor s is constrained to s
min

< s <
s
max

.

Table 9.12: Configuration for Ber_NPT
name description
barostat.tau Relaxation time for Berendsen pressure control. [Time > 0]
barostat.kappa Estimated compressibility of the system. [Pressure�1 > 0]
barostat.min_contraction_per_step Minimum factor for scaling the box in one timestep. [0 <

Real < 1]
barostat.max_expansion_per_step Maximum factor for scaling the box in one timestep. [1 <

Real]
tau Relaxation time. [Time > 0]
min_velocity_scaling Minimum factor for scaling particle velocities in one

timestep. [0 < Real < 1]
max_velocity_scaling Real maximum factor for scaling particle velocities in one

timestep. [1 < Real]

9.6. Dynamical systems 85

Desmond Users Guide, Release 3.4.0 / 0.7.2

9.6.10 Brownian motion integrators

integrator.brownie_NVT = {
thermostat = {
seed = i

}
delta_max = �

max

}
integrator.brownie_NPT = {

thermostat = {
seed = i

}
barostat = {
thermostat = {

seed = i

b

}
tau = ⌧

p

T_ref = T

b

}
delta_max = �

max

}

Desmond provides two Brownian dynamics integrators whose primary purpose is to equilibrate systems which might
be in high potential energy configurations due to system preparation artifacts, brownie_NVT and brownie_NPT.
They differ in that the latter will sample global cell dimensions as well as particle positions.

Mathematically, the dynamics of these integrators are no different from that of the corresponding Langevin integrators
(L_NVT and L_NPT) of L_NVT: Langevin constant volume and temperature and L_NPT: Langevin constant pressure
and temperature in the limit as ⌧ = ⌧b ! 0. In this limit, all inertial information is lost and the equations proceed
as either V_NVE or Piston_NPH dynamics with particle and piston momenta being sampled independently from
Maxwell-Boltzmann distributions.

While it is possible to obtain the mathematical behavior of these integrators by taking ⌧ = ⌧b ! 0 in previously
discussed integrators, obtaining samples from the same stationary distribution, the Brownian dynamics integrators
have been modified to stabilize the equilibration process from starting points with very large potential energies (and
forces). Specifically, all particle and piston velocities are clipped so that no particle is displaced by more than a
length of �

max

in any direction on position update. We typically set �
max

= 0.1Å. This additional safety feature
prevents run-away particles or a collapsing/exploding global cell during the initial steps of the simulation and becomes
superfluous later.

Table 9.13: Configuration for brownian
name description
delta_max maximum displacement of any particle position per step. [Length> 0]
thermostat.seed random seed for normally distributed random variables of the particles.

[Integer]
barostat.thermostat.seed random seed for normally distributed random variables of the global cell.

[Integer]

9.6.11 The Multigrator integrator

integrator.Multigrator = {
nve = {
type = none | Verlet | PLS

}
thermostat= {

86 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

type = Langevin | NoseHoover | Antithetic | Mixed
timesteps = n

T

Langevin = {
tau = ⌧

seed = s

}
NoseHoover = {

mts = m

tau = [⌧

1

... ⌧

n

]
}
Antithetic = {

bath_dof = N

b

seed = s

A

}
Mixed = {

type = [Langevin | NoseHoover | Antithetic
Langevin | NoseHoover | Antithetic]

...
}

}
barostat = {
type = MTK
timesteps = n

B

MTK = {
T_ref = T

b

tau = ⌧

p

thermostat = {
type = none | Langevin | NoseHoover | Antithetic
Langevin = {
tau = ⌧

b

seed = s

b

}
NoseHoover = {
mts = m

b

tau = [⌧

b

1

...⌧ b
n

b

]
}
Antithetic = {
bath_dof = N

b

b

seed = s

b

A

}
}

}
}

}

The multigrator is an integrator developed in-house to allow greater flexibility in the design of the integration step,
combining the features of the dynamical system and stochastic integrators. It also allows the user the option of carrying
out thermostat and barostat updates less frequently than once per outer RESPA timestep, reducing the performance
overhead of extended system dynamics.

The integration update steps vary periodically with a full period of nB updates spanning a chemical time of nB�t.
Every update contains a full NVE step, which updates positions and momentum to approximate the solution of

˙~ri = ~pi/mi

˙~pi = �r~r
i

U(r).

according to the selected nve.type and the integrator.respa schedule (only certain RESPA schedules are
currently compatible with the multigrator: 1:1:1, 1:1:2, 1:1:3, 1:1:4, 1:2:2, 1:3:3, 1:4:4, 1:2:4, and 1:3:6) (Note: the

9.6. Dynamical systems 87

Desmond Users Guide, Release 3.4.0 / 0.7.2

none NVE type performs no position or momentum changes). For every sequence of nT inner NVE steps, a pair of
thermostat steps are added to the beginning of the first and to the end of the last such that the full sequence is an NVT
step spanning a chemical time of nT �t. Every nB inner NVE steps, or nB/nT NVT steps, a pair of barostat steps
are added to the beginning of the first and the end of the last such that the full sequence is an NPT step spanning a
chemical time of nB�t.

The Verlet NVE type performs a standard RESPA integrator step, splitting the force field into weighted components
according to the schedule (see RESPA). The PLS is similar to Verlet in that it creates an integrator step from momentum
and position updates similar to a RESPA step, but the weights of the force components and individual time increments
of each update have been somewhat modified such that true harmonic motions are approximated to higher order than
/ �2t . The PLS steps are generally less stable than the analogous Verlet steps, see below.

The timescales of the steps employed for thermostat and barostat updates are independent of nB , nT , and the RESPA
schedule. Each pair of steps of a given type updates its associated variables by an approximation to a differential
equation evolved, as described below, for a total time equal to an inner timestep, �t. In the limit as �t ! 0, a multigrator
configuration that corresponds to one of the previous integrators (NH_NVT, MTK_NPT, L_NPT, etc.) approaches the
results of that integrator with barostat ⌧ parameters multiplied by nB and thermostat ⌧ parameters multiplied by nT .

The Langevin thermostat steps evolve the p variables according to

˙~pi = �(~pi + �i
˙~Si(t))/(nB⌧),

where each component of the random vector ~S(t) is a standard Wiener process.

The NoseHoover thermostat steps add Nosé-Hoover chains consisting of 2 extended variables (⇣ji , ⌫
j
i) for each ⌧ ji ,

governing the particles of thermostat j, and evolve them and the p variables according to

˙⇣ji = ⌫ji /w
j
i

˙~pi = �~pi⌫�(i)
1

/w�(i)
1

⌫̇j
1

=

X

i|�(i)=j

k~pik2/mi � Cj
1

� ⌫j
1

⌫j
2

/wj
2

⌫̇ji = (⌫ji)
2/wj

i�1

� Cj
i � ⌫ji ⌫

j
i+1

/wj
i+1

⌫̇jn = (⌫jn)
2/wj

n�1

� Cj
n

where wj
i = Cj

i (nT ⌧
j
i)

2 with Cj
1

= kBTjNj and Cj
i>1

= kBTj , where Nj is the number of degrees of freedom of the
governed particles j.

The Antithetic thermostat steps apply the discrete antithetic thermostatting dynamics described in Anti_NVT:
Antithetic constant volume and temperature.

The Mixed thermostat applies two thermostatting dynamics symmetrically. Specifically, the thermostat step at the
beginning of the sequence of NVE steps applies the two thermostats consecutively in the order they are listed in the
Mixed.type field. The thermostat step at the end of the NVE steps applies them in the reverse order. The consituent
thermostats are configured exactly as they otherwise would be, albeit placed within the Mixed block. For this purpose,
if the consituent elements both represent a continuous thermostatting scheme (Langevin or NoseHoover), the
effective relaxation time is the harmonic mean of their individual relaxation times. If instead the Antithetic
thermostat is one of the elements, then the relaxation time is that of the other element.

To have no thermostat set thermostat = none.

The only type of barostat supported is MTK (to have no barostat set barostat = none). The MTK type introduces
extended variables s and ⌘ (as described in Piston_NPH: constant pressure and enthalpy), and add an extended variable
energy equal to

P
i ⌘

2

i /(2W) +

�
P
0

� Tr

�
TB(s)�1

 �
|B(s)|. The MTK barostat’s velocities, ⌘, can be thermostated

by one of Langevin, NoseHoover, or Antithetic (to have no thermostat set barostat.thermostat =
none).

88 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

Without a thermostat the MTK barostat steps evolve the r,p, s, ⌘ variables as a Martyna-Tobias-Klein barostat without
its Nosé-Hoover chain,

˙~ri = A(⌘)~ri/W

ṡi = ⌘isi/W

˙~pi = � (1 + 1/Ng)A(⌘)~pi/W

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~pti
mi

!

The barostat mass, W , is given by W = (3Ng + d)kBTb(nB⌧p)2.

With the Langevin thermostat, the barostat steps evolve the r,p, s, ⌘ variables as a Langevin piston,

˙~ri = A(⌘)~ri/W

ṡi = ⌘isi/W

˙~pi = � (1 + 1/Ng)A(⌘)~pi/W

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~pti
mi

!
� (⌘ + �b ˙S(t))/(nB⌧b)

where each of the components of the vectors S and ~Si is a standard Wiener process and �b =
p
2WkBTb⌧b.

With the NoseHoover thermostat, the barostat steps add two variables (⇣bj , ⌫bj) for each ⌧ bj and evolve them and the
r,p, s, ⌘ variables as a Martyna-Tobias-Klein piston,

˙~ri = A(⌘)~ri/W

ṡi = ⌘isi/W

˙⇣ji = ⌫ji /w
j
i

˙~pi = � (1 + 1/Ng)A(⌘)~pi/W

⌘̇ = a

(P(r,p,B(s))�P

0

(B(s)))|B(s)|+ 1

Ng

X

i

~pi~pti
mi

!
� ⌘⌫b

1

/wb
1

⌫̇b
1

=

X

i

⌘2i /W � Cb
1

� ⌫b
1

⌫b
2

/wb
2

⌫̇ji = (⌫ji�1

)

2/wj
i�1

� Cj
i � ⌫ji ⌫

j
i+1

/wj
i+1

⌫̇jn = (⌫jn�1

)

2/wj
n�1

� Cj
n

where each of the components of the vectors S and ~Si is a standard Wiener process and �b =
p
2WkBTb⌧b.

With the Antithetic thermostat, the barostat steps are as in the unthermostatted case, albeit the ⌘ variables are
governed by the discrete antithetic dynamics described in Anti_NVT: Antithetic constant volume and temperature.

9.6. Dynamical systems 89

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 9.14: Configuration for Multigrator
name description
nve.type the type of NVE step. [none|Verlet|PLS]
thermostat.type the type of thermostat step.

[Langevin|NoseHoover|Antithetic|Mixed]
thermostat.timesteps Number of innermost time steps per full thermostat step. [Integer> 0 a

multiple of the outer RESPA timesteps]
barostat.type the type of barostat step. [MTK]
barostat.thermostat.type thermostat type of the barostat step.

[Langevin|NoseHoover|Antithetic]
barostat.timesteps Number of innermost time steps per full barostat step. [Integer> 0 a

multiple of the thermostat timesteps]

The particular parameters for the various kind of thermostat and barostat steps are discussed in sections on other
integrators.

Stability of the PLS and Verlet inegrators

Although the PLS NVE steps have accuracy advantages over Verlet NVE steps for integrating harmonic motion as
well as advantages in reproducing certain thermodynamic statistics, they can have decreased stability (the maximum
�t for which the simulation does not blow up) in comparison.

Linear stability theory can be carried out analytically, by integrating a harmonic oscillator and looking for modes
which positive exponential growth, but such analysis is not useful in making stability comparisons for schemes where
the force field has been split into various components active in different phases (any component may contain the hypo-
thetical harmonic potential). Instead, we have carried out an empirical analysis on a test system (5dhfr), comparing the
results of Verlet and PLS at different RESPA schedules. The maximum �t reported is the value of integrator.dt
for which the simulation, judging by a sudden increase in energy drift, began to become unstable.

Table 9.15: PLS stability comparison
method-schedule max �t (fs) fraction of Verlet111 fraction of Verlet

Verlet 1,1,1 3.7 1.00 1.00
Verlet 1,2,2 3.1 0.84 1.00
Verlet 2,2,2 2.0 0.54 1.00
Verlet 1,3,3 2.3 0.62 1.00
Verlet 3,3,3 1.3 0.35 1.00
Verlet 1,4,4 1.7 0.46 1.00
PLS 1,1,1 3.7 1.00 1.00
PLS 1,1,2 2.3 0.62 0.62
PLS 1,1,3 2.7 0.73 0.73
PLS 1,1,4 2.5 0.68 0.68
PLS 1,2,2 2.3 0.62 0.74
PLS 1,3,3 2.3 0.62 1.00
PLS 1,3,6 1.5 0.41 0.65
PLS 1,2,4 2.1 0.57 0.68
PLS 1,4,4 1.7 0.46 1.00

Empirical estimation of the maximum �t before the onset of instability for various types of NVE step. The last two
columns give the fraction of each method’s �t relative to that of Verlet 1,1,1 and to Verlet with the same schedule.

90 Chapter 9. Dynamics

Desmond Users Guide, Release 3.4.0 / 0.7.2

9.6.12 The Concatenator integrator

integrator.Concatenator = {
sequence = [{
name=key

1

type=type
1

time=T
1

} ... {
name=key

n

type=type
n

time=T
n

}]
key

1

={ ... }
...
key

n

={ ... }
}

The concatenator is a means to alternate different integrator types for various periods of time in a cyclic sequence. The
sequence parameter specifies the integrator types, typei, to be run for periods of time, Ti. The sequence is treated
cyclically, starting over from the first one after the last one finishes. The configuration section for each integrator is
given by an arbitrary key name, keyi, in the remainder of the concatenator configuration.

For example, if one wished to alternately employ L_NVT and V_NVE for periods of 100 ps and 500 ps each, one
configures this integrator as follows:

integrator.Concatenator = {
sequence = [{
name=firstone
type=L_NVT
time=100

} {
name=secondone
type=V_NVE
time=500

}]
firstone = {
thermostat = {

tau = ⌧

seed = s

}
}
secondone = {}

}

A typical application would be to have one integrator function as an equilibration, or initialization, of the second
integrator.

Table 9.16: Configuration for Concatenator
name description
sequence[i].type The type of integrator i in the sequence, e.g. V_NVE, MTK_NPT, etc. [string]
sequence[i].time Length of time for which to run integrator i in the sequence. [time]
sequence[i].name Arbitrary key name, keyi, for the integrator specific configuration information for

integrator i in the sequence. [string]
keyi The integrator specific configuration section for the particular integrator type of

integrator i in the sequence. [configuration]

9.6. Dynamical systems 91

Desmond Users Guide, Release 3.4.0 / 0.7.2

92 Chapter 9. Dynamics

CHAPTER

TEN

FREE ENERGY SIMULATIONS

This chapter explains the concepts necessary to configure ligand-binding and alchemical free-energy simulations and
those using the Bennett acceptance ratio method, as well as describing how to prepare a structure file for free energy
simulations.

10.1 Configuring free energy simulations

Free energy simulations are configured as shown in:

force.term = {
list = [... key ...]
key = {
type = alchemical|binding
alpha_vdw = ↵

window = i

w

output = {
first = t

f

interval = t

i

name = filename

}
weights = { ... }

}
}

The free energy F of a thermodynamic system with Hamiltonian H is related to the partition function Z of the
corresponding ensemble by:

F = �kBT ln(ZH)

where kB is the Boltzmann constant and T is the temperature and ZH is the partition function for the Hamiltonian
H . The free energy is not an average of some quantity over the phase space; therefore it can not be computed from
molecular dynamic simulations or other importance sampling techniques. Fortunately, what matters in problems of
chemistry and biology is the relative free energy: the difference between two systems acting through different Hamil-
tonians. This difference in free energy can be expressed as an ensemble average and is thus amenable to computation
by importance sampling.

Consider two systems with different Hamiltonians H
0

and H
1

. In the canonical ensemble at temperature T , the

93

Desmond Users Guide, Release 3.4.0 / 0.7.2

free-energy difference between the two systems is:

F = F
1

� F
0

= �kBT ln(Z
0

/Z
1

)

= �kBT ln

Z
Z�1

0

e��H1(r)
Y

i

d3~ri

= �kBT ln

Z
Z�1

0

e��H0(r)e�(H0(r)�H1(r))
Y

i

d3~ri

= �kBT ln

D
e�(H0(r)�H1(r))

E

0

where d3~ri is the volume elements of the position of particle i.

This equation suggests that, at least in theory, we can compute �F by sampling r according to the canonical dis-
tribution e��H0(x) and computing the average of e�(H0(x)�H1(x)). In practice, we use better estimators, such as the
Bennett acceptance ratio (BAR) method (see Bennett acceptance ratio method), to compute �F because of its lower
statistical variance.

The variance in the computed �F is small only when the two Hamiltonians are similar such that the two systems
overlap significantly in phase space. In order to compute �F when H

0

and H
1

are very different, we introduce n� 1

interpolating Hamiltonians, H�, where � 2 {i/n : 0  i  n}, between H
0

and H
1

, such that each pair of adjacent
Hamiltonians is similar enough that the corresponding systems overlap significantly in phase space. This family of
Hamiltonians therefore provides a smooth and gradual transition from the initial state H

0

to the final state H
1

.

To compute the free energy difference between H
0

and H
1

, n independent simulations are run for each � = iw/n.
Each such simulation computes a pair of energy differences, (w(i

w

,+), w(i
w

,�)

), where w(i
w

,+)

= H
(i

w

+1)/n�Hi
w

/n

and w(i
w

,�)

= H
(i

w

�1)/n � Hi
w

/n, sampled at a prescribed time interval ti. The free energy differences be-
tween the associated consecutive pair of H� is then estimated from the (w(i

w

,+), w(i
w

,�)

) samples using the Ben-
nett acceptance ratio method. These estimates W (i

w

,±) are written to the output file by the name specified in
force.gibbs.output.name in the format shown in:

tf W (i
w

,�)

0

W (i
w

,+)

0

tf + ti W (i
w

,�)

1

W (i
w

,+)

1

. . .

tf +mti W (i
w

,�)

m W (i
w

,+)

m

Combining two outputs from simulation iw and iw + 1, we can estimate the free energy difference �Fi
w

/n,(i
w

+1)/n

between systems Hi
w

/n and H
(i

w

+1)/n. The desired free energy difference between H
0

and H
1

is then given by
�F = �F

0,1/n + · · ·+�F
(n�1)/n,1.

Table 10.1: Configuration for FEP
name description
type The type of free energy simulation to run. [alchemical|binding]
alpha_vdw The parameter in the softcore potential. [Real � 0]
window Selecting the values to use in this simulation. [Integer 2 {0, 1, . . . , n}]
output.first The time to write the first energy difference value. [Time � 0]
output.interval The interval at which to write the energy difference estimates. [Time � 0]
output.name The name of the file to which to write the energy estimates. [Filename]

10.1.1 Bennett acceptance ratio method

Consider a simulation under Hamiltonian Ha and another under Hb, both at temperature T . Na samples of W (+)

=

Hb(r) � Ha(r) are accumulated in the former simulation and Nb of W (�)

= Ha(r) � Hb(r) in the latter. The free

94 Chapter 10. Free Energy Simulations

Desmond Users Guide, Release 3.4.0 / 0.7.2

energy difference between systems a and b is estimated by solving the following nonlinear equation for �F :

N
aX

i=1

1

1 +

N
a

N
b

exp(�(W (+)

i ��F))

�
N

bX

j=1

1

1 +

N
a

N
b

exp(�(�F +W (�)

j))

= 0

Charles Bennett (see [Ben-1976]) first demonstrated that this solution provides the minimum-variance estimate of �F .
Two decades later, Michael Shirts et al. (see [Shi-2003]) proved that it is also the maximum-likelihood estimator of
�F .

The Bennett acceptance ratio method is implemented in the script bennett.py. It is tailored to work with output
files of the above form.

10.1.2 Binding free energy simulations

force.term.*key* = {
type = binding
...
weights = {
es = [C

0

C

1/n

... C

1

]
vdw = [v

0

v

1/n

... v

1

]
}

}
force.nonbonded.near = {

type=binding:softcore
... # same parameters as default

}
force.nonbonded.far = {

type=binding:pme|binding:gse
... # same parameters as pme or gse

}

Binding free energy simulations compute the free energy of adding a molecule (called the ligand) to the chemical
system. Effectively, this free energy is the difference between:

• the system in which the ligand is fully interacting with the rest of the system, and

• the system in which the ligand is not interacting at all with the rest of the system.

Denoting the ligand degrees of freedom by rL and those of the rest of the system by rS , the Hamiltonian of the system
can be separated into three components:

H(r) = HL(rL) +HS(rS) + V (rL, rS),

where HL and HS are the Hamiltonians of the ligand and the rest in isolation and V is the interaction potential between
the particles of the ligand and the rest.

We introduce a family of interpolating Hamiltonians:

H�(r) = HL(rL) +HS(rS) + V�(rL, rS),

such that V
0

(rL, rS) = 0 and V
1

(rL, rS) = V (rL, rS).

At present, Desmond handles only the most common case where ligand molecules do not have covalent interactions
with the rest of the system. In terms of a classical force field, this means that the interaction between the ligand and
the rest of the system consists of nonbonded (van der Waals and electrostatic) interactions only. Desmond uses the
following form for the interaction potential Vs:

V�(rL, rS) =
X

i2L,j2S

fv
�

(k~ri � ~rjk; ✏ij ,�ij ,↵) + C�
X

i2i,j2s

qiqj
k~ri � ~rjk

10.1. Configuring free energy simulations 95

Desmond Users Guide, Release 3.4.0 / 0.7.2

where fv is the following softcore potential governed by parameter ↵:

fv(r; ✏,�,↵) = 4v✏

 ✓
�6

↵(1� v)2�6

+ r6

◆
2

� �6

↵(1� v)2�6

+ r6

!
, (10.1)

where ✏ij and �ij are the usual Lennard-Jones parameters. The soft-core potential is used so that the energy difference
W (i

w

,+) is always bounded for v = 0, even when non-ligand atoms are infinitesimally close to the ligand atoms.

In theory, the path of changing (v, C) from (0, 0) to (1, 1) should not affect the computed �F , because free energy
is a state variable, independent of history and determined only by the thermodynamic state. Practically, however, the
choice of the (v, C) path affects both the convergence and the stability of simulations. Most importantly, when the
ligand and the rest of the system interact through the softcore potential (that is, v 6= 1), non-ligand atoms can overlap
with ligand atoms in space, causing the Coulombic interaction between their partial charges to diverge, unless this
electrostatic interaction has been turned off (that is, C = 0). Hence, it is always necessary to turn off Coulombic
interactions before turning off Lennard-Jones interactions.

An example of a sensible � schedule for a binding free energy simulation is given in:

weights = {
vdw = [0.00 0.25 0.50 0.75 1.00 1.00 1.00 1.00 1.00]
es = [0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00]

}

To carry out ligand-binding free energy simulations, you must specify which atoms in the system belong to the ligand
by setting grp_ligand for these atoms to 1, and for all other atoms to 0 in the structure file.

Table 10.2: Configuration for binding FEP
name description
weights.vdw parameterizes intermediate Lennard-Jones interactions. [List of 0  Reals  1]
weights.es parameterizes intermediate electrostatic interactions. [List of 0  Reals  1]

10.1.3 Alchemical free energy simulations

Alchemical free energy simulations are configured as shown in:

force.term.*key* = {
type = alchemical
...
weights = {
bondA = [bA

0

b

A

1/n

... b

A

1

]

bondB = [bB
0

b

B

1/n

... b

B

1

]

vdwA = [vA
0

v

A

1/n

... v

A

1

]

vdwB = [vB
0

v

B

1/n

... v

B

1

]

qA = [cA
0

c

A

1/n

... c

A

1

]

qB = [cB
0

c

B

1/n

... c

B

1

]

qC = [cC
0

c

C

1/n

... c

C

1

] # optional
}

}
force.nonbonded.near = {
type=alchemical:softcore
... # same parameters as default

}

In alchemical free energy simulations, a part of the system (called A) is changed into something else (called B).
In this transformation, some atoms change their Lennard-Jones parameters and partial charges, and some bonded
interactions change their parameters. We introduce a family of interpolating potential functions parameterized by �

96 Chapter 10. Free Energy Simulations

Desmond Users Guide, Release 3.4.0 / 0.7.2

and (bA, bB , vA, vB , cA, cB , cC). The potential function of H� is the sum of electrostatic, softcore Lennard-Jones,
and bonded terms

V�(r) = V elec

� (r) + V vdw

� (r) + V bond

� (r).

The interpolating electrostatic interaction is computed using partial charges linearly interpolated between A and B
(and C, if a qC schedule is given). In other words, it is computed using the charges:

qi = cA� q
A
i + cB� q

B
i + cC� q

C
i .

The alchemical charges, qA and qB (and qC , if a qC schedule is given) are taken from the structure file. The Lennard-
Jones interactions for a pair of atoms, i and j, changing their combined Lennard-Jones parameters from (✏Aij ,�

A
ij) to

(✏Bij ,�
B
ij), the following intermediate potential is used:

V vdw

� (~ri,~rj) = fvA

�

(k~ri � ~rjk, ✏Aij ,�A
ij) + fvB

�

(k~ri � ~rjk, ✏Bij ,�B
ij)

where f is the softcore potential defined in Equation (10.1). The intermediate bonded interactions are the linear
interpolations between the interactions with parameters in A and B:

V bond

� (r) = bA� V
bond

A (r) + bB� V
bond

B (r)

where the A state and B state bonded interactions, V bond

A and V bond

B , are taken from the structure file. Ar-
guably, alchemical partial 14 terms (see the partial 14 description <descr:partial14>) should transform accord-
ing to the v{A,B}, c{A,B} and adopt the soft-core functional form of Equation (10.1). Within a DMS file, users
can select this version by replacing their alchemical_pair_12_6_es terms with identically parameterized
alchemical_pair_softcore_es terms.

Although the path of changing V� from V
0

to V
1

should not, in theory, affect the outcome of the free energy calculation,
in practice, the choice of � path determines the precision of calculated �F , as well as the stability of the simulations.
For instance, if an atom has different Lennard-Jones parameters in states A and B, at intermediate v�, it is interacting
with other atoms through the soft-core potential. Unlike the Lennard-Jones potential that rises steeply to infinity as
the inter atomic distance r decreases to zero, the soft-core potential remains bounded for r = 0. This means that
other atoms can be infinitesimally close to this atom. If the concerned atom has a nonzero partial charge, infinite
electrostatic energy results; therefore, it’s important to turn off the partial charges on mutating atoms before changing
their Lennard-Jones interactions. Here is a sensible schedule of alchemical transformation:

weights = {
bondA = [1.00 1.00 1.00 0.75 0.50 0.50 0.50 0.25 0.00 0.00 0.00]
bondB = [0.00 0.00 0.00 0.25 0.50 0.50 0.50 0.75 1.00 1.00 1.00]
qA = [1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00]
qB = [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00]
vdwA = [1.00 1.00 1.00 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00]
vdwB = [0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00 1.00 1.00 1.00]

}

Table 10.3: Configuration for alchemical
name description
lambda.vdwA values to parameterize the Lennard-Jones interactions in the A state. [List of 0  Real  1]
lambda.vdwB values to parameterize the Lennard-Jones interactions in the B state. [List of 0  Real  1]
lambda.qA values to scale the partial charges in A state. [List of 0  Real  1]
lambda.qB values to scale the partial charges in B state. [List of 0  Real  1]
lambda.qC values to scale the partial charges in C state. Optional — by default there are no C state

charges [List of 0  Real  1]
lambda.bondA values to scale the bond terms in A state. [List of 0  Real  1]
lambda.bondB values to scale the bond terms in B state. [List of 0  Real  1]

10.1. Configuring free energy simulations 97

Desmond Users Guide, Release 3.4.0 / 0.7.2

98 Chapter 10. Free Energy Simulations

CHAPTER

ELEVEN

ENHANCED SAMPLING AND
UMBRELLA SAMPLING

11.1 Introduction

11.1.1 Who should read this chapter?

This document is intended to provide all the information needed for a Desmond user to perform umbrella sampling
and metadynamics using the enhanced sampling plugin. Basic understanding of the theory of umbrella sampling and
metadynamics is assumed. Though the information in this document will be of interest to developers, the primary
developer documentation is the Doxygen comments in the source code.

11.1.2 Enhanced sampling functionality

The enhanced sampling plugin is capable of performing umbrella sampling for potentials that can be expressed as
functions of the coordinates of a subset of particles, expressed as VMD selections. To support complex potentials, a
simple interpreter for symbolic expressions has been developed. The interpreter allows the user to specify the potential
using a set of primitive operations, such as norm and arithmetic operators, which will be transformed into a Desmond
configuration file. The advantage of symbolic expressions is that the user needs only to specify the potential, and the
force associated with the potential will be calculated automatically. The expressions may also include more complex
primitives, such as RMSD computation, that specialize the expressions to handle common chemistry potentials. It is
expected that the number of available chemistry-specific primitives will grow as awkward or frequently-used constructs
are identified.

Metadynamics is supported through the same interpreter as umbrella sampling, and the collective coordinates needed
for metadynamics are specified using the same symbolic expressions. The metadynamics coordinates may also be
arbitrary functions of the particle positions, so long as they are expressible using the expression primitives. Support
for metadynamics is provided through the meta keyword in the symbolic expressions, and umbrella sampling may be
used in conjunction with metadynamics (e.g. to provide “walls” to bound the collective coordinates).

It is important to understand that whether being used for umbrella sampling or metadynamics, the action of the en-
hanced sampling plugin is always applied at the outer RESPA timestep. For a discussion of how Desmond applies
plugins see the Desmond User’s Guide.

99

Desmond Users Guide, Release 3.4.0 / 0.7.2

11.2 Using the Enhanced Sampling Plugin

11.2.1 Workflow

Enhanced sampling potentials must be specified using the imperative m-expression syntax described below. The user
will then run the enhsamp program to transform the potential description into an s-expression form suitable to use as
a Desmond configuration file. The enhsamp is also responsible for resolving VMD atom selections using a Maestro
structure file specified in its command line arguments.

A typical usage of the enhanced sampling plugin is given below.

edit enh.pot # write potential file
enhsamp structure-file.dms enh.pot > enh.ark # run parser
mdsim --include desmond-config.ark --include enh.ark # launch Desmond

The output of the enhsamp program is a valid Desmond configuration file, and including the enhsamp output with a
standard Desmond configuration file is all that is required to use the enhanced sampling plugin. The structure file used
with Desmond must be the same as the structure file given to the enhsamp program.

11.2.2 Output format

By default, the only output generated is the chemical time and the value of the enhanced sampling potential. The user
may specify additional output using the print function in symbolic expressions. This allows the user to print the
value of an arbitrary expression to aid in debugging and interpreting results. Because of looping and other constructs in
the symbolic expressions, the amount of output generated may not be the same every time the interpreter is called. In
addition, if print is called within a loop, a large amount of output may be generated on each step. For these reasons,
a structured output format is used instead of column output. This output occurs only every interval picoseconds
to a file whose name is given by the name parameter.

Each line of output represents one evaluation of the enhanced sampling plugin and is of the format [[name1 value1]
[name2 value2] ...]. Each value is a list of floating point numbers.

11.2.3 Example configuration

The following is an example of a simple configuration that creates a harmonic potential between atoms with GIDs 10
and 20.

declare_output(name = "cvseq", # output file

first = 0.0, # first output occurs at time 0.0 ps

interval = 0.020); # output every 0.020 ps

p = atomsel("index 10 20"); # select the needed particles

7.5 * dist(p[1], p[0])^2; # compute the potential

The syntax of this m-expression code is explained below.

11.3 Interpreter

This section documents the m-expression syntax and semantics. The complete function reference is given in Enhanced
sampling function reference.

100 Chapter 11. Enhanced Sampling and Umbrella Sampling

Desmond Users Guide, Release 3.4.0 / 0.7.2

11.3.1 Syntax

Potentials are specified in the interpreter using an imperative syntax. The program is divided into a header where
global declarations are made, and a body where executable statements are written. Both the header and the body are
semicolon-separated lists of statements, and the header is distinguished from the body only by the type of statements
allowed in each section. In the example configuration above, the only header statement was the declare_output
statement, and the rest of the statements constituted the body.

Each statement in the body is either an assignment or an expression. Each assignment is a variable name, followed
by an equal sign, and then an expression. Each variable may only be bound once (i.e. this is a single assignment
language), and later references to the variable use the stored value of the variable. The only exception to the single
binding rule is if the variables are at different scopes, as explained below.

Expressions are written in a style similar to C or Python. Functions are called by writing the function name followed
by a comma-separated list of arguments enclosed by parentheses. The binary operators +, -, *, /, and ^ are available,
and they obey the normal precedence rules. Unary negation is indicated by writing a negative sign at the front of
an expression. Importantly, the subtraction operator does not perform a minimum image computation. See Periodic
Images for more information. Array subscripts are indicated by using the syntax a[i], where both the array and the
index may be arbitrary expressions. Array subscripts have higher precedence than the binary arithmetic operators.

Expressions may indicate conditionals with the notation

if condition

then positive-branch

else nonpositive-branch

Note that if returns a value and may be used in expressions. The condition must be a single number, and the positive
branch is used if that number is greater than zero. An example is

interaction = if time() - 10
then k * x^2 # if time > 10, use harmonic potential
else 0; # otherwise, use zero potential

The unneeded branch is not executed.

The only looping construct in the m-expression language is the series expression, which sums its body over a set
of iterators. As an example, the following series computes the sum of all harmonic pairwise interactions between sets
of particles a and b.

s = series (i=0:length(a), j=0:length(b))
k * dist(a[i], b[j])^2;

Each iterator is specified as

iter_name = lower_bound:upper_bound

and the iteration is carried out for all integers i where lower_bound <= i < upper_bound.

Expression blocks and scoping are available. Blocks are indicated by wrapping a sequence of statements in braces,
and blocks may appear anywhere within expressions. The only requirement is that the last statement in a block must
be an expression and not an assignment. The value of the block is then the value of its last statement. Each block
introduces a nested scope so that assignments made within a block are only available inside the block and shadow
assignments made outside the block. An example that uses blocks is the following all-pairs interaction.

s = series (i=0:length(a), j=0:length(b)) {
r = dist(a[i], b[j]);
if r - 5

then {
r2 = (r-5)^2;
k * r2;

11.3. Interpreter 101

Desmond Users Guide, Release 3.4.0 / 0.7.2

} else {
0;

};
};

Note that the entire body of the enhanced sampling program is treated as if it is wrapped in a block.

Integer and floating point literals may be used in the normal manner. Some functions take strings as arguments. This
is a special behavior, and strings do not exist anywhere else within the interpreter.

11.3.2 Interpreter values

All values within the interpreter are arrays of germs. A germ is a double-precision value and its differential. The
differentials are not manipulated directly by the user; instead, every function uses the differentials of its arguments
to compute the differential of its return value. In this way, the force associated with the user-specified potential is
computed automatically.

Numeric literals in a symbolic expression are converted internally to arrays of length 1 with zero differential.

Some functions take an integer argument. Since there are no integers in the interpreter, a length one array should
be used instead. The element of this array will be rounded to get an integer, and the differential of the germ will
be discarded. If a function requires a particle identifier, then this should be a reference to a particle obtained by the
atomsel function.

11.3.3 Static Variables

The interpreter has the ability to retain the value of certain variables for use on later time steps. The variables that
should be preserved for future time steps are declared in the header with the static keyword. The type (array length)
of each static variable must be specified in parentheses after the variable name. Static variables can be read like any
other variable, but storing values in static variables must be done with the store function. The first argument to the
store function is the variable name, while the second argument to the function is the value to be stored. It is important
to note that the action of store is delayed, and the values of static variables do not change until the end of the time
step. For this reason, all references to a static variable on the same time step will give the same value, regardless of
stores executed on that time step. By the next time step, any stores will have had their effect and changed the value of
the static variable. If a variable is referenced before a value has been stored in it, then the value of the variable will
be a zero array of the correct length. For the purpose of derivative computation, the derivative of a static variable is
always zero, even if the value stored had a nonzero derivative.

As an example of two uses of static variables, the following potential restrains a particle to its initial location and prints
the displacement vector of the particle on this time step.

static x0(3), x_last(3);

k = 10;
p = atomsel("index 10");
x = pos(p[0]);

store(x_last, x);
print("x_diff", min_image(x-x_last));

if time()
then {

k * norm2(min_image(x-x0));
}
else {

store(x0, x);

102 Chapter 11. Enhanced Sampling and Umbrella Sampling

Desmond Users Guide, Release 3.4.0 / 0.7.2

0;
};

Note that the printed difference will not make sense for the initial step because static variables are initialized with
zeros.

11.3.4 Function classes

There are four classes of functions which differ in the way they evaluate their arguments. The classes are Normal,
Threaded, Binary Threaded, and Special Forms. Unless otherwise noted, arguments are evaluated in left-to-right order.

Normal functions evaluate all their arguments before the function body is entered. After the arguments are evaluated,
the function executes with the value of the arguments.

Threaded functions take exactly one argument and compute their return value element-wise over the elements of their
argument. For example, if cos is applied to an array of angles, the result is an array of cosine values in the same order
as the input array. This behavior should be familiar to users of software packages like MATLAB.

Binary Threaded functions take exactly two arguments, and represent an underlying function of two scalar arguments.
If the two arguments to the Binary Threaded function are the same length, then the n-th element of the return value is
the underlying binary function applied to the n-th elements of each of the two arguments. For example, a+b is just the
element-wise sum of a and b. If a binary threaded function has an argument of length 1, then that argument is paired
with each of the elements of the other argument. For example, the return value of a*5 is the array whose n-th element
is 5 times the n-th element of a. The behavior of Binary Threaded functions is similar, but not identical, to MATLAB‘s
treatment of addition.

Special Forms evaluate some or all their arguments in a non-standard manner. The output statement print is an
example. The documentation for these functions explain their argument evaluation rules.

11.3.5 Functions

Below is a list of the available functions with brief descriptions of their behavior. Full descriptions of the functions are
available in Enhanced sampling function reference.

Table 11.1: Brief description of enhanced sampling functions

* multiplication
+ addition
- subtraction
/ division
^ raise to integer power
acos arccosine
angle cosine of angle for 2 vectors
angle_gid cosine of angle for 3 particles
angle_gid_radians angle of 3 particles (unstable for angles near 0 or ⇡)
angle_radians angle of 2 vectors (unstable for angles near 0 or ⇡)
array create array
atan2 arctangent for two arguments
center_of_geometry center of geometry for a group of particles
center_of_mass center of mass for a group of particles
contact_map contact map for a group of atoms
cos cosine
cross cross product

Continued on next page

11.3. Interpreter 103

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 11.1 – continued from previous page
delta min-image vector between two particles
dihedral cosine and sine of dihedral angle for 3 vectors
dihedral_gid cosine and sine of dihedral angle for 4 particles
dihedral_gid_radians dihedral angle for 4 particles (problematic for angles near ±⇡)
dihedral_radians dihedral angle for 3 vectors (problematic for angles near ±⇡)
dist min-image distance between two particles
dot dot product
exp exponent
gibbs_max a softened version of the minimum
gibbs_min a softened version of the minimum
helix helicity
length array length
log logarithm
mass mass of particle in amu
meta metadynamics
min_image minimum image of vector
mod modulus
ncoordination returns the coordination number between two groups of atoms.
norm norm of vector
norm2 squared norm
pos lookup particle position
pos_inner_prod weighted sum of particles positions
pow positive base raise to arbitrary power
print create output
rad_gyration radius of gyration for a group of atoms.
rmsd RMS displacement from model structure
rmsd_torsion torsional rmsd for a group of atoms
sign sign function with sign(0) = +1
sin sine
sqrt square root
store store value for use at a later time step
sum sum an array
time chemical time

11.3.6 Periodic Images

The interpreter does not distinguish between vectors representing atom coordinates and arbitrary length-3 arrays, and
the user is responsible for considering periodic images when computing collective variables. In particular, the code
pos(gid[2]) - pos(gid[1]) will not compute the minimum image displacement due to wrapping of periodic
coordinates. The function min_imagewill compute the minimum image of an arbitrary length-3 array for the current
simulation box. As a convenience, the functions delta and dist cover the most common coordinate differences
that are needed. They are defined as follows.

delta(gid2, gid1) == min_image(pos(gid2) - pos(gid1))
dist(gid2, gid1) == norm(min_image(pos(gid2) - pos(gid1)))

For algorithms that operate on widely separated parts of the protein, such as center of mass, the user is strongly
encouraged to consider carefully how periodic images will be handled. Note that functions like the Enhanced Sampling
implementation of RMSD have carefully specified behavior with respect to periodic images, and the user should review
this behavior to ensure that the correct periodic images are chosen.

104 Chapter 11. Enhanced Sampling and Umbrella Sampling

Desmond Users Guide, Release 3.4.0 / 0.7.2

11.4 Metadynamics

Metadynamics is a free energy perturbation method which enhances sampling of the underlying free energy space by
biasing against previously-visited values of user-specified collective variables. The biasing is achieved by dropping
kernels (only Gaussian kernels have been implemented) at the current location of the simulation in the phase space
of the collective variables. This history-dependent potential encourages the system to explore new values of the
collective variables, and the accumulation of potential allows the system to cross potential barriers much more quickly
than would occur in standard dynamics.

11.4.1 Usage

The enhanced sampling plugin implements metadynamics by using the declare_meta header to define the accu-
mulator for the history-dependent potential and using the meta function to compute the potential for the interpreter.
Each call to declare_meta creates an independent kernel accumulator, which does not share kernels with any other
accumulator. The accumulators are indexed in the order that they are declared. The parameters to declare_meta
are as follows.

• dimension: defines the dimension of the collective variable space, which must be a positive integer.

• cutoff: If the collective variables in the current configuration are more than cutoff number of kernel widths away
from the center of a kernel, the kernel is not computed. If the cutoff is 0.0, an infinite cutoff is used.

• first: determines the first time at which a Gaussian is added.

• interval: determines the time between Gaussian drops. A value of 0.0 indicates that a Gaussian is dropped on
every time step.

• name: If non-empty, this gives the name of the kernel sequence file, which logs every kernel added to the
simulation. See below.

• initial: If non-empty, gives the location of a file containing kernels to be added at the beginning of a simulation.
See below.

All kernels that are added to the simulation are logged to the kernel sequence file, where each kernel is described
by the time it was added, its height, and its widths. Lines that begin with a hash, linecode{#}, are comments. This
same format may be used to define an initial kernels file, which is loaded at Desmond boot. The logged kernels can
be used to initialize a new simulation with the metadynamics potential produced by a previous simulation or to start
the simulation with a potential defined by an arbitrary kernel mixing model. When the kernels are loaded, the time
values are required but are ignored in the computation—all initial kernels are used, regardless of the current value of
chemical time. All initial kernels are written to the kernel sequence file before any new kernels are written.

The syntax of the meta keyword is

meta(meta_acc, height_width,collective_vars)

where meta_acc is an integer that references a member of the set of metadynamics accumulators, height_width is an
array of height and widths to use for newly-inserted kernels, and collective_vars is an expression for the collective
variables. The length of the collective variables array is equal to the dimension of the accumulator, and the length of
the height_width array is one more than the dimension of the accumulator. The height is the value of the kernel at its
center. The height_width array is only evaluated when a kernel is added to the potential.

11.4.2 Metadynamics example

An example configuration for a simple metadynamics simulation is given below. This configuration file biases the
inter-atomic distance of the atoms given by GIDs 0 and 1.

11.4. Metadynamics 105

Desmond Users Guide, Release 3.4.0 / 0.7.2

define the accumulator

declare_meta(dimension = 1, # only one collective variable

cutoff = 9, # in units of widths

first = 0.0, # begin dropping immediately

interval = 0.200, # wait 0.2 picoseconds between drops

name = "kerseq", # log kernels to kerseq

initial = ""); # no initial kernel file

p = atomsel("index 0 1");

meta(0, # use accumulator 0

array(0.2, 0.1), # height is 0.020 kcal/mole, width is 0.1 A

dist(p[1], p[0])); # coordinate is distance between atoms 0 and 1

More examples of metadynamics can be found in the next section.

11.5 Examples

The following sections give examples of enhanced sampling configurations to illustrate the uses of the enhanced
sampling plugin.

11.5.1 Center of mass restraint

This example shows the use of an umbrella potential to harmonically restrain the center of mass for a group of particles.
In this example, the masses of all particles are assumed to be the same.

declare_output(name = "cvseq", first = 0.0, interval = 0.1);
spring = 1.0;
center = array(4.0, 5.0, 6.0);
p = atomsel("index 21 22 23 25 26 29");

sum_val = series(i=0:length(p)) {
diff = pos(p[i]) - center;
norm2(min_image(diff));

};

disp2 = sum_val / length(p);

print("sqr_disp", disp2);
spring * disp2;

11.5.2 Metadynamics for a dihedral angle

This example demonstrates the use of metadynamics on dihedral angles. In this case, the sine and cosine of the angle
are biased to avoid the derivative singularities associated with inverse trigonometry.

Biasing angles based on sine and cosine can be understood in the following way. For a Gaussian centered at sin(�)
and cos(�) with width w, we have

exp

✓
� (sin(✓)� sin(�))2

2w2

� (cos(✓)� cos(�))2

2w2

◆
= exp

✓
cos (✓ � �)� 1

w2

◆
.

In the case that the width is small, this function is approximately a Gaussian in the angles with width w. This function
differs only by normalization from the normal distribution on the circle, also known as the von Mises distribution.

106 Chapter 11. Enhanced Sampling and Umbrella Sampling

Desmond Users Guide, Release 3.4.0 / 0.7.2

declare_meta(dimension=2, # for sine and cosine

cutoff = 9, # in units of widths

first = 0.0, # begin dropping immediately

interval = 0.200, # wait 0.2 picoseconds between drops

name = "kerseq", # log kernels to kerseq

initial = ""); # no initial kernel file

p = atomsel("index 14 15 16 17");

height is 0.2 and widths are both 0.1

meta(0, array(0.2, 0.1, 0.1), dihedral_gid(p[0], p[1], p[2], p[3]));

11.5.3 Well-tempered metadynamics

This example will use well-tempered metadynamics to demonstrate metadynamics with dynamically varying heights.
For well-tempered metadynamics, the height of a Gaussian added at time t is given by h

0

e�
V

t

(x)
kT1 where h

0

is the
initial height, Vt(x) is the metadynamics potential at the center position, and T

1

is a user-specified temperature. Since
the metadynamics potential must be known before the Gaussian is added, a small trick is used. To evaluate the
metadynamics potential without changing the potential, metadynamics is called with a height of 0.0. In this case,
Gaussian kernels are added by this evaluation, but they do not contribute to the potential. They are, however, present
in the kernel sequence file.

declare_meta(dimension=1, cutoff = 9, first = 0.0, interval = 0.200,
name = "kerseq", initial = "");

p = atomsel("index 0 1");

h_0 = 0.020; # initial height of gaussians

w = 0.1; # width of gaussians

kT1 = 0.6; # sampling temperature

cv = dist(p[1], p[0]); # collective variable is interatomic distance

meta(0,
array(h_0 * exp(meta(0, array(0,0), cv) / -kT1), w),
cv)

11.5.4 Metadynamics with a wall

This example demonstrates the use of a wall to prevent metadynamics from driving the collective coordinates too far.
The form of this wall is

hwall

1 + exp(

x0�c
wwall

)

,

where hwall is the wall height, x
0

is the location of the wall, c is the collective variable, and wwall is the width of the
wall. The wall potential is added as an umbrella potential to the enhanced sampling symbolic expression.

declare_meta(dimension=1, cutoff = 9, first = 0.0, interval = 0.200,
name = "kerseq", initial = "");

p = atomsel("index 0 1");

cv = dist(p[1], p[0]); # collective variable

x0 = 14; # wall location

11.5. Examples 107

Desmond Users Guide, Release 3.4.0 / 0.7.2

w_wall = 0.2; # wall width

h_wall = 1000; # wall height

wall = h_wall / (1 + exp((x0-cv)/w_wall));

wall + meta(0, array(0.2, 0.1), cv);

108 Chapter 11. Enhanced Sampling and Umbrella Sampling

CHAPTER

TWELVE

EXTENDING DESMOND

This chapter provides a sketch for implementing extensions for Desmond. Full technical specifications are difficult
to accomplish or keep current in a document removed from the source files. Hence, this chapter can only provide an
outline and some pointers for further information.

12.1 Implementation

Desmond’s built-in plugins are compiled with the application itself, but you can include your own plugins in the
application by implementing them in an extension, a shared library (.so file) which is dynamically linked into an
application at runtime. All plugins for Desmond must be organized into extensions.

You can create an extension with nothing more than GNU make. To create an extension:

• Put the root of the Desmond tree (containing the plugins subdirectory) into the include path, and add #include
<Desmond/Desmond.hxx> to the top of the extension’s header file.

• Compile and link the plugin as a shared library, without linking against any Desmond libraries. Be sure to
compile and link with -fPIC (required in Linux when loading shared libraries).

• Other compiler flags and preprocessing directives may have to be set in accordance with the particulars of the
Desmond installation. This may require recording the flags passed to Desmond during installation, unfortu-
nately.

• Extensions are loaded into Desmond with RTLD_GLOBAL, so place all classes defined by the extension into
either an anonymous namespace, or a namespace unique to your development environment.

• If you wish to checkpoint your simulation, all API subclasses must be serializable. These classes need to follow
conventions layed out in base/desmond_src/util/desurrection.

12.1.1 Plugin interface

Desmond provides a number of APIs which can be extended to provide additional functionality, following the abstract
factory pattern. These APIs take the form of abstract C++ classes, which are subclassed to create the new functionality,
and extensible factories that can construct instances of these classes. When an extension is loaded the plugins in the
extension add new concrete types in the extension to various factories in Desmond. The most common factories are
listed in common Desmond factories.

109

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 12.1: common Desmond factories
factory (in namespace Desmond) description
MainPlugin::factory() main-loop plugins
Integrator::factory() integration algorithms
Hamiltonian::factory() force terms
App::abstract_driver::factory() Application type (e.g. mdsim, remd)

12.2 Running your plugin

If your plugin resides in a separately compiled extension, Desmond must find it and load it before it can be used.
When Desmond starts, it searches for extensions by parsing the environment variable DESMOND_PLUGIN_PATH
and searching for shared libraries created according to the compilation guidelines outlined in Implementation.

Extensions are loading immediately after the Desmond executable starts. Desmond processes extensions in three steps:

1. Desmond reads the extension’s type, description, boot, and halt methods. This information is created by a static
instance of the desres::plugin::declaration class. When Desmond loads the extension, it examines
this information and checks to see if a plugin of that type has already been loaded; if it has, this plugin is not
used, the declaration is ignored. In this manner, the plugins of all extensions in the DESMOND_PLUGIN_PATH
are loaded and examined. Desmond then unloads any extensions who contributed no plugins and calls the boot
method of each plugin declaration.

2. Among other thing, a plugin’s boot method typically registers a concrete subclass of some interface class with
an abstract factory under some name, so that this subclass can be produced by the factory as directed by the
configuration or the structure file.

3. At some point in the parsing of the configuration file or the structure file, a string identifying the subclass by its
abstract type and registered name will direct an instance of the subclass to be created through the appropriate
factory.

When Desmond shuts down, the steps occur in reverse:

1. Desmond calls the halt method, as given in the plugin declaration, for each booted plugin; and

2. Desmond unloads the shared libraries.

110 Chapter 12. Extending Desmond

CHAPTER

THIRTEEN

TRAJECTORY FORMAT AND ANALYSIS

Desmond writes time sampled data into trajectory collections. These collections are stored in the file system and are
called framesets. These trajectories are a series of frames that represent snapshots of the simulation a various times.
Each frame has a collection of simulation data. The data contains (at a minimum) information about chemical time,
the unit cell, atom positions and atom velocities.

13.1 Structure of frameset directories

Framesets are stored in standard file system directories. At the top level of the directory are the timekeys file, the
metadata file, a clickme file, and the not hashed directory which holds the .ddparams file. The frame data
is held in frame files of the form frame XXXXXXXXX which are either at the top level (normally) or under a nest of
numbered subdirectories.

The timekeys file contains version information, the number of frames contained in each frame file, and a map into
the frame files. The number of total frames in the frameset is sizeof((timekeys)� 12)/24.

The metadata file is a frame file, but rather than containing time centered data, it contains data common to all
frames in a trajectory. The metadata file may contain an empty frame. Typical fields in this file include TITLE and
INVMASS.

The clickme file is an artifact of selecting files in a GUI browser like VMD. The file browser won’t allow a user to
select a directory, rather it clicks through to the underlying files. Selecting the clickme file results in VMD actually
selecting the enclosing directory.

Very large framesets (100’s of thousands of frames) can exceed directory files storage limits, so framesets can use
a DeepDir hierarchical subdirectory structure to get around that limit. The .ddparams file contains two ASCII
integers, ndir1 and ndir2, that describe a two-level subdirectory system. ndir1 is the number of directories at
the top level while ndir2 is the number of directories at the second level. For typical framesets, these numbers are 0
and 0 (i.e. framefiles are stored directly under the top level directory).

Desmond frames contain the following fields:

111

Desmond Users Guide, Release 3.4.0 / 0.7.2

FORMAT char[*] WRAPPED_V_2 (FLT = float) or
DBL_WRAPPED_V_2 (FLT = double)

CREATOR char[*] DESMOND
VERSION char[*] Desmond version
ELAPSED double wallclock from start
TITLE char[*] Title from configuration
PROVENANCE char[*] Build source info
BUILDCLASS char[*] real or double (will match FORMAT)
KERNEL char[*] e.g. linux
PROCESSOR char[*] e.g. x86_64
ISROGUE uint32 1 for releases, 0 for internal builds
CHEMICALTIME double simulation time in picoseconds
ENERGY double in kcal/mole
POT_ENERGY double in kcal/mole
KIN_ENERGY double in kcal/mole
EX_ENERGY double in kcal/mole
FORCE_ENERGY double in kcal/mole
TEMPERATURE double in Kelvin
VOLUME double in cubic Ångströms
PRESSURE double in Bar
PRESSURETENSOR double[9] in Bar
TEMPERATURE_PER_GROUP double[ngroups] in Kelvin
DEGREES_OF_FREEDOM double dimensionless
DEGREES_OF_FREEDOM_PER_GROUP double[ngroups] dimensionless
CHARGE_SUM double electron charge
CHARGE_SQUARED_SUM double electron charge squared
POSITION FLT[3*natoms] in Ångströms
VELOCITY FLT[3*natoms] in Ångströms/picosecond
UNITCELL FLT[9] Unit cell shift vectors as Ax,Bx,Cx, Ay,By,Cy,

Az,Bz,Cz

13.2 Soft catenation option

Multiple frameset directories can be soft catenated by listing the directory pathnames in a STK file (ess-tee-kay)
(file name suffix .stk) file separated by newlines. Tools like the Python frameset tools (see below), the VMD
trajectory reader, and molfile can read STK files anywhere a DESRES trajectory file (DTR, file name suffix .dtr)
is expected.

13.3 Command line tools for framesets

Frameset files have internal binary structure and are difficult to interpret manually. The frameset library includes some
programs that allow users to inspect, view, and correct framesets.

13.3.1 fsdump

fsdump is used to look at the times, fields, and data contained in every frame in a frameset. Command line options
control begin/end frames, which fields are viewed, and the maximum number of items in each field to view.

112 Chapter 13. Trajectory Format and Analysis

Desmond Users Guide, Release 3.4.0 / 0.7.2

$ fsdump [--begin=n] [--end=n] [--match=xxx] [--matchnot=xxx]
[--max=n] [--hexfloat] [--json] framesetdir framesetdir ...

The --begin option defaults to frame 0, --end defaults to -1 (negative indices count from the back, so the -1th
frame is the last frame, -2nd is second to last frame, etc).

The --match and --matchnot options signify fields to pick or fields to skip. You may use multiple --match
options together. So, to select only the potential and kinetic fields of a frameset, run:

$ fsdump --match=POT_ENERGY --match=KIN_ENERGY foobar.dtr

The --max option is used to trim very long output fields if you simply want to see a truncated view of a field. So, for
example, --max=12 will allow you to see the first 3 position triples.

By default, floats and doubles are printed in decimal using default formats that, while they use a sufficient number
of digits, can not precisely represent all the bits of precision stored internally in the frame. Using the --hexfloat
option will print the floating point values in %a (hex) format that, while not easily readable, does perfectly represent
all bits of precision in the double and float values.

The --json option creates json (Javascript object notation) compatible output that can be fed into any standard
json reader. While slightly less readable, json output is easier to machine parse.

13.3.2 framedump

The framedump command works just like fsdump, but works on a single frame file. The command can be used to
examine the common fields in the metadata frame file, for instance.

$ framedump [--begin=n] [--end=n] [--match=xxx] [--matchnot=xxx]
[--max=n] [--hexfloat] [--json] framefile framefile ...

13.3.3 fstime

fstime lists the number of frames and the last time contained in a frameset directory.

$ fstime framesetdir
105 10.5

13.3.4 fskeycheck

Occasionally, frameset files can be corrupted on disks. The fskeycheck tool will check the integrity of the timekeys
and frame files. Using the --fix option will output a new timekeys file (in the current working directory) that
truncates any bad frames. The frameset can be updated by replacing the original timekeys file with the newly generated
one.

$ fskeycheck [--fix] framesetdir

13.3.5 rebuild_timekeys

The information in the timekeys file is redundant. It is used to make a quick association between times and the
bytes that represent the associated frames in the frame files. If the timekeys file is corrupt, broken, or missing,
the rebuild_timekeys tool will scan all the frame files and create a new timekeys file in the current working
directory.

13.3. Command line tools for framesets 113

Desmond Users Guide, Release 3.4.0 / 0.7.2

$ rebuild_timekeys framesetdir

13.4 Python tools for trajectories and framesets

Command line tools are useful for a quick look at the data contained in trajectories, but it is difficult to write analysis
tools from the text tools or the raw format itself. Desmond provides a library of C++ and Python tools to access frame
data.

The Python modules make it easy to write high performance scripts to analyze trajectory data. The data are accessible
via numpy arrays.

13.4.1 framesettools module for direct access

The framesettoolsmodule allows Python scripts access to the raw field data contained in the frames of a frameset.
Desmond can write either its floating point positition data in a bitwise precise internal form or a simpler to access
floating point form.

In its simplest form, Python framesets provide a frame iterator and numpy array access to data fields.

import framesettools

fs = framesettools.FrameSet(’myframeset.dtr’)

print ’myframeset has’, len(fs), ’frames from time’, fs.times()[0],
’to’fs.times()[-1]

assumes a normal WRAPPED_V_2 Desmond trajectory

for frame in fs:
x = frame.POSITION[0:3]
print ’ ’,frame.CHEMICALTIME,’atom 0 has position’,x

Users can also write (’w’), overwrite (’w!’), or extend (’a’) trajectories. By default, framesets opened in write
mode will fail if the file already exists (Use ’w!’ if you wish to rewrite an existing frameset). Here is a sample
program that will randomize positions.

import framesettools

import random

fs = framesettools.FrameSet(’foobar.dtr’)
out = framesettools.FrameSet(’output.dtr’,’w’)
for frame in fs: # This iterates over all the frames

pos = frame.POSITION # This is a 1-D (3

*

natoms) numpy array

delta = [random.gauss(0,.1) for i in range(len(pos))]
pos += delta
out.push_back(frame,frame.CHEMICALTIME)

An example that writes out all the ENERGY fields:

import framesettools

import random

fs = framesettools.FrameSet(’foobar.dtr’)
out = framesettools.FrameSet(’output.dtr’,’w’)
for frame in fs:

print ’AT TIME’,frame.CHEMICALTIME

114 Chapter 13. Trajectory Format and Analysis

Desmond Users Guide, Release 3.4.0 / 0.7.2

for attr in frame: # This iterates over the labels

if attr.endswith(’ENERGY’):
print ’ ’,attr,getattr(frame,attr)

Table 13.1: FrameSet attributes and methods
attribute or method description
name file name used to open this frameset
size number of frames in a frameset (also len(fs))
[index] get index’th frame
hierarchicalName(filename) DeepDir hierarchical name of filename
framefile(frameindex) path to filename holding the frameindex‘th frame
frameinfo(frameindex) framefile, filesize, time, offset, framesize of

frameindex‘th frame. framefile is the file (of size
filesize bytes) holding the frame at time. The framesize
serialized bytes for this frame are at position offset within the file.

fileinfo(frameindex) filepath, offset, framesize, first, lastp1,
filesize of the frameindex‘th frame. filepath is the full
path name to the file that contains frame index. offset is the
starting bytes of the frame in the file. framesize is the size (in
case there are varible length frames in a file). first is the lowest
frame number contained in the same file. lastp1 is 1 plus the
highest frame number contained in the file (lastp1 itself is not
included in the file). filesize is the size of the file.

metainfo() path to metadata frame file
time(frameindex) Time associated with the frameindex‘th frame
times() numpy array of times associated with all frames
rewind(time) For a writeable frameset, truncate any times after time
nearest(time) Return frame object with associated time x where |x� time| is

minimal
le(time) Return frame object with largest associated time x where

x <= time
lt(time) Return frame object with largest associated time x where x < time
ge(time) Return frame object with smallest associated time x where

x >= time
gt(time) Return frame object with smallest associated time x where

x > time
push_back(frame,t) Append frame to a writeable frameset. Time must be greater than

previous last time entered.
meta() Get the metaframe. On writeable framesets, changes here will be

flushed to disk on closing.

13.4. Python tools for trajectories and framesets 115

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 13.2: Frame attributes and methods
attribute or method description
__labels__ list of all field names
__endianism__ endianism of the data in this frame (integer)
__machineEndianism__ endianism of this machine (integer)
__sameendianism__ true iff endianism of this frame matches machine endianism (Boolean)
__has__(fieldname) true iff frame has an attribute fieldname (Boolean)
__knowsType__(typename) true iff frame understands named C type (Boolean)
__framesize__() Number of bytes required for serialization
__serialize__() string serialization
__type__(fieldname) C type name for this field (string)
__count__(fieldname) Number of elements in this field
__elementsize__(fieldname) Size of individual elements in the named field
__nbytes__(fieldname) Number of bytes used to hold a field

13.4.2 generictrajectory module for simplified access

The generic trajectory module provides an interface to the unified trajectory reader object. We use this reader object
to open any of the variety of trajectory files (and trajectory-like files) that are supported by Desmond. The module
provides Trajectory and Frame types.

Not all frameset based trajectories have convenient POSITION and VELOCITY fields. Frames with the FORMAT
field set to WRAPPED_V_2 for DBL_WRAPPED_V2 will have those fields, but frames in other formats will not. To
simplify access, the generictrajectory module understands all Desmond formats and auto-converts frames into
Python objects with position, velocity, box, title, and time attributes. Position and velocity are numpy
arrays of double[natoms][3], box is double[3][3], title is a Python string, and time is a Python float
(C double).

The generictrajectory frames are similar to the full frameset frames above, but have only the fixed attributes listed.
These Frame objects are, however, pickleable.

The generictrajectory trajectory objects also have simplified time accessors. For instance you can access and
iterate from frames based on their times, for example. To look at all frames whose times are between 20.5 and 30.5:

from generictrajectory import *

T = Trajectory(’/path/to/somewhere.dtr’)
for frame in T.at_time_ge(20.5):

if frame.time > 30.5: break

process frame ...

The iterators can be accessed via the at_time_near, at_time_lt, at_time_le, at_time_gt,
at_time_ge methods.

13.4.3 molfile module

The molfile module is a Python interface to the set of file I/O plugins that are included with the program VMD, de-
veloped at the University of Illinois. The Python interface provides methods for creating, loading and saving molecular
structures and coordinates to all the file formats supported by VMD.

Below is a synopsis of how to perform common tasks using molfile.

import molfile

116 Chapter 13. Trajectory Format and Analysis

Desmond Users Guide, Release 3.4.0 / 0.7.2

Reading a structure file:

reader = molfile.mae.read(’/path/to/foo.mae’)

Iterating through the frames in a file:

for frame in molfile.dtr.read(’/path/to/foo.dtr’).frames():
function(frame.pos, frame.vel, frame.time, frame.box)

Random access to frames (only dtr files support this currently):

f27 = molfile.dtr.read(’/path/to/foo.dtr’).frame(27) # 0-based index

Convert an mae file to a pdb file:

input=molfile.mae.read(’foo.mae’)
output=molfile.pdb.write(’foo.pdb’, atoms=input.atoms)
output.frame(input.frames().next())
output.close()

Write every 10th frame in a dtr to a trr:

input=molfile.dtr.read(’big.dtr’)
output=molfile.trr.write(’out.trr, natoms=input.natoms)
for i in range(0,input.nframes, 10):

output.frame(input.frame(i))
output.close()

All data is read to and from molfile objects in terms of a small number of classes defined within the module:

• Atom: Represents fixed particle attributes; i.e. no position or velocity! Atoms hold references to other atoms
through their bonds member; use Atom.addbond and Atom.delbond to change the bond topology.

• Frame: Data from a single timestep. Contains position, velocity, unit cell, and physical time.

• Plugin: For each supported file type, e.g., ‘pdb’, ‘mae’, ‘trr’, there is a Plugin object with that name in the
module. A Plugin can be queried for its capabilities using its can_* methods. Nearly all plugins can read
files, but only some can write. Use the Plugin.read method to create a Reader, and Plugin.write to
create a Writer. Some plugins, e.g., ‘psf’, read only structure data (atoms), while others, e.g., ‘dtr’, read only
coordinate data (frames). If you try to read atoms from a ‘dtr’, or frames from a ‘psf’, you’ll get an error.

• Reader: A Reader is a handle to an open file. Use the atoms member to fetch the atomic structure from the
file, assuming it exists. To access frames, there are two methods. Reader.frames() returns a FrameIter
object for iteration over frames. FrameIter has two methods: the usual next() method which returns a
Frame, and skip(n=1), which advances the iterator by n frames without (necessarily) reading anything.
FrameIter is a very poor iterator: once a frame has been read or skipped, it can’t be loaded again; you have
use a brand new Reader. Reader.frame(n) — returns the nth frame (0-based index). Currently only the
‘dtr’ plugin supports this method.

• Writer: Writers are initialized with a path and either an array of Atoms or an atom count. If the Writer supports
structure writing, Atoms must be provided; if the Writer only writes frames, either one will do. If the writer
supports frame writing, Writer.frame(f) appends frame f to the end of the file. Writer.close() will
be invoked when the Writer goes out of scope, but it’s not a bad idea to invoke it explicitly.

Finally, there is a guess_filetype(path, default=None) function in the molfile module which returns
a Plugin based on the file name, or the default if none found.

13.4. Python tools for trajectories and framesets 117

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 13.3: molfile object properties and methods

property or method description
Atom.altloc PDB altloc value
Atom.anum atomic number
Atom.bfactor temperature factor
Atom.bonds set of bonded neighbor atoms
Atom.chain chain name
Atom.charge charge in e
Atom.insertion PDB insertion value
Atom.mass mass in AMU
Atom.name atom name
Atom.occupancy PDB occupancy
Atom.radius a vdw radius value
Atom.resid PDB residue id
Atom.resname residue name
Atom.segid segment name
Atom.type VMD atom type
Atom.addbond(atom) add bond between self and atom
Atom.delbond(atom) remove bond between self and atom
Frame.box unit cell vectors as ROWS of 3x3 matrix
Frame.pos positions as rows of Nx3 matrix
Frame.time physical time
Frame.vel velocities as rows of Nx3 matrix
Frame.__init__(natoms) new Frame with given number of atoms
Frame.moveby(x,y,z) shift the positions by the given amount
Frame.select(inds) new Frame with selected atoms
Reader.atoms copy of the atoms in the structure
Reader.natoms number of atoms
Reader.nframes number of frames; -1 if not known
Reader.topology bond neighbor list
Reader.frame(i) Frame at index i
Reader.frames() iterator over frames
Writer.natoms number of atoms in output file
Writer.path path of output file
Writer.close() close the writer
Writer.frame(f) write Frame f
Plugin.can_read can create a Reader
Plugin.can_write can create a Writer
Plugin.name name of the plugin
Plugin.prettyname pretty name
Plugin.version (major, minor) version
Plugin.read(path) new Reader for given path
Plugin.write(path, ...) new Writer for path; supply natoms or atoms

118 Chapter 13. Trajectory Format and Analysis

CHAPTER

FOURTEEN

APPENDIX: UNITS

This appendix explains how numbers provided as configuration parameters are interpreted.

Many configuration parameters are real numbers that are interpreted as dimensioned quantities. Desmond code uses
the 2002 CODATA adjustment for units as given by the National Institute for Standards [COD-2002]. For a given
dimension, Desmond always uses the same kind of units:

• Time is in picoseconds (ps).

• Length is in Ångströms (Å).

• Energy is in (thermochemical) kilocalories per mole.

• Pressure is in Bar.

• Temperature is in degrees Kelvin (K).

• Charge is in multiples of the absolute electron charge.

Boolean values are either true or false.

Integers are assumed to be in the range of two’s complement 32bit representations.

Real-valued quantities can be given in decimal or scientific ‘e’ notation. ±infinity and ±inf are also recognized
real values, as is ±nan. See strtod(3) for a full description of the acceptable values for real-valued quantities.

119

Desmond Users Guide, Release 3.4.0 / 0.7.2

120 Chapter 14. Appendix: Units

CHAPTER

FIFTEEN

APPENDIX: CONFIGURATION SYNTAX

This appendix describes the configuration file syntax.

All Desmond applications are configured by means of command line options or configuration file parameters according
to a uniform syntax. The command line options can be summarized and stored in plain text files, called configuration
files, which represent a summary of the state of the configuration. This is discussed in Invoking Desmond.

This appendix describes configuration file syntax in formal terms and provides additional examples.

In Backus-Naur Form (BNF), a configuration is:

CONFIG -> KEYVAL *
KEYVAL -> key = VALUE
VALUE -> {CONFIG} | [VALUE*] |"atom"| ?

The terminals are:

• key: A valid key name—a string consisting of alphanumerical and underscore characters with a nonnumerical
leading character.

• atom: An arbitrary string

• ?: A nil value. Not commonly used.

The keys of a CONFIG are assumed to be distinct and its KEYVAL terms are considered unordered.

A configuration is therefore a table of atoms, lists, and more tables. Because of this tree structure, leafs and subtrees
can be referenced by a path starting from the root.

KEYPATH -> key INDEX *
INDEX -> [number] |. key

A key indexes a table. A subscript, [number], accesses a zero-based list. This is identical to the member/vector
indexing notation used in many programming languages. A subscript expression of the form [+] can be used in
assignments.

A keypath is a path to a configuration parameter. For example, force.nonbonded.far.sigma is a keypath
referring to the sigma configuration parameter in the far subsection of the nonbonded subsection of the force section
of the configuration file.

Note: The internal data structure used to implement configurations is called ark, and error messages referring to
it most likely indicate either bad syntax or missing values. In addition, a configuration can include comments. A
comment starts with a \# mark and continues until the end of the line.

121

Desmond Users Guide, Release 3.4.0 / 0.7.2

When producing a configuration with either the --include and --cfg options (discussed in Invoking Desmond,
the contents of files (for the former) and string arguments (for the latter) are concatenated and parsed as a single text,
with comments removed.

The text is parsed according to a more complex grammar:

CONFIG -> KEYVAL *
KEYVAL -> KEYPATH = VALUE/KEYPATH {CONFIG}/INCLUDE
KEYPATH -> key INDEX *
INDEX -> [number] |. key
VALUE -> {CONFIG}| [VALUE*] |QATOM|?
QATOM -> "atom"|’atom’|’atom’|atom
INCLUDE -> ! include QATOM

QATOM Resolves to either a quote-delimited string using any of the standard quotation marks, or a bare string—a
sequence of characters containing no white space or syntactic tokens. Within a quote-delimited string, internal quotes
can be escaped with a backslash \ as per the common convention.

The KEYVAL terms are interpreted in the order given; later terms can have affects on previous terms.

The KEYPATH term expands to a key which can be extended by a list ([number]) or table (.key) indexes. New
lists or tables are created when necessary to accommodate these indexes. The KEYPATH term resolves to a (possibly
newly created) subtree of the configuration. An assignment, KEYPATH = VALUE, obliterates the previous subtree, if
any, and replaces it with the expansion of the VALUE term. A list KEYPATH term can be extended with an assignment
of the form KEYPATH[+] = VALUE. An enclosure, KEYPATH { CONFIG }, changes the subtree
to an empty table, unless it is already a table, and merges the two tables by
appending to the subtree’s table the ‘‘KEYVAL terms of the CONFIG. This is analogous to the
behavior of namespaces in C++.

An INCLUDE term expands into the text of the file indicated by the QATOM in its production rule, with comments
removed. This text is presumed to be a CONFIG term and its sequences of KEYVAL terms are inserted into the stream
of terms in which the text is included. Inclusion is properly nested: an included file can include other files, referring
to it by paths relative to itself. The --include FILE command line option is equivalent to --cfg ’!include
FILE’. Ark types summarizes the information above.

Table 15.1: Ark types
value type description

atom A string, bare or quoted (any of the three standard quotation marks—single or double quotation
marks, or backticks), with internal quotes escaped with the \ character.

nil written as ?.
table An unordered set of (key,value) pairs with distinct keys written: {key1=value1

key2=value2 ... keyN=valueN}. A key is an alphanumeric unquoted string that can
also include underscores.

list A sequence of values written: [value1 value2 ... valueN]. Syntax does not require
that the values of a list be of similar type, though for clarity, we recommend following this
convention.

15.1 Examples

Below is an example of a configuration file.

title=’this is an example’ # an atom, quoted string
pi =3.14159 # an atom, bare string
file=myDoc.txt # an atom, bare string
matrix=[[1 0 0] [0 1 0] [0 0 1]] # a list (of lists)

122 Chapter 15. Appendix: Configuration syntax

Desmond Users Guide, Release 3.4.0 / 0.7.2

options={
verbose=yes
Nsteps=100
vec=[1 2 3] # a table

}

This configuration could be given to a Desmond application with either the --include or --cfg options as follows:

desmond --include config_file

or:

desmond --cfg "title=’this is an example’ \
pi =3.14159 file=myDoc.txt \
matrix=[[1 0 0] [0 1 0] [0 0 1]] \
options={ verbose=yes Nsteps=100 vec=[1 2 3]}"

The first of these reads a file named config_file, which we assume holds the contents of the example. The second
gives the contents of the previous example as a string.

Configuration flags can be combined arbitrarily:

desmond --include config_file --cfg "last_time=10.0"

which is equivalent to the following configuration text:

title=this is an example
pi =3.14159
file=myDoc.txt
matrix=[[1 0 0] [0 1 0] [0 0 1]]
options={

verbose=yes
Nsteps=100
vec=[1 2 3]

}
last_time=10.0

Repeated key assignments override previous ones. In the following Example, both assignments have the effect of
producing the configuration X="2".

desmond --cfg ’X=1 X=2’
desmond --cfg ’X=1’ --cfg ’X=2’

Through keypaths, elements of a configuration can be individually overridden from the command line:

desmond --include config_file \
--cfg ’matrix[2]=[1 1 1] options.verbose=no’

which results in a configuration equivalent to:

title=’this is an example’
pi =3.14159
file=myDoc2.txt
matrix=[[1 0 0] [0 1 0] [1 1 1]]
options={

verbose=no
Nsteps=100
vec=[1 2 3]

}

The enclosure syntax can be used to extend a table:

15.1. Examples 123

Desmond Users Guide, Release 3.4.0 / 0.7.2

desmond --include config_file --cfg ’options {verbose=no Nsteps=50 }’

which results in a configuration equivalent to:

title=’this is an example’
pi =3.14159
file=myDoc2.txt
matrix=[[1 0 0] [0 1 0] [1 1 1]]
options={

verbose=no
Nsteps=50
vec=[1 2 3]

}

Conversely, an assignment such as:

desmond --include config_file --cfg ’options={ verbose=no Nsteps=50 }’

results in the configuration:

title=’this is an example’
pi =3.14159
file=myDoc2.txt
matrix=[[1 0 0] [0 1 0] [1 1 1]]
options={

verbose=no Nsteps=50
}

124 Chapter 15. Appendix: Configuration syntax

CHAPTER

SIXTEEN

APPENDIX: CLONE RADIUS
RESTRICTIONS

This appendix provides the full set of restrictions on the size of the clone radius, for those who need more than the
practical guidelines given in The Global Cell.

The clone radius must be chosen large enough to ensure that a process can access all the particles it needs to compute
force interactions. There are, however, also practical limits on the size of the clone radius. This Appendix collects all
the restrictions placed on the clone radius.

For correct pairlist reconstruction, Desmond requires

2R
clone

� R
lazy

= R
cut

+�,

(recall that R
cut

is a parameter in force.nonbonded and � is global_cell.margin). This is normally how
the clone radius is chosen; it is set to half of the lazy radius (plus a small fudge factor of about 10�6 to allow for
roundoff error).

To correctly compute bonded interactions and constraints, R
clone

should be large enough that every such group of
bonded or constrained particles fit within some sphere of radius R

clone

. When a violation of this condition would
prevent correct computation Desmond halts with an error. For practical values of the cutoff radius (R

cut

 R
lazy


2 · R

clone

), R
clone

should be large enough to guarantee that each process has all the particles it requires for bonded
force and constraint calculations.

For far electrostatic force calculations, there are additional restrictions on the clone radius. These restrictions are
usually weaker than the above, but are included for completeness.

In the case of PME,

R
clone

� 1

2

q
(hx(ox � 1))

2

+ (hy(oy � 1))

2

+ (hz(oy � 1))

2

+

�p
2

where hi is the Ewald mesh spacing in the ith direction, � is the margin discussed here. and oi is the PME interpolation
order in the ith direction.

In the case of k-GSE,

R
clone

� R
spread

+

�p
2

where R
spread

is the k-GSE spreading radius.

It is generally not necessary and is inefficient to choose the clone radius larger than what the above restrictions require.
There are also upper limits to the size of the clone radius. These come from the parallelization of the global cell
and particle image tracking, which does not allow greater than nearest neighbor communications or certain kinds of

125

Desmond Users Guide, Release 3.4.0 / 0.7.2

self-overlapping clone regions. First, because Desmond communicates only with immediately adjacent boxes during
migration, the clone radius cannot be larger than the box dimension in any direction, in other words,

R
clone

< Li

where Li is the home box dimension in the ith direction. This condition may restrict how many processes you can use
to parallelize your chemical system. At low levels of parallelism, if a dimension i has been partitioned into only two
boxes, then we have the more strict limitation

R
clone

<
3

4

Li

because clone regions cannot overlap. Finally, if a dimension i has not been partitioned at all

R
clone

<
1

4

Li .

These restrictions have been phrased in terms of a Cartesian global cell. For a triclinic cell, the concerns are analogous,
though the mathematical conditions more difficult to summarize.

126 Chapter 16. Appendix: Clone Radius Restrictions

CHAPTER

SEVENTEEN

APPENDIX: DMS FILE FORMAT

All data in a DMS file lives in a flat list of two-dimensional tables. Each table has a unique name. Columns in the
tables have a name, a datatype, and several other attributes, most importantly, whether or not the column is the primary
key for the table. Rows in the tables hold a value for each of the columns. Table names, column names, and datatypes
are case-preserving, but case-insensitive: thus “pArTiCLE” is the same table as “particle”, and “NAME” is the same
column as “name”.

Of the five datatypes available in SQLite, DMS uses three: INTEGER, a signed 64-bit int; FLOAT, a 64-bit IEEE
floating point number; and TEXT, a UTF8 string. In addition, any value other than a primary key can be NULL,
indicating that no value is stored for that row and column. A NULL value is allowed in the DMS file but might be
regarded as an invalid value by a particular application; for example, Desmond makes no use of the atomic number
column in the particle table, but Viparr requires it.

Because DMS is used to store dimensionful quantities, we must declare a system of units. The units in DMS, summa-
rized in DMS system of units, reflects a compromise between an ideal of full consistency and the reality of practical
usage; in particular, the mass unit is amu, rather than an algebraic combination of the energy, length, and time units.

Table 17.1: DMS system of units
TIME picosecond
CHARGE electron charge
LENGTH Ångström (Å)
ENERGY thermochemical kcal/mol
MASS atomic mass unit (amu)

In addition to tables, DMS files may contain stored queries known as views. A view combines data from one or more
tables, and may apply a predicate as well a sorting criterion. How this is actually done in SQL will be obvious to
database afficiandos; for this specification it suffices to note that a view looks just like a table when reading a DMS
file, so the views will be described in terms of the data in their columns, just as for tables. Importantly, views cannot
be written to directly; one instead updates the tables to which they refer.

17.1 Molecules

The DMS file contains the identity of all particles in the structure as well as their positions and velocities in a global
coordinate system. The particle list includes both physical atoms as well as pseudoparticles such as virtual sites and
drude particles. The most important table has the name particle; all other tables containing additional particle
properties or particle-particle interactions refer back to records in the particle table. References to particles should
follow a naming convention of p0, p1, p2, ... for each particle referenced.

127

Desmond Users Guide, Release 3.4.0 / 0.7.2

17.1.1 Particles

The particle table associates a unique id to all particles in the structure. The ids of the particles must all be
contiguous, starting at zero. The ordering of the particles in a DMS file for the purpose of, e.g., writing coordinate
data, is given by the order of their ids. The minimal schema for the particle table is given in Schema for the
particle table.

Table 17.2: Schema for the particle table
name type description

id INTEGER unique particle identifier
anum INTEGER atomic number
x FLOAT x-coordinate in LENGTH
y FLOAT y-coordinate in LENGTH
z FLOAT z-coordinate in LENGTH

17.1.2 Bonds

Table 17.3: Schema for the bond table
name type description

p0 INTEGER 1st particle id
p1 INTEGER 2nd particle id
order FLOAT bond order

The bond table specifies the chemical topology of the system. Here, the topology is understood to be independent
of the forcefield that describes the interactions between particles. Whether a water molecule is described by a set
of stretch and angle terms, or by a single constraint term, one would still expect to find entries in the bond table
corresponding to the two oxygen-hydrogen bonds. Bonds may also be present between a pseudoatom and its parent
particle or particles; these bonds aid in visualization.

The p0 and p1 values correspond to an id in the particle table. Each p0, p1 pair should be unique, non-NULL, and
satisfy p0 < p1.

17.1.3 The global cell

Table 17.4: Schema for the global_cell table
name type description

id INTEGER vector index (0, 1, or 2)
x FLOAT x component in LENGTH
y FLOAT y component in LENGTH
z FLOAT z component in LENGTH

The global_cell table specified in Schema for the global_cell table specifies the dimensions of the periodic cell in
which particles interact. There shall be three records, with id 0, 1, or 2; the primary key is provided since the order of
the records matters, and one would otherwise have difficulty referring to or updating a particular record in the table.

17.1.4 Additional particle properties

Additional per-particle properties not already specified in the particle table should be added to the particle table
as columns. Optional particle properties shows the schema for the additional properties expected and/or recognized
by Desmond and by Viparr.

128 Chapter 17. Appendix: DMS file format

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 17.5: Optional particle properties
name type description

mass FLOAT Desmond: particle mass in MASS
charge FLOAT Desmond: particle charge in CHARGE
vx FLOAT Desmond: x-velocity in LENGTH/TIME
vy FLOAT Desmond: y-velocity in LENGTH/TIME
vz FLOAT Desmond: z-velocity in LENGTH/TIME
nbtype INTEGER Desmond: nonbonded type
grp_temperature INTEGER Desmond: temperature group
grp_energy INTEGER Desmond: energy group
grp_ligand INTEGER Desmond: ligand group
grp_bias INTEGER Desmond: force biasing group
resid INTEGER Viparr: residue number
resname TEXT Viparr: residue name
chain TEXT Viparr: chain identifier
name TEXT Viparr: atom name
formal_charge FLOAT Viparr: format particle charge
occupancy FLOAT pdb occupancy value
bfactor FLOAT pdb temperature factor

Optional particle properties that may be added as additional columns in the particle table.

17.2 Forcefields

A description of a forcefield comprises the functional form of the interactions between particles in a chemical system,
the particles that interact with a given functional form, and the parameters that govern a particular interaction. At a
higher level, interactions can be described as being local or nonlocal. Local particle interactions in DMS are those
described by a fixed set of n-body terms. These include bonded terms, virtual sites, constraints, and polar terms.
Nonlocal interactions in principle involve all particles in the system, though in practice the potential is typically range-
limited. These include van der Waals (vdw) interactions as well as electrostatics.

17.2.1 Local particle interactions

In order to evaluate all the different forces between particles, a program needs to be able to find them within a DMS
file that may well contain any number of other auxiliary tables. The DMS format solves this problem by providing a
set of “metatables” containing the names of force terms required by the forcefield as well as the names of the tables in
which the force term data is found. The force terms are placed into one of four categories: bonded terms, constraints,
virtual sites, polar terms. Metatables for local particle interactions shows the names and descriptions of those tables.
The first four tables, all of which refer to local particle interactions, have the same schema shown in Local interaction
metatables. Each row in any of these four metatables corresponds to a unique functional form, documented in later
sections.

17.2. Forcefields 129

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 17.6: Metatables for local particle interactions
metatable name description
bond_term Interactions representing bonds between atoms, including stretch, angle, and dihedral

terms, as well as 1-4 pairs and position restraints.
constraint_term Constraints on bonds and/or angles involving a reduction in the number of degrees of

freedom of the system.
virtual_term Similar to a constraint; a set of parameters describing how a pseudoparticle is to be

positioned relative to a set of parent atoms.
polar_term Similar to a virtual site; a set of parametere describing how a pseudoparticle moves

relative to its parent atoms.

Table 17.7: Local interaction metatables
name type description

name TEXT name of the table for an interaction form

Schema for the bond_term, constraint_term, virtual_term, and polar_term tables described in
Metatables for local particle interactions.

Each table name corresponding to the values in the local term metatables is the designated string for a particular
functional form. The required columns for these tables is given in the next section. Note that creators of DMS files are
free to implement the schema as an SQL view, rather than as a pure table; a reader of a DMS file should not assume
anything about how the columns in the table name have been assembled.

17.2.2 Nonbonded interactions

The functional form for nonbonded interactions, as well as the tables containing the interaction parameters and type
assignments, are given by the fields in the nonbonded_info table, shown in Schema for the nonbonded_info table.

Table 17.8: Schema for the nonbonded_info table
name type description

name TEXT nonbonded functional form
rule TEXT combining rule for nonbonded parameters

There should be exactly one record in the nonbonded_info table. Like the local interaction tables described by
ref:tab:localterm, the name field indicates the functional form of the nonbonded interaction type. If the particles do
not have any nonbonded interactions, name should have the special value none.

The parameters for nonbonded interactions will be stored in a table called nonbonded_param, whose schema
depends on the value of name in nonbonded_info. All such schemas must have a primary key column called id;
there are no other restrictions.

The nbtype column in the particle table gives the nonbonded type assignment. The value of the type assignment
must correspond to one of the primary keys in the nonbonded_param table.

Typically, the parameters governing the nonbonded interaction between a pair of particles is a simple function of the
parameters assigned to the individual particles. For example, in a Lennard-Jones functional form with parameters
sigma and epsilon, the combined parameters are typically the arithmetic or geometric mean of sigma and epsilon.
The required approach is obtained by the application from the value of rule in nonbonded_info.

For the interaction parameters that cannot be so simply derived, a table called nonbonded_combined_param
may be provided, with a schema shown in Schema for the nonbonded_combined_param table. Like the
nonbonded_param table, the schema of nonbonded_combined_param will depend on the functional form of
the nonbonded interactions, but there are two required columns, which indicate which entry in nonbonded_param
are being overridden.

130 Chapter 17. Appendix: DMS file format

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 17.9: Schema for the nonbonded_combined_param table
name type description

param1 INTEGER 1st entry in nonbonded_param table
param2 INTEGER 2nd entry in nonbonded_param table
coeff1 FLOAT first combined coefficient
... other combined coefficients...

Only param1 and param2 are required; the remaining columns provide the interaction-dependent coefficients.

17.3 Alchemical systems

Methods for calculating relative free energies or energies of solvation using free energy perturbation (FEP) involve
mutating one or more chemical entities from a reference state, labeled “A”, to a new state, labeled “B”. DMS treats
FEP calculations as just another set of interactions with an extended functional form. In order to permit multiple
independent mutations to be carried out in the same simulation, a “moiety” label is applied to each mutating particle
and bonded term.

17.3.1 Alchemical particles

Any particle whose charge or nonbonded parameters changes in going from state A to state B, is considered to be an
alchemical particle and must have a moiety assigned to it. The set of distinct moieties should begin at 0 and increase
consecutively. The set of alchemical particles, if any, should be provided in a table called alchemical_particle
shown in Schema for the alchemical_particle table.

Table 17.10: Schema for the alchemical_particle table
name type description

p0 INTEGER alchemical particle id
moiety INTEGER moiety assignment
nbtypeA INTEGER entry in nonbonded_param for A state
nbtypeB INTEGER entry in nonbonded_param for B state
chargeA FLOAT charge in the A state
chargeB FLOAT charge in the B state
chargeC FLOAT charge in the C state

The chargeC column is optional. It is only read if the alchemical configuration requires a third charge state.

17.3.2 Bonded terms

Alchemical bonded terms are to be treated by creating a table analogous to the non-alchemical version, but replacing
each interaction parameter with an “A” and a “B” version. An example is given in Schema for alchemical_stretch_harm
records. As a naming convention, the string “alchemical_” should be prepended to the name of the table.

17.3. Alchemical systems 131

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 17.11: Schema for alchemical_stretch_harm records
name type description

r0A FLOAT equilibrium separation in A state
fcA FLOAT force constant in A state
r0B FLOAT equilibrium separation in B state
fcB FLOAT force constant in B state
p0 INTEGER 1st particle
p1 INTEGER 2nd particle
moiety INTEGER chemical group

Alchemical harmonic stretch terms have a functional form given by interpolating between the parameters for states A
and B.

17.3.3 Constraint terms

No support is offered for alchemical constraint terms at this time. If particles A, b, and c are covered by an AH2
constraint in the A state, and particles A, d, and e are covered by an AH2 constraint in the B state, then the set of
constraint terms in the alchemical DMS file should include an AH4 constraint between A and b, c, d and e.

17.3.4 Virtual sites

No support is offered for alchemical virtual sites at this time.

17.3.5 Polar terms

No support is offered for alchemical polar terms at this time.

132 Chapter 17. Appendix: DMS file format

CHAPTER

EIGHTEEN

LEGACY APPLICATIONS: PREPARING
A MAESTRO STRUCTURE FILE

As discussed in Input, Desmond requires two files for input: a structure file that defines the chemical system, and
a configuration file that sets simulation parameters. The details of setting configuration parameters are described in
Running Desmond. This chapter describes how Desmond prior to version 2.4 specified the structure file.

18.1 Format

A structure file—also known as a Maestro file or MAE file, file name suffix .mae—is organized as a set of nested
blocks. Each block has a set of attributes and can contain other blocks. Some blocks, called arrays or indexed-blocks,
contain multiple records. Blocks start and end with curly braces: { }. Within each block, attribute names are listed
first, followed by :::, and finally the values of those attributes. A typical structure file starts with an unnamed block,
as shown in:

{
s_m_m2io_version
:::
2.0.0

}

The unnamed block specifies the version of the format of the structure file and is other wise not used. The unnamed
block is followed by one or more connection tables. These are called f_m_ct blocks, or simply ct blocks:

f_m_ct {
s_m_title
r_chorus_box_ax
r_chorus_box_ay
r_chorus_box_az
:::
"this is the title"
25.0
0.0
0.0
m_atom[2] {
i_m_mmod_type
r_m_x_coord
r_m_y_coord
r_m_z_coord
:::

133

Desmond Users Guide, Release 3.4.0 / 0.7.2

1 0.326 0.704 0.726
2 1 -0.431 1.245 1.295
:::

}
}

The ct block in the previous Example shows four attributes, plus an array block called m_atom. The attributes are
m_title, chorus_box_ax, chorus_box_ay, and chorus_box_az.

The array block called m_atom has three attributes and two records. The attribute names are prepended by s_, r_,
or i_, depending on whether the corresponding value is a string (text), real number, or integer, respectively.

Note: In the discussion below, these prefixes are ordinarily excluded.

Attributes names also encode the owner of the attribute—that is, the name of the application responsible for managing
that quantity. For example, the attribute name prefix m_ indicates that Maestro is responsible for managing that
attribute. In an array, each record has a one-based index, followed by values for the attributes of the block, one for
each record. The size of the array block is given by the number in square brackets after the name. In the Example
above, the value corresponding to chorus_box_ax is 25.0, and the m_x_coord attribute takes on the values of
0.326 and -0.431 in the first and second m_atom records, respectively.

Note: Two kinds of ct blocks exist: full or partial, indicated by the respective name components f_ and p_. Partial
blocks contain only attributes and values that override the corresponding values in the preceding full block. Desmond
makes no use of this feature.

You can think of each ct block as containing a complete description of a chemical system and the interaction between
its particles. Desmond reads all the ct blocks in a structure file and simulates them together in one chemical system,
with two exceptions:

• ct blocks with the attribute ffio_ct_type equal to full_system are not included in the simulation. Such
ct blocks are used by Maestro for visualization.

• ct blocks corresponding to alchemical stages are combined into a single block before being loaded into the
simulation. More about preparing structure files for alchemical simulations can be found in Preparing the
structure file for Free Energy Simulations.

18.1.1 Global cell

Desmond carries out simulations in a three-dimensional region of space called the global cell, described in Space. The
dimensions of the global cell are specified by the three shift vectors ~a,~b, and ~c, which together determine the shape of
the global cell. These shift vectors are specified in the ct attributes given in Global cell specification.

Table 18.1: Global cell specification
Global cell component Attribute

X component of a vector r_chorus_box_ax
Y component of a vector r_chorus_box_ay
Z component of a vector r_chorus_box_az
X component of b vector r_chorus_box_bx
Y component of b vector r_chorus_box_by
Z component of b vector r_chorus_box_bz
X component of c vector r_chorus_box_cx
Y component of c vector r_chorus_box_cy
Z component of c vector r_chorus_box_cz

134 Chapter 18. Legacy Applications: Preparing a Maestro structure file

Desmond Users Guide, Release 3.4.0 / 0.7.2

Note: Each ct block in a structure file must contain the same global cell specification as every other ct block in that
file, if any.

18.1.2 Particles and pseudoparticles

After loading the structure file, Desmond scans the ct blocks looking for particles to include in the simulation. Each
ct block must contain one or more atoms; depending on the force field to be used, it can also contain pseudoparticles
representing additional charge sites. (Pseudoparticles are described in general in Force fields; specific implementa-
tions are described in Virtual sites.) The atoms in a ct block are specified by the records in the m_atom array.
Pseudoparticles, if any, are given by the records in the ffio_pseudo array within the ffio_ff subblock of the ct
block.

Each atom and pseudoparticle record can contain any number of attributes; however, Desmond reads only:

• the positions and velocities using the attributes listed in Table tab:ppv, and

• a set of integer-valued properties ffio_grp_name. Desmond makes use of energy, temperature, cm_moi,
ligand, and frozen groups, described in Particles.

Table 18.2: Initial particle position and velocity specification.
particle property m_atom attribute ffio_pseudo attribute

X position m_x_coord ffio_x_coord
Y position m_y_coord ffio_y_coord
Z position m_z_coord ffio_z_coord
X velocity ffio_x_vel ffio_x_vel
Y velocity ffio_y_vel ffio_y_vel
Z velocity ffio_z_vel ffio_z_vel

Particles are loaded into Desmond in the order in which they appear in the structure file. Within a given ct, all atoms
are injected, followed by all pseudoparticles, if any. This is also the order in which the particles appear in trajectory
output. For alchemical systems, the order is that of the internally constructed alchemically combined ct block

18.1.3 Force field sections

Bonded and nonbonded interactions between particles are determined by the contents of the force field section of the
structure file. Desmond requires that each ct block (except the full_system block) contain a sub-block named
ffio_ff, containing at least two sub-items:

• an array block called ffio_sites, whose attributes are summarized in Particle properties obtained from ffio
sites block, and

• a string attribute named ffio_comb_rule, the value of which specifies how Lennard-Jones interactions are
computed.

Table 18.3: Particle properties obtained from ffio sites block
Site property ffio_sites attribute

particle type (ATOM or PSEUDO) ffio_type
charge (units of e) ffio_charge
mass (atomic units) ffio_mass
van der Waals type (string key) ffio_vdwtype

Note: The value of ffio_comb_rule must be same for all ct blocks.

18.1. Format 135

Desmond Users Guide, Release 3.4.0 / 0.7.2

All other interactions are determined by additional subsections of the ffio_ff block. For example, two-body stretch
harmonic stretch terms are found in a subblock called ffio_bonds, and van der Waals interactions are specified by
the VDW type and by a subblock called ffio_vdwtypes.

Note: Because the Maestro file format is designed to be extensible, many other interaction types are possible; consult
the documentation for the specific force terms you wish to employ to determine which structure file records contribute
to those terms.

Note: The Maestro file is sometimes referred to as a MaeFF file when it has force field parameter assignments present.
The Maestro Desmond system builder tool will output MaeFF files with the file name suffix .cms.

Note: The DMS file can not be directly converted into a MAE file. A workaround is to use VMD to convert a DMS
file to a MAE file. This conversion will not include force field parameters present in the DMS file, however. Force
field parameters can be added to the MAE file using versions of Viparr provided with Desmond 2.2

18.2 Preparing the structure file for Free Energy Simulations

The sections below describe additional steps needed to prepare a structure file for ligand-binding free energy simula-
tions and for alchemical free energy simulations.

18.2.1 Ligand-binding free energy simulations

To prepare the structure file for ligand_binding free energy simulations, specify the atoms that belong to the ligand. To
do so, set the ffio_grp_ligand field in the m_atoms records to 1 for the ligand atoms, and to 0 for other atoms.

The following Example shows an excerpt from a structure file for simulating the solvation free energy of methanol,
highlighting the ffio_grp_ligand field. The first ct block describes the solute—methanol, having all the atoms
in its ffio_grp_ligand set to 1. The second ct block describes the solvent—water, having all the atoms in its
ffio_grp_ligand set to 0.

... # lines omitted
f_m_ct {

... # lines omitted
s_ffio_ct_type
:::
... # lines omitted
solute
m_atom[6] {
i_m_mmod_type
r_m_x_coord
r_m_y_coord
r_m_z_coord
s_m_pdb_atom_name
i_m_atomic_number
i_ffio_grp_ligand
:::
13 -0.683143 -0.071748 0.090914 "C1" 6 1
2 16 0.463103 0.750632 -0.140535 "O2" 8 1
3 41 -1.138147 -0.383230 -0.876254 "H3" 1 1

136 Chapter 18. Legacy Applications: Preparing a Maestro structure file

Desmond Users Guide, Release 3.4.0 / 0.7.2

4 41 -1.450629 0.486326 0.674057 "H4" 1 1
5 41 -0.403379 -0.990407 0.655399 "H5" 1 1
6 42 0.858372 0.916697 0.724639 "H5" 1 1
:::

}
... # lines omitted

}
f_m_ct {

... # lines omitted
s_ffio_ct_type
:::
... # lines omitted
solvent
m_atom[2484] {
i_m_mmod_type
r_m_x_coord
r_m_y_coord
r_m_z_coord
s_m_pdb_atom_name
i_m_atomic_number
i_ffio_grp_ligand
:::
1 16 -7.429789 -7.792630 4.945186 "OW" 6 0
2 42 -6.709420 -8.366949 4.498097 "HW1" 1 0
3 42 -7.200478 -6.819860 4.736009 "HW2" 1 0
... # lines omitted
:::

}
}

18.2.2 Alchemical free energy simulations

The structure file used for alchemical free energy simulations consists of the following components:

• original_ct (system in state A)

• perturbed_ct (system in state B)

• environment_ct’s

The original_ct contains the unperturbed version of the molecule in the alchemical transformation, and the per-
turbed_ct contains what the original_ct becomes. They both contain ffio information to describe the force field
parameterization in their respective states. They also both contain FEPIO information specific to alchemical free
energy simulation.

The environment_ct’s are component CTs or multicomponent CTs that do not undergo alchemical transformation.
These CTs have only ffio information, but not FEPIO information.

CT-level MMFEPIO properties

Both the original_ct and the perturbed_ct must contain a user-specified name for the FEP transformation, and whether
it corresponds to the original or the perturbed state.

18.2. Preparing the structure file for Free Energy Simulations 137

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 18.4: CT level MMFEPIO properties
property name description

s_fepio_name Arbitrary name used to distinguish the original perturbed pair from other pairs.
i_fepio_stage 1 for the original ct; 2 for the perturbed ct.

The fepio_fep block

The perturbed CT has an fepio_fep block to indicate how atoms and interactions map from the original_ct onto the
perturbed_ct. The top-level properties in the fepio_fep block are shown in fepio_fep properties:

Table 18.5: fepio_fep properties
property name description

s_fepio_name Should be the same as the s_fepio_name used in the original_ct.
i_fepio_stage Normally 1, indicating transformation from the ct with s_fepio_stage = 1 to the ct with

s_fepio_stage = 2.

Inside fepio_fep block are the following blocks:

• fepio_atommaps

• fepio_bondmaps

• fepio_anglemaps

• fepio_dihedralmaps

• fepio_exclmaps

• fepio_pairmaps

fepio_atommaps

This indexed block maps the alchemically transformed atoms. Specifically, it maps the atom number from the origi-
nal_ct onto the perturbed_ct.

Table 18.6: fepio_atommaps properties
property name description

i_fepio_ai The atom index in the original_ct being mapped
i_fepio_aj The atom index in the perturbed_ct being mapped.

For atoms in the original_ct (i_fepio_ai) that map onto dummy atoms in the perturbed_ct (that is, that disappear in the
perturbed_ct), i_fepio_aj is set to 1. For atoms in the perturbed_ct that map onto dummy atoms in the original_ct,
we assign atom numbers i_fepio_ai counting from -(the number of real atoms in the original_ct + 1). For instance,
if ten real atoms are in the original_ct, these dummy atoms are numbered i_fepio_ai = -11, -12, and so on.

fepio_bondmaps

This indexed block maps the bond potentials from the original_ct onto the perturbed_ct.

138 Chapter 18. Legacy Applications: Preparing a Maestro structure file

Desmond Users Guide, Release 3.4.0 / 0.7.2

Table 18.7: fepio_bondmaps properties
property name description

i_fepio_ti Bond potential number in original_ct. Negative bond number indicates a bond involving at
least one dummy atom.

i_fepio_tj Bond potential number in perturbed_ct. Negative bond number indicates a bond involving at
least one dummy atom.

i_fepio_ai The first atom in the bond in original_ct. Negative atom numbers can appear here, by the
same convention as in atommaps.

i_fepio_ai The second atom in the bond in orignal_ct. Negative atom numbers can appear here, by the
same convention as in atommaps.

fepio_anglemaps

This indexed block maps the angle potential from original_ct onto perturbed_ct.

Table 18.8: fepio_anglemaps properties
property name description

i_fepio_ti Angle potential number in original_ct. Negative angle numbers indicate an angle involving at
least one dummy atom; 0 indicates that this potential should disappear in the corresponding ct.

i_fepio_tj Angle potential number in perturbed_ct. Negative angle numbers indicate an angle involving
at least one dummy atom; 0 indicates that this potential should disappear in the corresponding
ct.

i_fepio_ai The first atom in the angle in original_ct. Negative atom number can appear here, by the same
convention as in atommaps.

i_fepio_aj The second atom in the angle in orignal_ct. Negative atom number can appear here, by the
same convention as in atommaps.

i_fepio_ak The third atom in the angle in orignal_ct. Negative atom number can appear here, by the same
convention as in atommaps.

fepio_dihedralmaps

This indexed block maps the dihedral angle potentials from original_ct onto perturbed_ct.

Table 18.9: fepio_dihedralmaps properties
property name description

i_fepio_ti Dihedral potential number in original_ct. Negative dihedral numbers indicate a dihedral
involving at least one dummy atom; 0 indicates that this potential should disappear in the
corresponding ct.

i_fepio_tj Dihedral potential number in perturbed_ct. Negative dihedral numbers indicate a dihedral
involving at least one dummy atom; 0 indicates that this potential should disappear in the
corresponding ct.

i_fepio_ai The first atom in the dihedral in original_ct. Negative atom number can appear here, by the
same convention as in atommaps.

i_fepio_aj The second atom in the dihedral in orignal_ct. Negative atom number can appear here, by the
same convention as in atommaps.

i_fepio_ak The third atom in the dihedral in orignal_ct. Negative atom number can appear here, by the
same convention as in atommaps.

i_fepio_al The fourth atom in the dihedral in orignal_ct. Negative atom number can appear here, by the
same convention as in atommaps.

18.2. Preparing the structure file for Free Energy Simulations 139

Desmond Users Guide, Release 3.4.0 / 0.7.2

fepio_exclmaps

This indexed block maps the exclusions from original_ct onto perturbed_ct.

Table 18.10: fepio_exclmaps properties
property name description

i_fepio_ti Exclusion number in original_ct. Negative exclusion number indicates that this exclusion
does not exist in the original ct, and it involves at least one dummy atom.

i_fepio_tj Exclusion number in perturbed_ct. Negative exclusion number indicates that this exclusion
does not exist in the perturbed ct, and it involves at least one dummy atom. If both i_fepio_ti
and i_fepio_tj are -1, this exclusion does not exist in either the original or perturbed ct, and is
an extra exclusion to prevent dummy atoms in original_ct from interacting with dummy
atoms in perturbed_ct.

i_fepio_ai The first atom in the exclusion in original_ct. Negative atom numbers can appear here, by the
same convention as in atommaps.

i_fepio_aj The second atom in the exclusion in orignal_ct. Negative atom numbers can appear here, by
the same convention as in atommaps.

fepio_pairmaps

This indexed block maps the pairs from original_ct onto perturbed_ct.

Table 18.11: fepio_pairmaps properties
Property name Description

i_fepio_ti Pair number in original_ct. Negative exclusion number indicates a pair involving at least one
dummy atom.

i_fepio_tj Pair number in perturbed_ct. Negative exclusion number indicates a pair involving at least
one dummy atom.

i_fepio_ai The first atom in the pair in original_ct. Negative atom numbers can appear here, by the same
convention as in atommaps.

i_fepio_aj The second atom in the pair in orignal_ct. Negative atom numbers can appear here, by the
same convention as in atommaps.

The next Example shows an excerpt from a structure file for an alchemical free energy simulation in which a methyl
group in ethane vanishes and is replaced by another methyl group.

The first ct block describes the original ethane molecule, and the second ct block describes the ethane molecule with
one methyl group replaced by another—albeit identical—methyl group. The second ct block contains the fepio_fep
section that details the mapping of the second molecule onto the first one.

The third ct block describes the solvent, in which the transformation takes place from the ethane in the first ct block
to the ethane in the second.
...
f_m_ct {

...
s_fepio_name
i_fepio_stage
:::
...
ethane_to_ethane
1
m_atom[8] {
... # lines omitted

}

140 Chapter 18. Legacy Applications: Preparing a Maestro structure file

Desmond Users Guide, Release 3.4.0 / 0.7.2

ffio_ff {
... # lines omitted

}
}
... # lines omitted
f_m_ct {

...
s_fepio_name
i_fepio_stage
:::
ethane_to_ethane
2
m_atom[8] {
... # lines omitted

}
ffio_ff {
... # lines omitted

}
fepio_fep {
s_fepio_name
i_fepio_stage
:::
ethane_to_ethane
1
fepio_atommaps[13] {

i_fepio_ai
i_fepio_aj
:::
111
222
333
4 4 -1 # The 4, 5, 6, 7, and 8th atoms in state A
vanish and become dummy atoms in state B
5 5 -1
6 6 -1
7 7 -1
8 8 -1
9 -9 4 # The 4, 5, 6, 7, and 8th atoms in state B don’t
exist and are dummy atoms in state A
10 -10 5
11 -11 6
12 -12 7
13 -13 8
:::

}
fepio_bondmaps[12] {

i_fepio_ti
i_fepio_tj
i_fepio_ai
i_fepio_aj
:::
11112
22213
3 3 -1 1 4 # The bond between atoms 1 and 4 in state A
does not exist in state B, but will not be changed
... # lines omitted

}
fepio_anglemaps[23] {

18.2. Preparing the structure file for Free Energy Simulations 141

Desmond Users Guide, Release 3.4.0 / 0.7.2

i_fepio_ti
i_fepio_tj
i_fepio_ai
i_fepio_aj
i_fepio_ak
:::
1 1 -1 6 5 1 # The angle between atoms 6-5-1 in state A does
not exist in state B, but will not be changed
2 2 0 7 5 1 # The angle between atoms 7-5-1 in state A does
not exist in state B, and will vanish
... # lines omitted

}
fepio_dihedmaps[18] ...
fepio_exclmaps[78] ...
fepio_pairmaps[36] ...

}
}
f_m_ct {

...
s_ffio_ct_type
:::
... # lines omitted
solvent
m_atom[915] {
s_m_pdb_atom_name
s_m_pdb_residue_name
s_m_chain_name
i_m_residue_number
r_m_x_coord
r_m_y_coord
r_m_z_coord
i_m_atomic_number
:::
1 " OWS" SOL X 2 5.690000 12.750000 11.650000 8
2 " HWS" SOL X 2 4.760000 12.680000 11.280001 1
3 " HWS" SOL X 2 5.800000 13.639999 12.090000 1
4 " OWS" SOL X 3 15.549999 15.110001 7.030000 8
5 " HWS" SOL X 3 14.980000 14.950000 7.840000 1
6 " HWS" SOL X 3 14.960001 15.210000 6.230000 1
... # lines omitted

}
... # lines omitted

}

142 Chapter 18. Legacy Applications: Preparing a Maestro structure file

CHAPTER

NINETEEN

ENHANCED SAMPLING FUNCTION
REFERENCE

*

Class: Binary Threaded

Arguments:

• a, array

• b, array

Return: a ⇤ b computed element-wise by the binary threading rules

+

Class: Binary Threaded

Arguments:

• a, array

• b, array

Return: a+ b computed element-wise by the binary threading rules

-

Class: Binary Threaded

Arguments:

• a, array

• b, array

Return: a� b computed element-wise by the binary threading rules

/

Class: Binary Threaded

Arguments:

• a, array

• b, array

Return: a/b computed element-wise by the binary threading rules

^

143

Desmond Users Guide, Release 3.4.0 / 0.7.2

Class: Binary threaded

Arguments:

• a, array

• b, integer

Return: ab performed element-wise by the binary threading rules

Note that b will be rounded to get an integer. If this is not the desired behavior, then pow should be used instead.

acos

Class: Threaded

Arguments:

• a, array

Return: the element-wise arccosine of a

note that this function is not numerically stable for arguments near +1 or -1

angle

Class: Normal

Arguments:

• a, 3-element array

• b, 3-element array

Return: The cosine of the angle between a and b

This function does not return the angle directly due to numerical issues that arise due to the periodicity of angles. In
particular, inverse trigonometric functions often have singularities in their derivatives.

angle_gid

Class: Normal

Arguments:

• p1, particle

• p2, particle

• p3, particle

Return: The cosine of the angle of p1, p2, and p3

This function does not return the angle directly due to numerical issues that arise due to the periodicity of angles. In
particular, inverse trigonometric functions often have singularities in their derivatives.

angle_gid_radians

Class: Normal

Arguments:

• p1, particle

• p2, particle

• p3, particle

144 Chapter 19. Enhanced sampling function reference

Desmond Users Guide, Release 3.4.0 / 0.7.2

Return: Angle of a and b in radians. Result is in the range [0,⇡].

This function is not safe to use if the angle is near 0 or ⇡ because the derivative of this function diverges. It is preferable
to use the function “angle” when possible.

angle_radians

Class: Normal

Arguments:

• a, 3-element array

• b, 3-element array

Return: Angle of a and b in radians. Result is in the range [0,⇡].

This function is not safe to use if the angle is near 0 or ⇡ because the derivative of this function diverges. It is preferable
to use the function “angle” when possible.

array

Class: Normal

Arguments:

• An arbitrary number of array arguments

Return: the concatenation of all arguments

This function is useful for the creation of data arrays. For example, [array 1.0 2.0 3.0 4.0] is a 4-element array because
scalar literals are 1-element arrays.

atan2

Class: Binary Threaded

Arguments:

• y, array

• x, array

Return: arctangent of y/x computed according to the binary threading rules with the quadrants chosen according to
the signs of x and y. The range of this function is [�⇡,⇡].

The derivative of this function does not capture the discontinuity of the function at ±⇡. If the angle crosses ±⇡, there
can be a discrete change in the potential without a corresponding derivative divergence. This can cause energy drift in
the simulation. The user is advised to exercise caution if using atan2 in enhanced sampling potentials.

center_of_geometry

Class: Normal

Arguments:

• gids, array of gids

Return: center of geometry with periodic image handling

To compute the center of geometry with periodic image ambiguities, the following convention is used. The minimum
image displacement of each GID is calculated with respect to the previous GID in the gids array. The location of a
particle for the purposes of the center of geometry is then the sum of all these minimum image displacements for each
adjacent pair in the gid array going back to the first particle. The user must guarantee that each adjacent pair in the
position_gid array is less than 1/2 of the unit cell apart. If this condition is violated, then particles may be wrapped to
the wrong side of the cell, distorting the center of geometry.

center_of_mass

145

Desmond Users Guide, Release 3.4.0 / 0.7.2

Class: Normal

Arguments:

• gids, array of gids

Return: center of mass with periodic image handling

To compute the center of mass with periodic image ambiguities, the following convention is used. The minimum
image displacement of each GID is calculated with respect to the previous GID in the gids array. The location of a
particle for the purposes of the center of mass is then the sum of all these minimum image displacements for each
adjacent pair in the gid array going back to the first particle. The user must guarantee that each adjacent pair in the
position_gid array is less than 1/2 of the unit cell apart. If this condition is violated, then particles may be wrapped to
the wrong side of the cell, distorting the center of mass.

contact_map

Class: Normal

Arguments:

• r, distance threshold

• gids, list of particles

Return: The number of residues in the list gids within distance r of each other

This function counts up the number of elements in a contact map within a groups of atoms.

cos

Class: Threaded

Arguments:

• a, array

Return: the element-wise cosine of a

cross

Class: Normal

Arguments:

• a, 3-element array

• b, 3-element array

Return: the cross product of a and b

delta

Class: Normal

Arguments:

• gid1, particle

• gid2, particle

Return: the minimum image displacement from particle gid1 to particle gid2

dihedral

Class: Normal

Arguments:

• a, 3-element array

146 Chapter 19. Enhanced sampling function reference

Desmond Users Guide, Release 3.4.0 / 0.7.2

• b, 3-element array

• c, 3-element array

Return: A 2-element array. The first element is the cosine of the dihedral angle of vectors a, b, and c, and the second
element is the sine of the dihedral angle.

dihedral_gid

Class: Normal

Arguments:

• p1, particle

• p2, particle

• p3, particle

• p4, particle

Return: A 2-element array. The first element is the cosine of the dihedral angle for particles p1, p2, p3, and p4, and
the second element is the sine of the dihedral angle.

dihedral_gid_radians

Class: Normal

Arguments:

• p1, particle

• p2, particle

• p3, particle

• p4, particle

Return: Dihedral angle in radians for particle p1, p2, p3, and p4. Result is in the range [�⇡,⇡].

This function is based internally on atan2. Please see the documentation for atan2 for more information. In particular,
this function is discontinuous when the dihedral angle is near ±⇡, and the derivative of the function does not describe
this singularity. This can cause significant energy drift when the dihedral angle crosses ±⇡. Users are advised to
exercise caution when using dihedral_gid_radians. It is preferable to use the function “dihedral_gid” when possible.

dihedral_radians

Class: Normal

Arguments:

• a, 3-element array

• b, 3-element array

• c, 3-element array

Return: Angle in radians for vectors a, b, and c. Result is in the range [�⇡,⇡].

This function is based internally on atan2. Please see the documentation for atan2 for more information. In particular,
this function is discontinuous when the dihedral angle is near ±⇡, and the derivative of the function does not describe
this singularity. This can cause significant energy drift when the dihedral angle crosses ±⇡. Users are advised to
exercise caution when using dihedral_radians. It is preferable to use the function “dihedral” when possible.

dist

Class: Normal

Arguments:

147

Desmond Users Guide, Release 3.4.0 / 0.7.2

• gid1, particle

• gid2, particle

Return: the minimum image distance from particle gid1 to particle gid2

dot

Class: Normal

Arguments:

• a, array

• b, array of the same length as a

Return: the dot product of a with b

exp

Class: Threaded

Arguments:

• a, array

Return: the element-wise exponent of a

gibbs_max

Class: Normal

Arguments:

• T, scaling temperature

• a, array

Return: T log (

P
i exp(ai/T))

A softened maximum is infinitely differentiable, unlike the regular maximum.

gibbs_min

Class: Normal

Arguments:

• T, scaling temperature

• a, array

Return: �T log (

P
i exp(�ai/T))

A softened minimum is infinitely differentiable, unlike the regular minimum.

helix

Class: Normal

Arguments:

• tol, tolerance

• gids, list of particles (5x length of phipsis/2)

• phipsis, list of (�,) pairs of dihedral angles (in radians)

148 Chapter 19. Enhanced sampling function reference

Desmond Users Guide, Release 3.4.0 / 0.7.2

Return: Returns the count of how many groups of particles from gids, taken 5 at a time have the property that the
dihedral angle of the first 4 is within tol of the corresponding phi and the dihedral angle of the last 4 is within to of the
corresponding psi. i.e. for the group (x1,x2,x3,x4,x5) and angles (�,), |dihedral_angle(x1, x2, x3, x4)� �| < tol
and |dihedral_angle(x2, x3, x4, x5)� | < tol

length

Class: Normal

Arguments:

• a, array

Return: the number of elements in a

log

Class: Threaded

Arguments:

• a, array

Return: the element-wise logarithm of a

mass

Class: Threaded

Arguments:

• a, array of gids

Return: the element-wise mass of a

meta

Class: Special Form

Arguments:

• mid, integer index of a metadynamics accumulator, zero-indexed

• array of the gaussian height followed by the gaussian widths

• array of the collective variables

Return: the metadynamics potential at the current location in the collective variables

Note that the height and the widths of the gaussian may be an arbitrary expression, and the height and widths expression
is only evaluated when a gaussian is added to the potential. On each gaussian addition, the height, width, and center
of the resulting gaussian is written to a file as specified in the declare_meta statement in the header of the potential.

min_image

Class: Normal

Arguments:

• a, 3-element array

Return: the minimum image of a with respect to the unit cell

mod

Class: Binary Threaded

Arguments:

• a, array

149

Desmond Users Guide, Release 3.4.0 / 0.7.2

• b, array

Return: mod(a, b) computed element-wise by the binary threading rules. Answer is between 0 and b, including 0 and
excluding b.

ncoordination

Class: Normal

Arguments:

• r0, scaling distance

• n, upper exponent

• m, lower exponent

• gids1, first array of gids

• gids2, second array of gids

Return:
P

i,j
1�(r

ij

/r0)n

1�(r
ij

/r0)m where rij is the minimum image distance between particle i from the first list and particle j
from the second list.

returns the coordination number between two groups of atoms.

norm

Class: Normal

Arguments:

• a, array

Return: Magnitude(norm) of a. Equivalent to [sqrt [norm2 $a]]

norm2

Class: Normal

Arguments:

• a, array

Return: the dot product of a with itself

note that if a is a scalar, this is simply the square of the scalar

pos

Class: Normal

Arguments:

• gid, particle

Return: the position of the particle whose GID is given by gid

pos_inner_prod

Class: Normal

Arguments:

• gids, array of gids

• weights, array, same length as gids

150 Chapter 19. Enhanced sampling function reference

Desmond Users Guide, Release 3.4.0 / 0.7.2

Return:
P

i weightsi ⇤ pos(gidsi) after periodic image correction

This function is useful for computing center of mass, center of geometry and dipole moments. To compute the inner
product with periodic image ambiguities, the following convention is used. The minimum image displacement of each
GID is calculated with respect to the previous GID in the gids array. The location of a particle for the purposes of the
inner product is then the sum of all these minimum image displacements for each adjacent pair in the gid array going
back to the first particle. The user must guarantee that each adjacent pair in the position_gid array is less than 1/2 of
the unit cell apart. If this condition is violated, then particles may be wrapped to the wrong side of the cell, distorting
the inner product.

pow

Class: Normal

Arguments:

• a, array of positive numbers

• b, array of numbers (same length or length 1)

Return: ab performed elementwise or threaded in b.

If a is not positive, the result is undefined.

print

Class: Special Form

Arguments:

• printname, string

• a, array

Return: returns its argument a

print is used to log values from the interpreter to a file. printname is used to control the name associated with output
from this print statement, and the value of a is sent to the output. The output file and frequency is controlled by the
name, first, and interval parameters specified in the declare_output header. The output side-effect occurs only on the
rank 0 process.

rad_gyration

Class: Normal

Arguments:

• gids, list of particles

Return:
⇣

1

2N2

P
i,j kri � rjk2

⌘
1/2

, where ri and rj are the positions of particles i and j from the given list.

Returns the radius of gyration as defined in the wikipadia article of the same name, under the ‘molecular applications’
section.

rmsd

Class: Normal

Arguments:

• model, array of the model coordinates. This argument should be of the form [x
1

y
1

z
1

x
2

y
2

...], and the length
of the array must be three times the length of position_gids.

• position_gids, array of particles

• weights, array of the length as the position_gids array. This argument is optional and if omitted, all particles
have the same weight. The gradient of the RMSD with respect to weights is ignored.

151

Desmond Users Guide, Release 3.4.0 / 0.7.2

Return: Minimum RMS distance between the positions described by position_gids and the structure described by
model. The minimum is taken of all possible affine transformations of the model.

To compute RMSD with periodic image ambiguities, the following convention is used. The minimum image displace-
ment of each GID is calculated with respect to the previous GID in the position_gids array. The location of a particle
for the purposes of RMSD is then the sum of all these minimum image displacements for each adjacent pair in the
position_gid array going back to the first particle. The user must guarantee that each adjacent pair in the position_gid
array is less than 1/2 of the unit cell apart. If this condition is violated, then particles may be wrapped to the wrong
side of the cell, distorting the RMSD. Note that the derivatives of the model configuration and the weights are not
considered in computing the derivative of the RMSD. Model coordinates are not wrapped in any way.

rmsd_torsion

Class: Normal

Arguments:

• gids, list of particles (4x length of phis)

• phis, list of dihedral angles (in radians)

Return:
�P

i(i � �i)2/N
�
1/2 where i is the dihedral angle of the ith group of 4 atoms and N is the length of the

list of �‘s.

The rms average difference of the dihedral angles of the atoms, taken 4 at a a the gids list, and the angles from the phis
list.

sign

Class: Threaded

Arguments:

• a, array

Return: For each element x of a, returns +1 if x >= 0, -1 if x < 0, and x otherwise. Sign is computed element-wise.

sin

Class: Threaded

Arguments:

• a, array

Return: the element-wise sine of a

sqrt

Class: Threaded

Arguments:

• a, array

Return: the element-wise square root of a

store

Class: Special Form

Arguments:

• storename, see description

• a, array

152 Chapter 19. Enhanced sampling function reference

Desmond Users Guide, Release 3.4.0 / 0.7.2

Return: returns its argument a

This operation stores its second argument under the name given by the first argument. The storename must be declared
in a “static” statement of the enhanced sampling configuration, and the length of the array a must be the same as the
length declared in the static statement. Note that the store does not actually occur until the end of the potential
evaluation, so that the stored value is not accessible until the next potential evaluation.

sum

Class: Normal

Arguments:

• a, array

Return: the sum of the elements of a

time

Class: Normal

Arguments:

• None

Return: the chemical time for this step

153

Desmond Users Guide, Release 3.4.0 / 0.7.2

154 Chapter 19. Enhanced sampling function reference

CHAPTER

TWENTY

LICENSES AND THIRD-PARTY
SOFTWARE

20.1 Licensing Desmond for Non-Commercial Research

Desmond can be licensed at no charge for non-commercial use subject to the following license conditions. The terms
of the license below are as of the time this document was prepared but is subject to change. Consult the terms of the
license agreement you obtained with your distribution.

DESMOND LICENSE AGREEMENT
FOR NON-COMMERCIAL RESEARCH

1. License Grant. Subject to the terms and conditions of this license
agreement (the "Agreement"), D. E. Shaw Research, LLC ("DESRES") grants to
LICENSEE a limited, royalty-free license, on a non-exclusive,
non-transferable, non-assignable, and non-sublicensable basis, to install and
use for non-commercial research (as defined below) the molecular dynamics
software program known as Desmond Version 3 (including any version of such
program whose version number begins with "3.") and any associated
documentation (any such documentation and any such version collectively
referred to herein as the "SOFTWARE"). The SOFTWARE may be accessed, held, or
otherwise used only with a valid license and this Agreement confers a valid
license only to (a) academic or other not-for-profit research entities and (b)
individuals who are affiliated with such entities, in each case (a) and (b),
provided that such entities and/or individuals use the SOFTWARE exclusively
for non-commercial research purposes. Upon any change in LICENSEE’s status as
or affiliation with a not-for-profit research organization, or in LICENSEE’s
use of the SOFTWARE exclusively for non-commercial research, all licenses
granted hereunder shall terminate immediately with or without any notice by
DESRES. If LICENSEE wishes to continue using the SOFTWARE after any such
termination, LICENSEE must apply for a new SOFTWARE license, any approval of
which application shall be at DESRES’ sole discretion. Use of the SOFTWARE is
restricted to non-commercial research conducted by LICENSEE and, if LICENSEE
is an organization, LICENSEE’s employees, research advisees, and students
("Authorized Users"). The term "non-commercial research" means any academic
or other research which (x) is not undertaken for profit and (y) is not
intended to produce results, works, services, or data for commercial use by
anyone. Any other parties (including, without limitation, any collaborators
of LICENSEE) wishing to install or use the SOFTWARE may do so only if such
parties have executed a separate license agreement with DESRES giving such
parties the right to do so. DESRES reserves all rights not expressly granted
herein.

155

Desmond Users Guide, Release 3.4.0 / 0.7.2

2. Representations and Warranties. LICENSEE hereby represents and warrants
that: a. LICENSEE has the necessary authority to enter into this Agreement; b.
all information that LICENSEE has provided or will hereafter provide in
connection with this Agreement is and will be correct and complete; c.
LICENSEE qualifies for the non-commercial license granted hereunder on the
basis of the criteria specified herein; and d. LICENSEE will abide by, and
will ensure that all of its Authorized Users abide by, the terms and
conditions set forth in this Agreement.

3. Restrictions. LICENSEE may make copies of the SOFTWARE only as necessary
for bona fide backup or archival purposes. LICENSEE shall not: (a) modify,
translate, adapt, create derivative works from (except in accordance with the
Derivative Work Permissions set forth in this paragraph), or decompile the
SOFTWARE, or any portion thereof, or create or attempt to create, by reverse
engineering or otherwise, the source code ("Source Code") from the object code
supplied hereunder; (b) rent, lease, loan, sell, transfer, publish, display,
or distribute the SOFTWARE, or make the SOFTWARE available to third parties,
or use the SOFTWARE, or any portion thereof, in a service bureau,
time-sharing, or outsourcing service, or otherwise use the SOFTWARE for the
benefit of third parties; (c) remove or alter any proprietary rights notices
on the SOFTWARE; (d) export, import, or re-export the SOFTWARE in violation of
any applicable law, rule, or regulation of any jurisdiction; (e) disclose,
without DESRES’s prior written approval, the SOFTWARE or any code,
information, or materials contained in or related to the SOFTWARE ("RELATED
MATERIALS") other than as expressly authorized hereunder. LICENSEE shall
notify DESRES immediately of any actual or imminent unauthorized access to, or
use or disclosure of, the SOFTWARE and/or any RELATED MATERIALS. LICENSEE
recognizes that the unauthorized use or disclosure of any of the foregoing
will give rise to irreparable injury to DESRES, its affiliates, and/or its
licensors for which monetary damages may be an inadequate remedy; and LICENSEE
agrees that DESRES, its affiliates, and/or its licensors may seek and obtain
injunctive relief against the breach or threatened breach of LICENSEE’s
obligations hereunder, in addition to any other legal and equitable remedies
which may be available. The "Derivative Work Permissions" relate only to any
Source Code provided by DESRES to LICENSEE and permit LICENSEE to create only
the following types of derivative works: (i) any complementary code that
interoperates with the SOFTWARE, provided that any such code is provided to
users free of charge and distributed only with a disclaimer that conspicuously
states that D. E. Shaw Research, LLC and its affiliates did not create,
approve, or authorize such code, and (ii) any modification to the code
comprising the SOFTWARE itself ("Software Modification"), provided that any
such Software Modification may in no case be distributed by the LICENSEE.

4. Acknowledgement and Citation. LICENSEE agrees to acknowledge the use of
the SOFTWARE in any reports or publications of results obtained with the
SOFTWARE as follows:

"Desmond Molecular Dynamics System, version X.Y, D. E. Shaw Research, New
York, NY, 2008."

Where ’X’ and ’Y’ are to be replaced with the major- and minor-release number
of the version used in the published research. If the published research is
based on results obtained with any Software Modification or any complementary
code not developed by DESRES, then those variants must be acknowledged as
such. LICENSEE is also requested to include a citation to the following
paper:

"K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen,

156 Chapter 20. Licenses and Third-Party Software

Desmond Users Guide, Release 3.4.0 / 0.7.2

J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon,
Y. Shan, and D. E. Shaw. Scalable algorithms for molecular dynamics
simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC06), Tampa, FL, 11 to 17 November 2006
(ACM Press, New York, 2006)."

5. Disclaimer of Warranties and Liabilities. LICENSEE acknowledges that the
SOFTWARE is a research tool. The SOFTWARE is provided "as is." For the
avoidance of doubt, DESRES and its licensors shall have no maintenance,
upgrade, or support obligations with respect to the SOFTWARE. DESRES, ITS
AFFILIATES, AND ITS LICENSORS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT, OR THAT THE SOFTWARE WILL
OPERATE UNINTERRUPTED OR ERROR-FREE OR MEET LICENSEE’S PARTICULAR
REQUIREMENTS. LICENSEE AGREES THAT DESRES AND ITS AFFILIATES SHALL NOT BE
HELD LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, EXEMPLARY,
PUNITIVE, OR INCIDENTAL DAMAGES WITH RESPECT TO ANY CLAIM BY LICENSEE OR ANY
THIRD PARTY ARISING OUT OF OR RELATING TO THIS AGREEMENT OR USE OF THE
SOFTWARE OR ANY DERIVATIVE WORK BASED ON THE SOFTWARE.

6. Ownership Rights. LICENSEE acknowledges that the SOFTWARE is the sole and
exclusive property of, and is valuable, confidential, and proprietary to,
DESRES and its licensors, including, without limitation, all rights to
patents, copyrights, trademarks, trade secrets, and any other intellectual
property and proprietary rights inherent therein or appurtenant thereto, in
all media now known or hereinafter developed, and LICENSEE shall protect the
foregoing to at least the same extent that it protects its own confidential
information, but using no less than a reasonable standard of care. LICENSEE
is not purchasing title to the SOFTWARE or copies thereof, but rather is being
granted only a limited license to use the SOFTWARE only in accordance with
this Agreement. LICENSEE shall not use DESRES or its affiliates or licensors’
names or marks or employee names, or adaptations thereof, in any advertising,
promotional, sales, or other materials without the prior written consent of
DESRES or, if and as applicable, of DESRES’s affiliates or licensors.
LICENSEE shall inform DESRES promptly in writing of any actual or alleged
infringement of DESRES or its licensors’ rights and of any available evidence
thereof.

7. Term and Termination. LICENSEE’s license with respect to the SOFTWARE
shall be perpetual, subject to DESRES’s rights to terminate this Agreement.
Any and all rights granted to LICENSEE hereunder shall terminate immediately
upon LICENSEE’s breach of, or non-compliance with, any provisions of this
Agreement. In the event of any termination of this Agreement for any reason,
LICENSEE shall discontinue all use of the SOFTWARE and shall either (a)
promptly return all copies of the SOFTWARE and any RELATED MATERIALS to
DESRES, or (b) subject to DESRES’s prior consent, provide DESRES with a
certificate of destruction of all copies of the SOFTWARE and any RELATED
MATERIALS. Notwithstanding the foregoing, only Paragraph 1 of this Agreement
shall not survive the termination of this Agreement.

8. Government Use. The SOFTWARE and the accompanying documentation are
"commercial items" as that term is defined in 48 C.F.R. 2.101 consisting of
"commercial computer software" and "commercial computer software
documentation" as such terms are used in 48 C.F.R. 12.212. Consistent with 48
C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4, if LICENSEE
hereunder is the U.S. Government or any agency or department thereof, the
SOFTWARE and the documentation are licensed hereunder (i) only as commercial
items, and (ii) with only those rights as granted to all other end users

20.1. Licensing Desmond for Non-Commercial Research 157

Desmond Users Guide, Release 3.4.0 / 0.7.2

pursuant to the terms and conditions hereof.

9. General. This Agreement and its enforcement shall be governed by, and
construed in accordance with, the laws of the State of New York, without
regard to conflicts-of-law principles. LICENSEE acknowledges that (x) DESRES
may enter into agreements with one or more third parties (each an "Independent
Commercial Distributor") to distribute the SOFTWARE for commercial use; (y) as
of the date of this Agreement DESRES has entered into one such agreement,
designating Schrodinger, LLC as an Independent Commercial Distributor; and (z)
any such Independent Commercial Distributor (including without limitation
Schrodinger, LLC) is a third-party beneficiary of this Agreement. The
exclusive venue for any action relating to this Agreement shall be the state
and federal courts situated in the State of New York, County of New York, and
each party expressly consents to the jurisdiction of such courts. This
Agreement constitutes the entire agreement between the parties and supersedes
all prior agreements, written or oral, relating to the subject matter hereof.
This Agreement may not be modified or altered except by written instrument
duly executed by both parties. If any provision of this Agreement is deemed
to be unenforceable, that provision shall be enforced to the maximum extent
permitted to effect the parties’ intentions hereunder, and the remainder of
this Agreement shall continue in full force and effect. The failure of either
party to exercise any right provided for herein shall not be deemed a waiver
of any right hereunder.

20.2 Licensed Companion Software

Desmond and its related software makes use of several software packages prepared by organizations and individuals
outside of D. E. Shaw Research. We include here the licensing terms for two of those packages.

20.2.1 Boost C++ Libraries

Desmond 3.x uses Boost version 1.45.0, available from the Boost website http://www.boost.org, under the terms of
the Boost Software License, Version 1.0.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

158 Chapter 20. Licenses and Third-Party Software

http://www.boost.org

Desmond Users Guide, Release 3.4.0 / 0.7.2

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

20.2.2 SunPro Error Function

Desmond uses an implementation of the error function that includes the following notice:

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice
is preserved.

20.2.3 ANTLR

LICENSE:

Copyright (c) 2005-2008 Terence Parr
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

20.2.4 V8 project’s double to ASCII conversion library

Copyright 2006-2011, the V8 project authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following

20.2. Licensed Companion Software 159

Desmond Users Guide, Release 3.4.0 / 0.7.2

disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

20.2.5 PCRE license

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.

Release 7 of PCRE is distributed under the terms of the "BSD" licence, as
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itself.

The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2007 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007, Google Inc.
All rights reserved.

160 Chapter 20. Licenses and Third-Party Software

Desmond Users Guide, Release 3.4.0 / 0.7.2

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the University of Cambridge nor the name of Google
Inc. nor the names of their contributors may be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

End

20.2. Licensed Companion Software 161

Desmond Users Guide, Release 3.4.0 / 0.7.2

162 Chapter 20. Licenses and Third-Party Software

BIBLIOGRAPHY

[Bro-2004] C. L. Brooks III, A. D. MacKerell Jr., M. Feig, “Extending the treatment of backbone energetics in protein
force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in
molecular dynamics simulations”, J. Comput. Chem., 25:1400–1415, 2004.

[Ben-1976] Charles H. Bennett, “Efficient estimation of free energy differences from Monte Carlo data”, J. Comp.
Phys., 22:245–268, 1976.

[Ber-1984] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and J. R. Haak, “Molecular dynamics
with coupling to an external bath”, J. Chem. Phys., 81:3684-3690, October 1984.

[Ess-1995] U. Essman, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh
Ewald method”, J. Chem. Phys., 103(19):8577–8593, 1995.

[Fel-1995] S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, “Constant pressure molecular dynamics simulation:
The Langevin piston method”, J. Chem. Phys., 103:4613–4621, September 1995.

[Gun-1984] W. F. van Gunsteren H. J. C Berendsen, “Molecular dynamics simulations: Techniques and approaches”,
In A. J. Barnes et al., editor, Molecular Liquids: Dynamics and Interactions, NATO ASI C 135, pages 475–500.
Reidel Dordrecht, The Netherlands, 1984.

[Mar-1992] G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nose-Hoover chains: The canonical ensemble via
continuous dynamics”, J. Chem. Phys., 97:2635–2643, August 1992.

[Mar-1994] G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular dynamics algorithms”, J.
Chem. Phys., 101:4177–4189, September 1994.

[COD-2002] P. J. Mohr and B. N. Taylor, “CODATA recommended values of the fundamental physical constants:
2002”, Rev. Mod. Phys., 77(1):1–107, 2005.

[Rei-1994] Sebastian Reich, “Momentum conserving symplectic integrators”, Physica D, 76:375–383, 1994.

[Sha-2005] Yibing Shan, John L. Klepeis, Michael P. Eastwood, Ron O. Dror, and David E. Shaw, “Gaussian split
Ewald: A fast Ewald mesh for molecular simulation”, J. Comp. Phys., 122(5), 2005.

[Shi-2003] Michael R. Shirts, Eric Bair, Giles Hooker, and Vijay S. Pande, “Equilibrium free energies from nonequi-
librium measurements using maximum-liklihood methods”, Physical Review Letters, 91, 2003.

[sqlite] http://www.sqlite.org, SQLite home page.

163

http://www.sqlite.org

	Front matter
	Notice
	Copyright
	Trademarks

	Preface
	Intended audience
	Prerequisites
	Format conventions
	About the equations

	Key Concepts
	What is Desmond?
	Forces
	Particles
	Force fields
	Space
	Time
	Dynamics
	Using Desmond

	Running Desmond
	About configuration
	Invoking Desmond
	Running Desmond in parallel
	Configuring Desmond applications
	Naming output files
	Configuring the built-in plugins
	Configuring optional sections

	The Global Cell
	Parallelization
	Configuration
	Migration

	Preparing a structure file
	Converting a Desmond 2.0/2.2 structure file
	Preparing a Desmond DMS file

	Calculating Force and Energy
	Configuring force fields
	Bonded, pair, and excluded interactions
	Van der Waals and electrostatic interactions
	Nonbonded far interactions

	Constraints
	Single precision resolution and constraints

	Dynamics
	Particles and mechanics
	Integrator
	RESPA
	Pressure
	Temperature
	Dynamical systems

	Free Energy Simulations
	Configuring free energy simulations

	Enhanced Sampling and Umbrella Sampling
	Introduction
	Using the Enhanced Sampling Plugin
	Interpreter
	Metadynamics
	Examples

	Extending Desmond
	Implementation
	Running your plugin

	Trajectory Format and Analysis
	Structure of frameset directories
	Soft catenation option
	Command line tools for framesets
	Python tools for trajectories and framesets

	Appendix: Units
	Appendix: Configuration syntax
	Examples

	Appendix: Clone Radius Restrictions
	Appendix: DMS file format
	Molecules
	Forcefields
	Alchemical systems

	Legacy Applications: Preparing a Maestro structure file
	Format
	Preparing the structure file for Free Energy Simulations

	Enhanced sampling function reference
	Licenses and Third-Party Software
	Licensing Desmond for Non-Commercial Research
	Licensed Companion Software

	Bibliography

