
Hybrid parallelisation for the CRYSTAL code

Barry G.Searle

February 15, 2019

Abstract

The two-electron and exchange-correlation integral routines in CRYSTAL
have been modified to reduce the use of global variables and make them thread-
safe. OpenMP tasking directives have been added to these routines to produce a
hybrid parallel version of the code, so potentially improving the performance and
reducing the memory footprint of the code. The modified version of CRYSTAL
can now run a 3360 atom Al2O3 grain boundary problem using all the cores on
an ARCHER node with 45% speed-up.

1 Introduction

The aim of the project was to improve the performance and reduce the replicated mem-
ory requirements of CRYSTAL by the addition of OpenMP directives. This should
allow users to make use of unused cores on the Archer service when the memory re-
quirements of a job have resulted in the number of MPI processes on a node being
underpopulated.

The algorithm used in CRYSTAL to compute the ground state energy can be sum-
marised as follows

1. From a given density matrix calculate analytically the Hamiltonian matrix ele-
ments in the Atomic Orbital (AO) basis

a. Calculate the two-electron, Coulomb and exchange, terms

b. Calculate the one-electron terms

c. Add the DFT exchange-correlation components obtained from quadrature.
(Not needed in Hartree-Fock calculations)

and generate the total energy.

2. Fourier transform the Hamiltonian to its reciprocal-space representation.

3. Compute and solve the transformed Hamiltonian by direct diagonalisation at
each k-point.

4. From the eigenvalues calculate the Fermi energy.

5. From the Fermi energy and the eigenvectors calculate the new density matrix.

1



6. Repeat steps 1.-5. until convergence in the total energy is achieved. Each repeat
is an iteration of the Self-Consistent Field (SCF) method.

Due to the time constraints of the eCSE the work plan involved two phases to address
steps 1a and 1c. Step 3 uses library routines, LAPACK in the serial/data replicated
code and ScaLAPACK in the distributed data code. As modern implementations of
these libraries on ARCHER provide support for threaded versions the diagonalisation
step should show some performance improvement without modification. Steps 1b,
2, 4 and 5 were not addressed in this project, which will limit the maximum speed-up
achievable for an SCF iteration. Step 1b is usually the most computationally expensive
of the unmodified steps. For geometry optimisation jobs there is also no change to the
calculation of forces that follows the SCF iterations.

Each phase of the project required modernising the code to move variables from
global storage, common blocks or modules, into local variables. e.g.

SUBROUTINE DFAC4
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
COMMON/TCOMM/ACCFAC

becomes
SUBROUTINE DFAC4(ACCFAC)
USE NUMBERS
IMPLICIT NONE
REAL(FLOAT), INTENT(IN) :: ACCFAC

In cases where there were multiple calls to a subroutine this had the added advantage of
simplifying the code. e.g.

OLDACC = ACCFAC
ACCFAC = ACCFAJ
CALL DFAC4
ACCFAC = ACCFAK
CALL DFAC4
ACCFAC = OLDACC

becomes
CALL DFAC4(ACCFAJ)
CALL DFAC4(ACCFAK)

In some cases related variables were grouped into derived types to reduce the length
of the subroutine parameter list and reduce the risk of mistakes in its use. Once these
global variables were made thread safe, OpenMP directives could then be added to
run tasks on any unused cores. This also required finding test cases that covered the
routines being modified to make sure the changes had been tested and were correct.

It is worth also mentioning that the integrals, step 1 in the above scheme, are the
most memory consuming part of most large scale runs of CRYSTAL. This is due to
many of the required data structures being fully replicated on each process to simplify
the code due to the irregular nature of the data accesses required in these subroutines.
Thus the memory use of this portion does not decrease with increasing number of pro-
cesses, and indeed the memory use per node increases as a larger number of processes
are placed upon it. Use of threads reduces the number of processes required to popu-
late the node while still allowing full use of all the cores, and thus should allow large

2



calculations to use larger number of cores on a node. One can also contrast this with
the other portions of the code which are fully data distributed. Thus large structures
are shared among the nodes, and in practice the memory usage in these sections is less
important.

2 2-electron integral OpenMP modifications

The driver routine for the 2-electron integrals is SHELLXN. The 2-electron integrals
require 4 Gaussian basis functions, an initial and final state for each of the electrons.
The outer loop of SHELLXN runs over a screened pair of basis functions. Inside this is
a loop over translated copies of one of the pair of functions. OpenMP tasks are gener-
ated from the code inside these loops which contains loops over than remaining pair of
basis functions. The resulting tasks are fairly coarse-grained, but have the advantage
of generating independent writes to the outputted data structure, the irreducible Fock
matrix, thus avoiding the need for atomic memory access directives. This requires
changes to pass information via argument lists to all subroutines, and their children,
called by SHELLXN. To simplify the parameter passing some of the data is collected
into new derived types which are declared locally. These types produce a clearer re-
lationship between some of the data and the integrals calculation. The main part of
SHELLXN, which is essentially the OpenMP task, is split off into a subroutine which
allows most of the local variables to be declared in the task rather than be declared in
SHELLXN and then copied by the OpenMP directive.

The main complication in these routines are the buffers used for the bipolar ap-
proximation to the integrals. Each thread needs it own table, which need to be recal-
culated when full rather than spilling to disk. If the memory buffer is large enough for
the fulltable then all threads can share it and local buffers aren’t unnecessary. These
dynamically allocated buffers may be the largest temporary data objects depending on
their size which can be specified in the input file. The next largest, which are also dyan-
mically allocated, are the work space for the VIC5 subroutines. The smaller objects
are declared locally and in a few cases are eliminated with the code restructuring.

Similar changes have been applied to the P1 coulomb routine SHELLXCOUL. This
is a specialised version of SHELLXN which is used in very low symmetry systems, as
otherwise trying to exploit the (non-existant) symmetry in calculation of the integrals
results in significant overheads. This routine has the same structure as SHELLXNwith-
out the exchange terms, which instead are calculated in SHELLEXCH. In this case the
order of updates to the irreducible Fock matrix in SHELLEXCH may conflict, requiring
the use of atomic memory accesses.

2.1 Performance

The performance of the modified routines on a TiO2 4 × 4 × 4 supercell is shown
in figure 1 (the data is in table 1 in the appendix). The performance of the code is
generally slightly better on the same number of cores with threads, due to the better
dynamic load balancing of the OpenMP tasks compared to the pure MPI code. There
is also approximately 10% extra performance available when using the virtual hyper-
threads available on the Xeon processors. Using hyper-threads is even more important

3



on the Xeon Phi nodes of the Archer test system (see the appendix).

Figure 1: SHELLXN performance for equivalent number of MPI processes × threads
for a TiO2 4 × 4 × 4 supercell, e.g. 4 nodes is 96x1 or 48x2. Speed-up is relative to
48x1. (In the legend, n ×m, is n cores each with m hyper-threads, so 2x2 is 2 cores
with 2 threads for a total of 4 threads)

0 10 20 30
Number of nodes

0

5

10

15

re
la

ti
v
e 

sp
ee

d
-u

p

1x1 threads
1x2 threads
2x1 threads
2x2 theads
4x1 threads
4x2 threads
6x1 threads
6x2 threads

2 electron integral performance

The modified routines are about 1% slower than the unmodified code due to the
overhead of copying multiple subroutine parameters into 3 or 4 deep subroutine call
sequences. This is easily negated by the extra performance available from the hyper-
threads.

3 DFT OpenMP modifications

The DFT routines are more modern than the coulomb integrals and use modules rather
than common blocks. The subroutine calls are also shallower making it easier to trace
the effects of the global variables since a variable isn’t used in the driver routine and
then 3 levels down requiring it to be passed through the intervening routines.

The driver routine contains a main loop over batches of DFT grid points over which
the quadrature is performed. This is somewhat similar to the main loop over shell pairs
in the integrals and is one possible candidate for generating parallel tasks. The loop
over DFT batches of points involves 3 steps. These are the generation of the density
on the grid, the evaluation of the functional from this density, and the mapping of the
functional into the Fock matrix. Approximately 70% of the time in the loop is in the
first step, with 25% in the third step. A second parallelisation strategy considered

4



was to use the loops within these 2 subroutines to generate tasks. Both parallelisation
options can have threads simultaneously attempting to write the same location in the
Fock matrix in the final step and therefore require the use of OpenMP atomic mem-
ory directives. The second option can also have conflicting memory accesses to the
density on the grid requiring additional atomic operations. The second option also re-
quires task waits within each subroutine since the functional can’t be evaluated until
the density is complete. The result is that the first, more coarse grained, parallelisation
option has better scaling than the second (see figure 2).

Figure 2: Performance of alternative DFT parallelisation options for an alumina slab
on a 4 core desktop PC

1 2 3 4
Number of cores

0

50

100

150

ti
m

e 
(s

)

Subroutine tasks
Main loop

Alternative DFT parallelisation

The other difference between the two parallelisation options is the memory re-
quirements. There are temporary arrays required by each thread sized by the number
of points times the maximum size of an orbital pair (NPMAXT) and others related to
the number of points times the direct space vectors that contribute to a grid point
(NPICAVER). The default number of grid points, changed by the CHUNKS) keyword
is 200. The second parallelisation only requires temporary storage per thread pro-
portional to NPMAXT. The first option has temporary storage related to both values
and NPICAVER is the larger of the two values. The largest value of NPICAVER found
from examining a variety of test case is 500000. This is about the same size as the tem-
porary storage already used in the integral routines, so we have chosen to use the first
parallelisation option due to its better performance. Due to the size of NPICAVER,
temporary objects of this size are dynamically allocated for each thread, whilst the
smaller objects are declared locally.

5



Figure 3: NUMDFT performance for equivalent number of MPI processes × threads
for a TiO2 6 × 6 × 6 supercell, e.g. 4 nodes is 96x1 or 48x2. Speed-up is relative to
96x1

5 10 15 20
number of nodes

1

2

3

4

5

re
la

ti
v
e 

sp
ee

d
-u

p

1 thread
2 threads
1x2 threads

DFT performance

3.1 Performance

The performance of the modified routines on a TiO2 6 × 6 × 6 supercell is shown in
figure 3 (the data is in table 3 in the appendix). The times for the smaller supercell
used in the integrals were too small to be reliable (0.5-2 seconds) and are included in
the appendix.

4 Overall Performance

The overall performance of an SCF iteration is presented in figures 4 and 5. The
Alumina example case is a true test of what we are trying to achieve as it requires 4GB
per MPI process and is unable to use all the cores on a node. In this case there is a
speed up of approximately 45% relative to the unthreaded code by using the unused
cores on a node.

Since not all parts of the code have had OpenMP directives added in this project
the overall SCF performance of the threaded code is not expected to be twice that of
the unthreaded code with 2 threads. There are also some benefits due to the greater
memory bandwidth per core and possibly higher turbo mode clock rates on an under-
populated node that contribute to this.

There may also be some performance improvement with hyper-threads on Archer.
This needs to be tested for each problem being run since although the integrals perform

6



Figure 4: Performance of 1 SCF iteration for an equivalent number of MPI processes
for a TiO2 4× 4× 4 supercell. Speed-up is relative to 48x1

0 50 100 150 200 250 300
Number of MPI processes

0

5

10

15

20

re
la

ti
v
e 

sp
ee

d
-u

p

1 thread
2 threads
4 threads
6 threads
1 Thomas thread
2 Thomas threads

SCF performance

better, this can be partly cancelled out by reduced performance in the ScaLAPACK
calls. One possible solution may be to use Intel’s MKL library, where the threading
within it can be separately controlled by the MKL NUM THREADS environment vari-
able, instead of Cray’s libsci.

5 Possible extensions

The simplest extension to this project is to add OpenMP directives to the one-electron
integral calculation (step 1b in the SCF description). These share routines with the
two-electron integrals so some of the required code modernisation work has already
been done.

Other possibilities are to add threading directives to the CPHF two-electron inte-
gral and DFT driver routines or to modernise and thread the calculation of forces for
geometry optimisations.

6 Summary

We have modernised the two-electron integral and numerical DFT code in CRYS-
TAL17. OpenMP directives have been added to the modified routines to support hy-
drid OpenMP/MPI parallelism in the program. The demonstrated speed-up is approx-
imately 45% for an Alumina test case that must be run under-populated on Archer

7



Figure 5: Performance of 1 SCF iteration for an equivalent number of MPI processes
for a model of an Alumina grain boundary. A node with 1 thread is under-populated
with MPI processes, e.g. 96x1 requires 8 nodes (192 cores). Speed-up is relative to
96x1

200 300 400 500 600
number of MPI processes

0

2

4

6

8

re
la

tv
e 

sp
ee

d
-u

p

1 thread
2 threads
2x2 threads

Alumina SCF performance

8



Table 1: SHELLXN performance on Archer Xeon nodes for a TiO2 4×4×4 supercell
Number of nodes 1 thread (s) 2 threads 4 threads 6 threads 12 threads

2 65.64 - - - -
4 34.21 32.64 - - -
8 18.21 17.64 16.79 - -

12 13.22 12.99 - 11.49 -
16 10.21 9.48 9.20 - -
24 7.45 6.89 6.88 6.34 6.23
32 6.17 5.50 5.21 - -

Table 2: NUMDFT performance on Archer Xeon nodes for for a TiO2 4 × 4 × 4
supercell

Number of nodes 1 thread (s) 2 threads 4 threads 6 threads 12 threads
2 6.9 - - - -
4 3.42 3.65 - - -
8 2.07 2.31 2.17 - -

12 1.59 1.62 - 1.79 -
16 1.37 1.5 1.53 - -
24 1.33 1.37 1.32 1.38 1.37

nodes with the original code. This will allow users to make better use of their Archer
resources for jobs that are currently limited by the memory requirements per process.

7 Acknowledgement

This work was funded under the embedded CSE programme of the ARCHER UK
National Supercomputing Service (http://www.archer.ac.uk)

8 Appendix - Test details

Archer has 24 core 2.7GHz Xeon v2 nodes with 64GB, the Tier-2 system Thomas has
24 core 2.2GHz Xeon v4 nodes with 128GB and the Xeon Phi system has 64 1.3GHz
cores with 96GB.

The TiO2 4×4×4 supercell has 384 atoms, 8 kpoints and 8064 orbitals. The TiO2

6× 6× 6 supercell has 1296 atoms, 1 k point and 27216 orbitals. The Alumina grain
boundary has 3360 atoms, 1 k point and 43680 orbitals.

Archer tests were run with the PrgEnv-intel/5.2.82, cray-libsci/16.11.1, and In-
tel/17.0.0.098 modules. The Alumina tests were run with aprun -n 192 -N 12
-S 6 -cc numa node (1 thread), aprun -n 192 -N 12 -S 6 -d 2 -cc
numa node (threads), and aprun -n 192 -N 12 -S 6 -d 4 -j 2 -cc numa node
(2x2 hyper-threads).

9



Figure 6: NUMDFT performance for equivalent number of MPI processes × threads
for a TiO2 4 × 4 × 4 supercell, e.g. 4 nodes is 96x1 or 48x2. Speed-up is relative to
48x1

0 5 10 15 20 25
Number of nodes

0

1

2

3

4

5

6

re
la

ti
v
e 

sp
ee

d
-u

p

1 thread
2 threads
4 threads
6 threads

DFT performance

Table 3: NUMDFT performance on Archer Xeon nodes for for a TiO2 6 × 6 × 6
supercell

Number of nodes 1 thread (s) 2 threads 4 threads 6 threads 12 threads
2 - - - - -
4 22.67 - - - -
8 11.81 11.53 - - -

12 5.47 5.95 - - -

Table 4: Performance of 1 SCF iteration on Archer Xeon nodes for a TiO2 4 × 4 × 4
supercell

Number of MPI processes 1 thread (s) 2 threads 4 threads 6 threads
48 385.75 208.33 118.86 95.96
96 195.48 109.22 66.38 50.3
144 143.94 81.28 47.44 39.5
192 105.04 62.14 36.65 -
288 76.98 44.74 - -

10



Table 5: Performance of 1 SCF iteration on Thomas Xeon nodes for a TiO2 4× 4× 4
supercell

Number of MPI processes 1 thread (s) 2 threads (s)
48 294.32 165.21
96 157.95 89.26
144 108.45 60.63
192 81.55 -

Table 6: Performance of 1 SCF iteration for an equivalent number of MPI processes
for a model of an Alumina grain boundary. A node with 1 thread is under-populated
with MPI processes, e.g. 96x1 requires 8 nodes (192 cores).

Number of MPI processes 1 thread (s) 2 threads 2x2 threads
96 5767.8 - -
192 2932.1 1993.9 -
288 1977.4 1357.1 1304.7
384 1509.9 1026.1 1000.2
576 1021.9 705.9 687.4

Table 7: SHELLXN performance on Xeon phi nodes for TiO2 4× 4× 4
Number of nodes 1 thread (s) 2 threads 4 threads 1x2 2x2 4x2 1x4 2x4 4x4

2 122.99 115.92 113.58 97.0 95.08 91.1 86.43 83.55 83.37
4 63.77 61.82 60.0 51.51 51.42 48.07 47.4 46.04 44.43
8 38.02 33.91 33.09 30.91 27.9 27.29 28.58 26.61 25.64

11



Figure 7: SHELLXN performance for equivalent number of MPI processes × threads
on Xeon Phi, e.g. 4 nodes is 96x1 or 48x2. Speed-up is relative to 48x1 Archer Xeon

2 3 4 5 6 7 8
Number of nodes

0

0.5

1

1.5

2

2.5

3

re
la

ti
v
e 

sp
ee

d
-u

p

1x1 threads
1x2 threads
1x4 threads
2x1 threads
2x2 threads
2x4 threads
4x1 threads
4x2 threads
4x4 threads

2 electron integral performance

12


