OPTIMISING CASTEP ON INTEL’S KNIGHT’S
LANDING PLATFORM
TECHNICAL REPORT FOR ECSE11-17

April 1, 2019

Phil Hasnip', Ed Higgins' & Arjen* Tamerus
T Dept of Physics, University of York

* Research Computing Services, University of Cambridge

ii

Abstract

CASTEP is a widely-used, UK-developed software package based on density functional
theory, and capable of predicting the properties of materials from “first-principles”; that
is, by solving quantum mechanical equations to determine what the behaviour is, without
the need for adjustable parameters. CASTEP was designed from the beginning to run well
on conventional parallel HPC machines, but in recent years a number of new computer
architectures have emerged which do not follow the conventional trends for CPUs. One
such architecture is Intel’s Knights Landing (KNL).

Knights Landing’s theoretical performance is very high, but much of its performance
is delivered by long vector instructions on many low-power cores, and its performance
profile differs considerably from that of a conventional CPU. In this work we profiled and
analysed CASTEP’s performance on KNL, with particular attention to its vectorisation,
and optimised the computational bottlenecks. The effects of hyperthreading and the KNL
memory mode were also investigated. Substantial performance gains were realised in

several key subroutines, and CASTEP performance on KNL was improved considerably.

Contents
Introductionl 2
(1 Optimising bottlenecks| 2
(1.1 Comparative benchmarking|. 2
(.2 Benchmark results] 0 3
(1.2.1 trace_entry| 3
(1.2.2 nlpot_calculate_d|. 4
(1.3 Comparison conclusions| 5
2__Vectorisation| 5
[2.1 Comparison of AVX instruction sets| 6
[2.2 Indirect memory copy| 6
2.2.1 FFT data mappingl 7
[2.2.2 Parallel data transposition| 8
[2.2.3 Compiler hints| 8
[2.3 Identitying vectorisation problems| 11
2.4 Hubbard Ul 0 12
3 Memory Modes| 12
[3.1 Explicit memory allocation on the HBM| 14
[3.2 Manually caching objects to the HBM| 16
[4 Multithreading 17

Conclusion 19

Introduction

Methods for performing first-principles simulations of materials (solving the Schrodinger
equation via parameter-free approximations) have had a profound, pervasive impact on
science and technology, spreading from physics, chemistry and materials science to diverse
areas including electronics, geology and medicine. Methods based on density functional
theory (DFT) have led the way in this success, offering a favourable balance of compu-
tational cost and accuracy. However, DFT is certainly not a computationally ‘cheap’
method and it is essential to optimise codes not only for single-core performance but also
for large parallel calculations.

CASTEP is a UK-based state-of-the-art implementation of DFT and a flagship code
for UK HPC. It was designed from the outset according to sound software engineering
principles and with HPC in mind. CASTEP describes the electronic states (“bands”)
using a plane-wave (Fourier) basis, necessitating the heavy use of parallel fast Fourier
transforms (FFTs) for computational efficiency. CASTEP is widely-used by academia and
industries across the world, and is available to all UK researchers under a free licence.
It is a system-installed program on ARCHER, as it was on its predecessor HECToOR,
and is frequently in the ‘Top 5" most used codes (as measured by aggregate core hours).
CASTEP is written in modern Fortran 2003 and parallelised using MPI and OpenMP.
Strict adherence to language/API standards is important, as CASTEP is widely ported
to many systems worldwide, from PCs to Tier 0 HPC.

The work presented here is aimed at boosting the efficiency and scaling of CASTEP on
modern CPUs, including Intel’s KNL, thus enabling efficient calculations with greater use
of concurrency; this in turn enables far more energy-efficient calculations, and provides
some measure of “future-proofing” for CASTEP as KNL is an archetypical machine for
Intel’s future HPC platforms.

1 Optimising bottlenecks

1.1 Comparative benchmarking

A simple way to put the performance of the Knights Landing (KNL) hardware into
perspective is to run a comparative benchmark on a single-node of ARCHER’s KNL and
standard Ivy Bridge compute partitions. CASTEP’s TiN benchmark was chosen, as this
is a relatively small calculation suitable for running on a single node, yet is large enough

that the parallel efficiency remains high even with all 64 cores of the KNL. The relevant

sizes are:

e 8 integration sampling points (‘k-points’)
CASTEP parallelises almost perfectly over k-points, and both the Ivy Bridge and
KNL have a multiple of 8 cores per node (24 and 64 respectively).

e 164 electronic states (‘bands’)
These are sufficient to accommodate all of the electrons in the 33-atom simula-
tion cell, as well as some extra conduction states. Having over 100 bands means
that there is a reasonable amount of data and work per k-point, so a high com-

pute:communication ratio is expected.

e 10,972 Fourier components (‘plane-waves’)
CASTEP additionally distributes the data and workload over the plane-waves, and
parallel efficiency typically remains high until there are substantially fewer than

1,000 plane-waves per MPI process.

These sizes suggest that high parallel efficiency should be achieved for up to 8-way k-
point parallelism and up to 11-way G-vector parallelism, meaning calculations up to
8 x 1 = 88 MPI processes should be very efficient. Since this exceeds the single-node
core counts of both architectures, communication overheads are expected to be low and

parallel efficiency high.

1.2 Benchmark results

The results of running the TiN benchmark are shown in table[I] along with a selection of
the per-routine timings from CASTEP’s built-in trace module. The total execution time
(as measured by wallclock time) is substantially higher for the KNI, and a full per-routine
breakdown showed that of the 426 subroutines called and traced, the KNL was faster in
only one: the matrix-multiplication routine algor_matmul_cmplx_cmplx. However many
of the subroutines did not slow down substantially; rather, the increase in wallclock time

on the KNL was dominated by two subroutines: trace_entry and nlpot_calculate_d.

1.2.1 trace_entry

This routine is not involved in any of the scientific simulation, but is CASTEP’s main
timing and profiling routine. Its operation involves a hash table look-up, traversal of a
doubly-linked tree (using Fortran pointers) and a call to OMP _GET WTIME for the

timing itself. All three of these operations are substantially slower on the KNL compared
to the Ivy Bridge. A simple work-around is simply to disable these calls, since they are
only used for execution tracing and profiling and have no scientific function; however,
since the overall aim of this project was to improve execution time, good profiling data
is essential and disabling this functionality would be counterproductive. A pragmatic
compromise was to disable the calls in all of the low- and mid-level subroutines (those
subroutines in CASTEP’s ‘Utility” and ‘Fundamental’ modules). This sacrificed the detail
of the profiling data, but recovered over 80% of the slow-down in wallclock time for this
operation, compared to vy Bridge. This large reduction in the overhead is due primarily
to the fact that the lower-level subroutines are called many more times than the high-level

ones, often 10,000-100,000 times even in short calculations.

Operation Ivy Bridge KNL
Total calculation 246s 427s
algor_matmul 96s 72s
nlpot_calculate_d 10s ©61s
trace_entry 2s 121s

Table 1: Comparative timings for 32 SCF cycles of the TiN benchmark on one node of
ARCHER (CPU or KNL) using CASTEP timing routines to provide per-routine timing.
The benchmark was performed using the baseline CASTEP 17.2 codebase.

1.2.2 nlpot_calculate_d

This subroutine computes the weights for CASTEP’s non-local projectors, which is es-
sential to determining the potential acting on the electrons in the simulation. Analysis
of the operations showed that a large proportion of the time was spent interpolating
the projectors themselves, and that this time was spent computing a set of ‘Clebsch-
Gordon’ coefficients and applying spherical harmonics to the projectors. Each of these
operations depends on several integer arguments (quantum numbers); although the op-
eration involves looping over all valid values of the integers, the data in each case was
computed on a per-element basis. This is slightly inefficient on a conventional CPU, but
the operation is quick enough not to be significant; on the KNL, however, it is extremely
time-consuming.

Refactoring the code so that the innermost loop was moved inside the lowest-level

routine, and removing some redundant checks for argument validity, transformed the

performance of these operations, and reduced the time taken by nlpot_calculate_d

from 61s to 23s (a 2.7x speed-up).

1.3 Comparison conclusions

When compared with the Ivy Bridge CPUs, the KNL shows best performance on dense
linear algebra operations, particularly matrix-matrix multiplications. Most of the other
operations have similar, if slightly poorer, performance when comparing node-for-node
performance. Operations which stress the branch prediction, for example conditionals
inside tight loops, and system calls appear to be significantly slower, but in the case of
CASTEP at least, many of these may be mitigated by relatively modest code refactoring.

Following implementation of the optimisations discussed so far, the TiN benchmark
was re-run and the walltime for 32 SCF cycles was shown to have reduced from 427.24s
to 287.13s, a speed-up of 1.49x.

2 Vectorisation

The ability to perform vector operations is a feature of almost all modern CPUs, but for
KNL in particular it is key to achieving good performance. In a typical vector operation,
a single instruction is used to perform an operation on multiple data (SIMD) concurrently.
It is a requirement of these instructions that there are no data-dependencies, otherwise
the concurrency could result in a race condition. It is not always possible for a compiler
to determine whether or not data dependencies exist, and in such cases the compiler will
assume the code cannot be vectorised.

While it is the programmer’s responsibility to write vector-friendly code, exposing
suitable parallelism is not always trivial nor intuitive. Even when the compile can identify
vector-parallelisable code, the compiler will have to be conservative in its use of SIMD
instructions to ensure the vector units operate on contiguous data and to avoid out-
of-bounds memory accesses. We will discuss the methods used to identify suboptimal
vectorisation, and the solutions that were implemented to resolve the issues that were
found. We will particularly focus on the the issue of indirect memory copies, a heavily used

operation in CASTEP which has shown to be a particularly complex task to vectorise.

2.1 Comparison of AVX instruction sets

A simple way to investigate the effects of vectorisation is to disable the longer vector
instructions explicitly at compile-time. The results of running CASTEP compiled with
three different levels of vector instruction set at shown in table [2] where the total run
time is given alongside the timing breakdown for some notable subroutines; note that the
instruction sets used by the libraries were not changed, so any calls to the BLAS/LAPACK
or FFT will use the same instructions regardless of the setting.

It is clear from the data in table [2] that whilst CASTEP as a whole speeds up as
each extra instruction set is included, the overall speed-up is not very large and the
performance varies enormously from operation to operation. The matrix multiplication
subroutine algor_matmul_complex_complex is a thin wrapper to a BLAS library call
(ZGEMM), and since the library instruction set is unchanged the performance is approx-
imately constant. One of the best-performing operations is wave_zero_slice, which is
used to initialise instances of one of CASTEP’s derived types, mostly by filling a large
array with zeroes.

The remaining two routines highlighted show considerably poorer performance. The
FFT routine basis_recip_red_real_3d_coeffs shows no benefit from the additional
vector instructions at all, and comms_transpose_exchange actually slows down signifi-
cantly as the vector lengths are increased. Each of these operations involves an indirect

memory copy; this operation is the subject of the next section.

Routine name AVX AVX2 AVX512
Total time 1112.30 1089.14 1066.22
comms_transpose_exchange 169.02 177.43 192.29
algor_matmul_complex_complex 349.60 351.91 354.63
wave_zero_slice 100.56 65.83 38.64

basis_recip_red_real_3d_coeffs 27.82 28.05 27.60

Table 2: Comparison of the performance of notable CASTEP routines running the A13x3
on one node of KNL when compiled with different AVX instruction sets. Since CASTEP
was linked to MKL for BLAS operations, routines such as algor_matmul_complex_complex
were able to utilise AVX512 instructions in all runs.

2.2 Indirect memory copy

There are two common operations in CASTEP which involve an indirect memory copy:

e FFT data mapping
e Parallel data transposition

In each case the copy is of the form:

do n=1,max_n

a(b(n)) = c(n)

end do

(or the inverse operation.)
Such operations can be difficult for compilers to vectorise, since it is not clear at

compile-time whether the mapping is one-to-one. In fact in each case in CASTEP the
indirection provides a unique mapping from element n of ¢, to element b(n) of a (and

vice versa).

2.2.1 FFT data mapping

The wavefunction data in CASTEP is nonzero only inside a sphere in Fourier space.
Furthermore, the diameter of this sphere is typically only half the length of the FFT grid.
Thus for a cubic FFT grid of side 2L, the number of FFT grid points is (2L)% = 8L3, but
the nonzero elements lie in a sphere of points %n(%ﬁ ~ %L?’, meaning only 1—16th of the
FFT data is nonzero. Since the wavefunction data is one of the largest memory objects
in a CASTEP calculation, the nonzero elements are stored in a contiguous array. When
CASTEP needs to FFT the data to real-space, therefore, it must first be mapped onto
the full FFT grid.

The Fortran code to do this is of the form:

do point=1,num_sphere_points
FFT_grid(sphere_to_grid(point)) = sphere_data(point)
end do
The FFT operation may now be carried out on the data in FFT grid.

Whenever the inverse operation is required, i.e. taking real-space data on the FF'T
grid and transforming it to reciprocal-space data within the sphere, the FFT is carried
out on the FFT grid to transform the data to Fourier-space, and then a similar indirect
memory copy is used to only copy the data lying within the sphere:

do point=1,num_sphere_points
sphere_data(point) = FFT_grid(sphere_to_grid(point))
end do

Although it is not necessarily obvious to the compiler, the array sphere to grid
is a one-to-one mapping which simply takes the index of a data point in the sphere
representation and returns the index in the full FFT grid representation. Since there are

no data dependencies, this operation is inherently parallelisable and vectorisable.

2.2.2 Parallel data transposition

In parallel, CASTEP performs its 3D FFT as a series of 1D FFTs (along each direction
x, y and z in turn) interspersed with explicit data transpositions. In Fourier space, the
3D data is distributed via a 2D decomposition over y and z, with each MPI process
taking one or more "x-columns"; that is, all of the data with (x,y,z) coordinates from
(L,y,z) to (Ny,y,z). This allows each process to perform its own 1D FFT in x, without
requiring communication. In order to perform an FFT in y the data must be transposed
(re-distributed) so that the process now hold "y-columns", i.e. columns of data from
(x,1,2) to (x,Ny,z).

The parallel data transposition is carried out by comms_transpose_exchange, which
uses MPI_A11toAl1V for the interprocess communication. As the name suggests, this
involves all MPI processes communicating with all other processes, with each process
setting up separate send and receive buffers. The send buffer must be arranged so that
the data for each recipient process is contiguous, so comms_transpose_exchange uses an
indirect memory copy to place its own FFT data (arranged contiguously in x) into the
send-buffer (to be ordered contiguously in y).

An exactly analogous set of operations is then performed (by the same routines) to
transpose the data again such that the MPI processes hold "z-columns", and the last

FFT (along z) may be performed.

2.2.3 Compiler hints

For less complex operations than the indirect memory copy the compiler can often suc-
cessfully detect the vectorisability of a section of code, but it cannot determine at compile
time that the prerequisites for safe vectorisation are guaranteed to be met.
Fortran and OpenMP both contain constructs to signal to a compiler that code may
be executed concurrently. The indirect memory copies are of the form:
do point=1,num_sphere_points
sphere_data(point) = FFT_grid(sphere_to_grid(point))
end do

and in this case the relevant constructs are:

e Vector indexing (Fortran 90)
This may be implemented in one of two (syntactically equivalent) ways. Method 1
is:

sphere_data(:) = FFT_grid(sphere_to_grid(:))

and method 2 is:

sphere_data = FFT_grid(sphere_to_grid)

e forall (Fortran 2003)

forall (point=1:num_sphere_points)
sphere_data(point) = FFT_grid(sphere_to_grid(point))
end forall

e do concurrent (Fortran 2008)

do concurrent (point=1:num_sphere_points)
sphere_data(point) = FFT_grid(sphere_to_grid(point))

end do

e SIMD (OpenMP)

1$0MP SIMD
do point=1,num_sphere_points
sphere_data(point) = FFT_grid(sphere_to_grid(point))

end do

In order to investigate these different options, a stand-alone micro-benchmark code
was developed which performed identical indirect memory copies using each of these op-
tions. The results are presented in table [3] Despite the similarity of these constructs in
their intent, the actual performance differs considerably. The original, explicitly-coded
loops show the worst performance (this is consistent across a range of problem sizes, ar-
chitectures and compilers). The best performance is obtained with the ‘do concurrent’
construct, although the similar ‘forall” also performs well. The performance of the re-
maining methods, namely the OpenMP SIMD and the two nominally-equivalent vector
indexing methods, were somewhat poorer, though they still out-performed the original

code (around 1.6 times faster). It is not clear why the formally-equivalent vector indexing

10

methods show different performance, though this difference is consistent and repeatable.
The explicit > syntax is more flexible, potentially allowing a subset of the data to be
copied, and it may be that the compiler generates more general code in this case.
Additional compiler hints are often available via compiler directives. A particularly
useful directive for the Intel compiler is the ‘vector aligned’ hint:
'DIR$ VECTOR ALIGNED

do concurrent (pw=1:npw)

This directive guarantees that the memory accessed in the loop following it is aligned

to vector boundaries.

Method Wall time (s)
Explicit loops 2.4651
Vector indexing (method 1) 1.5954
Vector indexing (method 2) 1.5512

Forall 1.4929
do concurrent 1.4755
OMP SIMD 1.5415

Table 3: Performance of the indirect memory copy in the micro-benchmark code, using
a variety of different compiler hints. The copy was equivalent to a small simulation
with 57,747 plane-waves, and the timing was reported for 33,908 repeated copies to
reduce timing noise. Results are reported for a 3.7 GHz Intel Core i7-8700K CPU using
a binary compiled with gfortran 5.4.

Analysing the memory pattern of the indirect copy showed that the indirection does
not cause a random access pattern, but rather that the access is piecewise contiguous.
The data in the sphere representation is distributed in parallel by columns parallel to the
x-axis (‘x-columns’), so that the data on each MPI process actually represents a collection
of x-columns with different coordinates in y and z. When the copy is working on data
within the same x-column, the copy from the sphere- to the FFT grid-representation is
contiguous and the only jumps occur when the last element of an x-column is copied, and
the next element to be copied belongs to a different x-column.

Understanding the memory access pattern allows a modification to the indirection.
Instead of storing the sphere-to-grid mapping on an element-by-element basis, the map-
ping could instead be performed for the first element of each x-column, with a secondary
array containing the information on how many elements are in this x-column. The actual

memory access pattern is unchanged, but this change in the mapping data allows the

11

code to be rewritten to make its piecewise contiguous nature explicit, e.g.
point =1
col_point = 0
do col=1,num_columns
do concurrent (column_start=0:num_points_in_column(col)-1)
sphere_data(point+col_point) = FFT_grid(offset(col)+col_point)
end do
point = point + num_points_in_column(col)
end do
This refactoring showed improved performance for both GNU and Intel compilers,
across a range of CPUs. Table [4] shows the performance obtained using GNU’s gfortran
7 and Intel’s ifort 19 on a Kaby Lake CPU. The original code is significantly slowed on
gfortran compared to ifort. Not only is the optimised, piecewise-contiguous code the
fastest on both compilers, its performance is also much more consistent between the
compilers. Table 4] also shows the final speed-up achieved with respect to the original
code (normalised separately for each compiler): the speed-up is 1.4x for gfortran and
1.24x for ifort.

Code Performance per copy
gfortran 7 ifort 19
Explicit loops 0.206s 1.00x 0.178s 1.00x
Vector indexing 0.157s 1.31x 0.153s 1.16x
do concurrent 0.157s 1.31x 0.152s 1.17x
OMP SIMD 0.175s 1.18x 0.152s 1.17x

Piecewise contiguous 0.147s 1.40x 0.143s 1.24x

Table 4: Performance of the indirect memory copy in the micro-benchmark code, for
two different compilers on an Intel Kaby Lake CPU. The timing is reported per copy,
and accompanied by the speed-up relative to the original code.

2.3 Identifying vectorisation problems

Despite the use of vectorisation hints and directives, unless explicit vector intrinsics are
used the compiler will ultimately decide whether code will be vectorised or not. We
used the Intel compiler’s vectorisation report feature to investigate whether, and why, a
loop was vectorised or not. The compiler estimates the computational efficiency for both

unvectorised and vectorised version of a loop, and will only vectorise if the vector cost is

12

lower than the scalar cost. The report will show hints to inform why a loop may not be
(effectively) parallelised, such as data dependencies or unaligned memory accesses.

It is not uncommon for a vectorised loop to perform worse than a scalar version, even
if the optimisation report estimated a significantly higher performance. To investigate
the cause of this unexpected behaviour we performed traced execution of the code and
mapped the results to the underlying assembly. This analysis showed that AVX512 gather
and scatter instructions were issued in loops. These instructions appeared to stall the
execution pipeline, causing the slowdown. By enforcing memory alignment the scatter

and gather instructions were prevented from being issued, avoiding the execution stall.

2.4 Hubbard U

When a larger range of benchmarks was considered, vectorisation was found to be par-
ticularly poor in simulations which included a Hubbard U potential term (DFT+U simu-
lations). The code in question contained multiply-nested loops with several conditionals,
and several linear algebra operations written in explicit code. The subroutines were refac-
tored and reworked to move the conditionals outside the loops where possible, precompute
some data and transform the linear algebra into a form suitable for level 3 BLAS calls.
Not only was the optimised code more than twice as fast on the KNL, it was also found
to be significantly quicker on other CPUs. Benchmarking on a 3 GHz Intel Skylake CPU
(E3-1220 v5) showed a typical speed-up of 15% for the entire calculation. For example, a
simulation of the Heusler alloy Co,MnSi (16-atom unit cell) with a Hubbard U applied to
Co and Mn took 34 seconds per SCF cycle with the original code (using 3 MPI processes),

but this reduced to 29 seconds following the optimisations.

3 Memory Modes

One of the novel, and potentially high performance, aspects of the KNL processor is the on-
chip high bandwidth memory (HBM) it provides. The KNL has 16 GB of high bandwidth
memory on processor, that can provide ~4x-5x higher bandwidth than standard main
memory, although at a slightly higher latency. This means that it can provide significantly
higher performance for data that is reused or accessed in a predictable pattern (e.g. the
STREAMS benchmark reports a bandwidth of around 450 GB/s on the ARCHER KNL
processors using HBM compared to around 90 GB/s when only using main memory), but

can reduce performance for random memory access patterns or small arrays (the latency

13

2007~ N
[Initial optimisations i

175 — Improved vectorisation n

150

1251

. | . |
%4 128 192 256
Core (MPI processes)
Figure 1: Performance of the TiN benchmark for CASTEP (version 17.21) with the
initial optimisation of bottlenecks (see section and the version with additional

improvements to the vectorisation. The time is reported as the wall-clock time for 20
SCF cycles.

14

— Cached memory mode
500 — Flat memory mode

L | ! |
7 128 192 256
Core (MPI processes)

Figure 2: Performance of the TiN benchmark for cached memory mode and flat memory
mode. The time is reported as the wall-clock time for 20 SCF cycles.

is 10%-20% higher than main memory).

To enable easy use of this memory the processor can be configured to use it as a
very large last level cache, sitting between the processor and main memory and storing
recently used data. This can provide good performance benefits for applications and does
not require any source code changes to exploit this high bandwidth memory. However, this
cache mode does not provide the full performance that can be achieved from the memory
hardware (primarily because it requires data to be loaded or stored in two places at once
rather than one). Therefore, the challenge for HBM is to be able to effectively place the
data that will most benefit from its high bandwidth hardware.

3.1 Explicit memory allocation on the HBM

If it is known which data should be placed on the HBM at compile time, it should
be possible to explicitly allocate the memory there and avoid the overhead caching and
synchronising the data between the HBM and main memory. Using Intel Fortran compiler

directives, it is possible to tell the compiler that allocatable variables should be allocated

15

Routine name Flat Explicit HBM Cached
Total time 2305.15 1686.04 1066.22
comms_transpose_exchange 679.90 340.58 193.62
algor_matmul_cmplx_cmplx 792.60 634.48 359.34
wave_zero_slice 53.48 64.86 38.64
wave_deallocate 8.38 61.84 9.71

Table 5: Performance of a variety of operations in CASTEP using only main memory
(flat), explicit allocation of the wavefunction coefficients on the HBM memory (explicit
HBM), and automatic caching of data on the HBM memory (cached) in seconds for the
A13x3 benchmark on one node of KNL.

on the HBM instead of in main memory:
real (kind=dp), allocatable :: Array(:)
!$ attributes fastmem 11 Array
However, since this can only be done during the declaration of allocatable objects,
derived types containing such an object will all be allocated on the HBM since it is not
possible to specify where memory is allocated during allocation.
In CASTEP, many of the most memory bandwidth intensive operations are performed
on the wavefunction coefficients. For this reason, the performance of a selection of opera-
tions in CASTEP were compared for a calculation of the Al3x3 benchmark on one node

of KNL. This was performed using:
e Only main memory in "flat" mode,
e The wavefunction coefficients explicitly allocated on the HBM, and
e Automatic caching of data to the HBM using "cached" mode.

The results of this are displayed in table 5| While explicitly allocating objects on the
HBM does provide a significant performance improvement over flat mode, it provides a
number of significant disadvantages. Firstly, not all operations are faster when using the
HBM versus main memory. In particular, allocation/initialisation and deallocation of the
wavefunctions (wave_zero_slice and wave_deallocate respectively) are significantly
slower when the wavefunction coefficients are allocated on the HBM, compared to the
same operations performed in either flat or cached mode. Secondly, the size of the HBM
is significantly smaller than that usually available in main memory. Since the memory
bandwidth intensive operations in CASTEP are performed on the largest objects allocated
by CASTEP, this places a significantly smaller limit on the size of calculation that can

be run than would be possible in either flat or cached mode.

16

Location of arrays Memory bandwidth
Main memory 26.08 GB/s

HBM via the fastmem attribute 142.23 GB/s

HBM via move_alloc 36.40 GB/s

Table 6: Observed bandwidth for a contiguous memory copy between two 1.5GB
arrays, both allocated on (a) main memory, (b) the HBM using the fastmenm attribute
and (c) the HBM using move_alloc.

3.2 Manually caching objects to the HBM

One solution to the limitations of explicit allocation of objects onto the HBM is to allow
CASTEP to manually pre-fetch objects when they are needed. In order to avoid pervasive
changes to the code base, the use of the move_alloc Fortran intrinsic subroutine was
investigated, as this would allow pre-fetching and copying back objects to the HBM to
be done as subroutine calls rather than re-implementation of the relevant routines with
explicit use of the HBM.
For a given array A which has not been given the fastmem attribute, it is possible

remap the array to the HBM as shown below:

real (kind=dp), allocatable :: A(:)

real (kind=dp), allocatable :: HBM_Buffer(:)

!$attributes fastmem HBM_Buffer

allocate(HBM_Buffer, source=A)
call move_alloc (HBM_Buffer, A)

Unfortunately, performance of this remapping suggests that this operation is not car-
ried out as expected (see Table @ Whilst the effective memory bandwidth is increased by
a significant amount (~ 1.4x) this falls well below the bandwidth obtained by direct allo-
cation of all arrays on the HBM (~ 5.5x). (NB even the HBM bandwidth falls well below
the theoretical bandwidth, but this is to be expected as this experiment was performed
on a single execution thread.)

The reason for the significant loss in performance using move_alloc has not been
established. It is possible that move_alloc only moves the allocation of the data to
the HBM, leaving the array metadata on main memory. This could result in a loss of
performance, as witnessed here.

In summary, the effects of moving data to the HBM were investigated. Explicit

allocation of performance critical objects on the HBM gave a significant performance

17

improvement over main memory, however this placed limits on the size of calculation
that could be run. Investigations into manual caching of objects onto the HBM were not
able to realise these performance improvements without significant pervasive changes to
the code base. In the end, the automatic "cached" mode was able to outperform any

reasonable attempt to implement this manually.

4 Multithreading

Each of the 64 cores of the KNL in ARCHER has hardware support for up to 4 hyper-
threads (HT), so in principle up to 256 execution threads are available for computation.
The hardware support is for the most part not in the form of multiple functional units
per core, but rather in providing support for multiple registers and fast context-switching,
such that if one thread stalls (e.g. waiting for a memory or I/O request to complete) an-
other thread can be switched in and executed with relatively little overhead.

Historically, enabling even 2-way hyperthreading on conventional Intel CPUs has been
detrimental to performance. CASTEP’s al3x3 benchmark was run on a single KNL
node using 64 MPI processes with 1-, 2- and 4-way hyperthreading enabled (1-way being
equivalent to standard MPI-only execution). The additional threads were utilised with
OpenMP. The results are shown in table [7]

The overall performance of CASTEP is worse when hyperthreading is enabled, with
4-way being worse than 2-way hyperthreading. However, looking at the per-subroutine
timings it becomes clear that this slow-down is not universal, and some operations actually
speed up significantly. The subroutine pot_nongamma_apply_slice performs the best
in this context, showing a speed-up of ~ 1.3x going from no hyperthreading to 2-way
hyperthreading, and a further speed-up of ~1.3x going to 4-way hyperthreading for a
total speed-up of ~ 1.7x. The workload in this routine is largely a level-2 BLAS call
for matrix-vector multiplication, which is not very cache-efficient. If the cores are idling
waiting for data from main memory, then this may explain the performance increase
when hyperthreading is enabled, since it allows for fast context-switching and execution
of another hyperthread can continue when one stalls.

At the other end of the spectrum, the matrix-multiplication routines perform sub-
stantially worse as the number of hyperthreads is increased. This operation is extremely
cache-efficient, and often limited by the memory bandwidth as the data is streamed off
the HBM. In this case, the memory bandwidth may be saturated, and it is not possible
to keep all of the hyperthreads supplied with sufficient data. This is particularly prob-

18

lematic since all threads will be executing this code approximately simultaneously, i.e.
each of the 2- or 4-hyperthreads for each of the 64 MPI processes will require data from
main memory at the same time. In a similar vein, the data transposition subroutine is

also limited by the memory bandwidth.

Routine name 1 threads 2 threads 4 threads
Total time 1099.69 1477.34 1788.48
comms_transpose_exchange 192.10 255.83 348.37
algor_matmul_complex_complex 356.09 627.98 715.16
ion_beta_beta_recip_complex 51.20 34.03 42.25
pot_nongamma_apply_slice 37.91 28.24 22.05

Table 7: Performance of a variety of operations in CASTEP running the al3x3 bench-
mark. This was run with 64 MPI processes on a single node of KNL using 1, 2 and 4
hyperthreads per process.

The hyperthreading performance was also tested for a parallel run across multiple
KNL nodes, both with the original CASTEP code and the code optimised as described in
previous sections. For this test the TiN benchmark was used, and the results are shown
in figure [3l The overall performance of the optimised code is about 10% better than the

original, but no improvement to the relative hyperthreading performance is observed.

19

T T T T

320 N\ N
N\ — 1 Hyperthread per process | 1

280+ N — 2 Hyperthreads per process| -
- N N — 4 Hyperthreads per process| -

1

1
192 256

| |
%4 128
Core (MPI processes)

Figure 3: Performance of the TiN benchmark for 1, 2 and 4 hyperthreads per MPI
process (1 MPI process per core). The performance is shown for the original (dashed
lines) and optimised (solid lines) code. The time is reported as the wall-clock time for
20 SCF cycles.

Conclusion

In this work, the ability of CASTEP to use KNL efficiently was studied with respect to its
per-subroutine performance on benchmarks, its vectorisation, use of hyperthreading and
the KNL’s memory mode. The performance of several key CASTEP subroutines was more
than doubled, and the vectorisation and performance of several other subroutines was
improved by around 20-40%. When CASTEP uses hyperthreading its overall performance
degrades, but the profiling analysis showed that some subroutines did benefit from modest
(2-way) hyperthreading.

When the KNL operated in "flat" memory mode, CASTEP initially performed poorly.
By moving wavefunction slices into the fast HBM, the speed was improved substantially;
however it was still quicker when run in cache mode.

The cumulative effect of this work is to speed CASTEP up enormously on the KNL
platform in both memory modes. Even for the faster “cached” memory mode, CASTEP

was sped up on the KNL by around 1.5 times. This is illustrated by the time taken for

20

CASTEP on a single KNL (64 MPI processes, 1 thread/process) to run 20 SCF cycles of
the TiN benchmark: at the start of the project the time taken was 279 seconds, whereas
the optimised code took only 179 seconds.

Phil Hasnip acknowledges support from an EPSRC Research Software Engineering Fel-
lowship (grant no. EP/R025770/1). This work was funded under the embedded CSE pro-
gramme of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

	Introduction
	Optimising bottlenecks
	Comparative benchmarking
	Benchmark results
	trace_entry
	nlpot_calculate_d

	Comparison conclusions

	Vectorisation
	Comparison of AVX instruction sets
	Indirect memory copy
	FFT data mapping
	Parallel data transposition
	Compiler hints

	Identifying vectorisation problems
	Hubbard U

	Memory Modes
	Explicit memory allocation on the HBM
	Manually caching objects to the HBM

	Multithreading
	Conclusion

