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Abstract

Weather and climate science make heavy use of ensembles of model simulations to provide estimation of uncertainty arising
from a range of causes (e.g. [1]). Current practice is to write each ensemble member (simulation) out to disk as it is running, and
carry out an ensemble analysis at the end of the simulation. Such analysis will include simple statistics, as well as detailed analysis
of some ensemble members. However, as model resolutions increase (with more data per simulation), and ensemble sizes increase
(more instances), the storage and analysis of this data is becoming prohibitively expensive — many major weather and climate sites
are looking at managing in excess of an exabyte of data within the next few years. This becomes problematic for an environment
where we anticipate running such ensembles on exascale machines which may not themselves include local storage of sufficient
size where data can be resident for long periods of analysis.

There are only two possible strategies to cope with this data deluge: data compression (including “thinning”, that is the removal
of data from the output) and in-flight analysis. We discuss here some first steps with the latter approach. We exploit the XML IO
server (XIOS, [2]) to manage the output from simulations and to carry out some initial analysis en-route to storage.

We have achieved three specific ambitions: (1) We have adapted a current branch of the Met Office Unified Model to replace
much of the diagnostic system with the XIOS. (2) We have exploited a single executable MPI environment to run multiple UM
instances with output sent to XIOS, and (3) We have demonstrated that simple ensemble statistics can be calculated in-flight,
including both summary statistics of individual ensemble members, and cross-member statistics such as means and extremes.

With this ability, we can in principle avoid having all data needing to reside on fast disk when the ensemble simulation is
complete. This would allow, for example, deployment on an exascale machine with burst-buffer migrating data directly to tape (or
to the wide area network).

Keywords: ensemble

1. Introduction

As increasing computer power has become available, the
weather and climate community have put effort into increasing
the spatial resolution within the simulation domain, increasing
the domain of simulation (spatial and/or temporal), expanded
use of, or complexity of, data assimilation to improve initial
conditions, and increasing the number of simulations within
“ensembles”. Such ensembles are collections of simulations
which address the same problem, but where some key aspect of
each simulation differs from the others.

Ensembles typically vary along one or more of four axes: ini-
tialisation, boundary conditions, physical parameters, and mod-
elling system (aka “Model”). Initialisation ensembles are the
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mainstay of numerical weather prediction — choosing the right
set of initialisations is a science in and of itself [3]. Ensem-
bles along the other dimensions are more normally used in cli-
mate science (e.g. the coupled model intercomparison projects
such as CMIP6, [4]), but are also increasingly used at shorter
timescales for weather related problems. In all cases, the en-
sembles are used to sample uncertainty — see [1] for an exam-
ple from climate science, and [5, 6] for a more philosophical
and statistical discussions on the use of ensembles for uncer-
tainty evaluation.

Whatever the use, the workflows associated with ensembles
are becoming problematic: when ensemble simulations are run
in parallel on the same platform they can swamp the available
bandwidth to, and volume available at, local storage systems.
When they are run sequentially, the volume issues remain, and
workflow and queuing delays become new hurdles to surmount.
Whether simulations are run sequentially or in parallel the cur-
rent mode of usage is to write out all the data from each sim-
ulation and post-process to produce “ensemble statistics”, and
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Figure 1: Schematic of the existing UK climate mode.

at many sites this can be difficult, especially for large, long, or
high-resolution ensembles. Managing the workflows has be-
come an exercise in logistics [7]. These ensembles are also
a major contributor to the vast archives of data held at major
weather and climate sites, and together with the cost of ade-
quate disk, the cost of even tape archive is becoming problem-
atic. All these problems are expected to increase in the next
few years, not only is there increasing scientific focus on large
ensembles (e.g. [8]), problems with getting models ready for
exascale [9] will probably mean the first usage of exascale ma-
chines in weather and climate will be for large ensembles.

There are only two possible strategies to cope with this data
deluge - data compression (including “thinning”, that is the re-
moval of data from the output) and in-flight analysis.

In this paper we introduce some first steps with the latter ap-
proach. In particular, we demonstrate the use of a single exe-
cutable climate ensemble system developed so that each mem-
ber simulation shares access to an extra component - an IO
server - which carries out data reductions before writing data
to disk.

Section 2 discusses the climate model environment and in-
troduces the particular IO server that is being used. Section 3
introduces the software that was developed to support the en-
semble system and section 4 reports on our experiences with
the system. Section 5 summarises our achievements and sign-
posts some of our plans for further work.

2. Context

Climate modelling in the UK is predominantly done using
variants of the Unified Model, running standalone in “atmo-
sphere only mode” or in coupled mode [e.g. 10, and references
therein]. The coupled variant is depicted in Figure 1: the UM
atmosphere is coupled via the OASIS coupler [11] to a NEMO
[12] ocean. NEMO uses the XIOS [2] to write to disk, and the
UM atmosphere either writes directly to disk, or uses an inter-
nal UM IO server.

The XIOS already has support for user configurable data re-
ductions, and has already been used to manage ensembles [13],
so was a natural target for investigating ensemble support.

2.1. The Unified Model

Developed jointly by the Met Office, its partner organiza-
tions, and the academic climate and weather research com-
munity, the UM is the model chiefly used to run numerical
simulations in the UK academic and research-centre environ-
ments. Much of this work is undertaken on ARCHER, ac-
counting for 140 million core-hours annually. The model is run
in a wide range of configurations varying from low-resolution,
high-fidelity Earth System models, to very high-resolution cli-
mate and ultra high-resolution process studies. The UM is an
MPI-OMP code written in FORTRAN, with a small amount of
C. The UM has very few software dependencies, principally the
communications library (GCOM), which is simply a wrapper
for MPI, and, depending on precisely how the model is config-
ured, possible dependencies on NetCDF and HDF5. The UM is
managed through a workflow system, which combines a model
configuration system Rose [14] and workflow scheduling en-
gine Cylc [15].

2.1.1. Climate Configuration
While the UM can be configured with time varying sea-

surface acillary fields to mimic fully interactive atmosphere-
ocean coupling, it is more commonly the case that a fully cou-
pled configuration is employed. Figure 1 outlines the com-
ponents of the coupled model — the UM (atmosphere) and
NEMO (ocean) run asynchronously with a defined coupling
frequency. Fields are exchanged between the two components
by means of the OASIS coupler, which performs the required
conservative regridding between UM (lat-long) and NEMO (tri-
polar) grids. The UM currently manages its output through its
proprietary IO server scheme (UM-IOS) and NEMO uses XIOS
to output diagnostics (prognostics are handled differently).

2.1.2. Current UM IO scheme
The UM diagnostics system, commonly referred to as

STASH, has been developed over 25 years into a highly con-
figurable and versatile scheme for extracting and filtering UM
fields. Multiple diagnostics are available, but not all are se-
lected for output in any given simulation. Recent advances have
seen the successful development of CF-NetCDF capability cir-
cumventing the writing data in UM format. Diagnostic output
is made available for selection through the Rose GUI, where
in addition, it can be configured for temporal and spatial pro-
cessing. Rose generates FORTAN namelists from user choices
— the workflow is sketched in Figure 2 — which are read at
runtime to control model execution. The UM IO scheme is a
client-server model; diagnostics are processed and buffered on
the compute PEs then moved to the servers (UM-IOS in Figure
2) to be written to disc. The number and placement of server
processes is configurable.

2.1.3. Resolution and Performance
Climate models typically run at resolutions, ranging from

low (currently in production, N96 with 96x2 points along each
latitude circle - with a resolution of 135 km at the equator) to
high (currently in production, N512, 512x2 points, 25 km at the
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Figure 2: The Unified Model Configuration and output data flow (for an atmo-
sphere only instance): configuration files define the domain decomposition (the
number of processing elements, PEs) and the outputs required. Output is writ-
ten to “STASH” and then, in the IO server configuration, written to multiple IO
server instances, which each write to disk. One MPI context (shown in yellow)
covers the entire activity. Control flow shown in black, data flow in red.

equator). At the ultra-high reoslution we are currently running
N1280 (5km) and developing N2560 (2.5km).

Figure 3 shows the results of some scaling runs for a high-
resolution (N512) atmosphere-only climate model, which is es-
sentially the model used throughout this work, on ARCHER
and NEXCS (part of the MO Cray XC40), with and without
IO. IO was managed through the UM IO servers (see Figure 2),
which implement achynchronous IO to write data in the propri-
etary UM data format. The figure also shows scaling behaviour
for a low-resoulution model which includes an expensive at-
mospheric chemistry scheme. All runs were performed with
two OMP threads (required for the UM IO server). The N512
model scales reasonably well out to 15000 cores both and with-
out IO — although changes to the IO profile can have signifi-
cant impact on performance through increased stalling resulting
from inappropriate buffering and/or simply overmatching the
machine IO bandwidth (ARCHER being a very heavily loaded
machine).

2.2. XIOS

The XIOS (XML IO Server) is a software system devloped
at the Institute Pierre Simon Laplace (IPSL). XIOS is organized
around a heirarchical description of its data through an exter-
nal XML file providing a simple interface for the user. XIOS
provides dedicated servers for asynchronous output to overlap
with computation, parallel I/O for single file output and possi-
ble performance improvement and simplified down stream data
workflow, in addition to multiple file (one per IO server) output.

XIOS also offers the prospect of in situ data analysis (our use
of the phrase in flight is based on this potential).

XIOS is 90,000 lines of C++; it is open source software
(under CeCiLL licence) and the code is available at http://
forge.ipsl.jussieu.fr/ioserver. The XIOS build sys-
tem is based on FCM [16] with support for Intel and Cray com-
pilers, we have built and run it with both. In the work described
here, we have primarily used revision 1404.

XIOS is based on a client-server arctitecture, whereby each
compute processor interacts with an XIOS client to expose
agreed data fields through a mininmalist interface. The set of
fields to be exposed is defined by entries in the XML file. A
simple FORTRAN call is all that the model needs to do in order
to offload data to XIOS, thus:

call xios_send_field("field_id", field)

where "field id" is a reference to the XML descripion of the
field which includes grid and domain information, and field

is the address of the field data.
XIOS supports multiple data filters and transformations in-

cluding, importantly for this work, reductions over an axis.

2.2.1. XIOS XML Configuration
A key XIOS construct is called a context, which may rep-

resent a model or a component of a model. In the following
XML snippet, we have defined the atmosphere context with
associated XML elements referencing axis (typically the verti-
cal or pressure axis in a climate model), domain (the horizontal
structure), grid (combinations of domains and axes), field (spec-
ifying a set of field ids and their associated grids (a given
field id can be output on multiple grids)), and file (specify-
ing output frequency, filename, other purely file-related crite-
ria.) The XML file will typically comprise of several contexts,
each associated with a logically appropriate model or compo-
nent.

<simulation>

<context id="atmospere" >

<axis_definition src="./axis_def.xml" />

<domain_definition src="./domain_def.xml"/>

<grid_definition src="./grid_def.xml" />

<field_definition src="./field_def.xml" />

<file_definition src="./file_def.xml" />

</context>

<context id="other" >

....

</context>

</simulation>

In our experience, the XML configuration for the ocean
output does not change much between numerical experiments
and simulations, i.e. model output is defined once and hardly
changes over time. However, the diagnostic output for atmo-
spheric and coupled climate experments is far more variable,
and so the abilty to easily modify the output configuration is
important. The existing UM model infrastructure uses Rose for
this, and in order to extend the use of XIOS into the atmosphere,
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Figure 3: UM atmosphere strong scaling for a high resolution (N512) model with and without IO, and for a low resolution (N96) model with atmospheric chemistry
included. All plots display wall clock time against number of cores.

similar diagnostic configuration functionality would be neces-
sary to gain community acceptance.

3. Software Modifications

There were four distinct software activities required to de-
velop our ensemble system based on XIOS:

1. The XIOS system had to be inserted alongside the existing
diagnostic system (we did not in these experiments com-
pletely replace the existing diagnostic system),

2. We had to develop methods of configuring the model en-
semble system to request the required diagnostics,

3. We had to work out how to get XIOS to deliver ensemble
statstics, and

4. We had work out how to get XIOS to control the ensemble
itself.

Disk
UM

(Stash)
XIOS

Atmosphere(s)

Rose
GUI

Namelists
(Configuration)

XML
XIOS Config:

output &
reductions

Figure 4: Maintaining the look and feel of UM diagnostics: the Rose GUI is
used to configure both the UM atmosphere via namelists, and the XIOS output.
The UM reads the XML files and integrates them with the STASH system and
sends the fields to the XIOS server.
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3.1. XIOS in the UM

In inserting XIOS, our goal was to maintian the look and
feel of the current system to enable easy user uptake of the new
XIOS functionality. Given the maturity of the Rose system and
its familarity in the UM user community, the choice was taken
to configure XIOS XML directly from Rose. Figure 4 shows
the steps to achieve this objective.

There are three elements to the configuration: configuring the
ensemble, configuring the ensemble diagnostics, and configur-
ing the output of existing diagnostics via XIOS (although as
already noted we did not completely replace the existing output
system).

Existing diagnostics are selected by the user in ROSE and as-
sociated with three ”profiles”, namely, time, domain, and usage.
The time and domain profiles represent specifications for tem-
poral and spatial processing for the selected diagnostic (time
meaning or accumulation, spatial meaning or subspacing, for
example). The usage profile, which, in combination with an
output stream, determines the file structure for the diagnostic.

This familiar diagnostic interface was extended for use with
XIOS by the addition of ensemble configuration and of XIOS
output streams to complement regular UM output streams, and
the developmemt of a utility to identify diagnostics destined
for XIOS and translate their traditional STASH description into
XML.

3.1.1. STASH to XML utility
The stash2xiosxml utility was developed to make the

translation from STASH to XML. It is a Python utility which
loads configuration files generated by Rose into a heirarchi-
cal data structure, extracts and collates information relevant
for XIOS diagnostics, cross references with metadata held in a
master UM configuration (the “STASHMaster”) file to retrieve
grid information, and writes the XML. Figure 5 is a schematic
of the steps involved in XML creation; Rose creates (possibly
many) configuration files which are inputs to stash2xiosxml;
the XIOS standard XML file iodef.xml is output along with its
subcomponents.

Of the 4017 possible diagnostcs availble to a standard atmo-
sphere UM model, the current setup can handle the 3672 which
are available on the main model time step. Diagnostics avail-
able on other time steps (the radiation time step for example,
which is typically a large multiple of the model time step) need
special handling and are not covered in this work.

3.2. XIOS UM ensemble

In order to take full advantage of the existing XIOS reduc-
tion capabilities, we introduced an ensemble axis. This sim-
ply attaches an extra dimension to the data generated by the
ensemble to indicate to which ensemble member a particular
field belongs. This greatly simplifies context management in
XIOS, since now the entire ensemble is associated with a sin-
gle context — XIOS simply sees an (n+1)-dimensional data
set for the ensemble, where for a single model it saw an n-
dimensional data set. Applying reductions over the ensemble
axis provides the mechanism for generating ensemble statistics.

Figure 6 describes the key features of our XIOS UM ensem-
ble configuration. From the XIOS viewpoint, the UM ensemble
is simply a model — XIOS clients reside on each PE and send
fields to XIOS servers. An individual ensemble member runs
in its familiar environment — exactly as before.

Several XML files are augmented for the ensemble case; the
additonal ensemble axis feeds through to ensemble XML grid,
and file definitions. An ensemble grid would appear thus:

<grid_definition>

<grid id="um-atmos_grid">

<domain domain_ref="um-atmos_domain" />

<axis axis_ref="um-atmos_vertical" />

<axis axis_ref="ensemble" />

</grid>

</grid_definition>

Attaching this grid to a field will result in its output of data for
all ensemble members.

3.3. UM code for an ensemble

For the ensemble case, the model communicator provided
by um xios init mpi (see section 3.6) is split again for each
ensemble member. Individual ensemble member models run
on their own model communicators, and as previously for the
single model case, non-XIOS IO (read and write input, log-
ging files, check points...) are handled in their own separate
ensemble-member spaces.

Other than additions to um shell to ensure that each meme-
ber executable runs in a specific directory (a requirement im-
posed by the Rose infrastructure) and minor additions to ac-
commodate setting up the ensemble axis, the code described in
Figure 7 suffices for the ensemble case.

3.4. Rose ensemble configuration

As set up through Rose, a UM simulation is defined as a col-
lection of configuration files (in INI format). On job submis-
sion, (i) Rose creates namelists from the configuration files; (ii)
creates a work space on the HPC; (iii) copies the namelists (and
other data) into the work space; (iv) sets up and submits a PBS
script to run the parallel job. We have developed a Rose ensem-
ble member set up task to perform items (i)-(iii), which, in con-
junction with the use of Rose optional override configuration
files to specify parameters for each ensemble member, creates
the appropriate environment for each member to run in on the
HPC. An overide file typically contains one line to specify an
initial condition or a parameter value.

A separate task to run the ensemble then creates the appro-
priate MPMD aprun command for submission of multipe UM
instances and XIOS.

3.5. Configuring ensemble output

XIOS currently supports max, min, and mean reductions.
Our interest is primarily in the ensemble mean. It is a general
feature of XIOS that data transformations are performed on the
the basis of the target grid for the output field. In the example
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clients within each process of each UM instance. Output from the clients goes
through XIOS server instances to disk.

in section 3.2, the target grid spanned all ensemble members;
a reduction over the ensemble axis is achieved by appopriately
defining the grid on which to output the field. In the follow-
ing, the ensemble-reduction grid um-atmos grid-reduce in-
cludes instruction to reduce over the ensemble axis with opera-
tion average.

<grid id="um-atmos_grid-reduce">

<domain domain_ref="um-atmos_domain" />

<axis axis_ref="um-atmos_vertical" />

<scalar id="3d-ensmean">

<reduce_axis operation="average" />

</scalar>

</grid>

Our Python utility stash2xiosxml (section 3.1.1) includes
support for creating XML for ensemble reductions.

3.6. New code in the UM

Approximately 3000 additional lines of code were added to
the UM, and isolated in files located in a subdirectory of the
regular UM source code (/um/src/control/xios) prefixed
with um xios. Figure 7 indicates where the new code impacts
the UM. The majority of work is done in the model initialisa-
tion stages with only minimal changes required to intercept and
redirect diagnostics to XIOS. The global communicator is split
by a native XIOS call in um xios init mpi which returns the
communicator for use by the model. The additional XIOS func-
tionality is entirely independent from all other UM IO. Check-
point files, logging files, and any diagnostics selected not to use
XIOS, are handled through traditional UM means.

3.7. Build system and job submission

Minor changes were made to the Rose GUI and UM build
configuration files to accommodate the use of the XIOS library.
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Figure 7: Areas in the UM where use of XIOS impacts the code. Diagnostics are intercepted in the routine stash. All other UM IO (logging, checkpointing, and
diagnostics not directed to XIOS) is handled in the traditional manner.

Minor changes were made to the Rose GUI and the scripts
which generate the job submission file to enable the launch of
the UM and XIOS in MPMD mode.

4. Results

We inserted our modifications into version of the GA7.0 UM
10.7 AMIP [17] model which we run at both low resolution
(N96) and high resolution (N512). For the purposes of evaluat-
ing the use of XIOS, we carried out two types of tests:

1. Single Model Simulations: where we had the twin goals
of understanding the cost and behaviour of XIOS in the
context of the UM, and establishing a baseline for,

2. Ensembles of Model Simulations — the main goal of our
work.

To support these two experiments we configured the model to
run for 24 model hours and 9 model hours respectively, and
in both cases, writing out the data hourly. Neither experiment

reflects the normal balance of compute to output, but they al-
low us to evalute the XIOS performance without long and ex-
pensive integrations. We selected 50 fields as diagnostics from
several UM physics and dynamics sections, to include 2-d and
3-d fields, output as instantaneous or time accumulations, with
the aim to mimic typical near-future climate integeration data
volumes.

4.1. Single Model Simulation
A key requirement for the output capability of an IO server

is that it can support the requsite data processing and writing to
disc asynchronously and without stalling or throttling the main
computation (keeping hundreds to tens of thousands of proces-
sors idle while data is written to disc is an expensive prospect).
Our main single UM test focussed on confirming that XIOS is
capable of handling large amounts of data without impacting
model computation times.

We ran the single model simulation at both N96 and N512
using 96 and 5184 cores respectively, but we concentrate here
on results from the N512 tests as they were more onerous and
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the core-counts more typical of production. The test configu-
ration created 214 GB of data at a constant hourly rate, which
translates to 77TB/model-year. While this data rate far in ex-
cess of that for a typical climate model run, which is of or-
der 2TB/model-year, our test does not capture the variations in
compute to output intensity of a climate run, which would re-
quire a significantly longer integration to sample. Our ensemble
runs (see section 4.2.2) do generate data at higher intensity but
reveal as yet unresolved IO performace concerns.

XIOS provides many opportunities for performance optimi-
sations which we have not explored, nevertheless, the results
in Table 2 with 6 XIOS servers in multipe-file mode, clearly
indicate that XIOS is effectively hiding IO from computation.
The 7% XIOS overhead is an acceptable penalty for the rate of
data production seen here - run time jitter is frequently at this
level as seen in the no-IO result. Single file output can incur a
larger IO overhead and requires more tuning for optimal prefor-
mance, which is out of scope here, and perhaps of less interest
in the longer term with the increased interest in data sharding
and the capabilities to manage distributed data inherent in the
latest data analyis software [18].

4.2. UM ensembles

We applied our developments to ensembles of N96 and N512
models. The complete set of experiments we have carried out
is summarised in table 3. Results from our initial experiments
are presented in Figure 8. Data points in blue are for XIOS
multiple-file output, and in red for single-file output (note, as
for the single model case, we have made no attempt to optimise
the XIOS configuration). The ensembles are configured to write
diagnostics for all members and the ensemble avarages for all
fields. This configuration is not how we anticipate production
runs to work but serves as a test case.

4.2.1. N96
The multiple-file ensemble performance is encouraging with

relatively flat peformance over the range of ensemble sizes -
perfect performance is represented by horizontal lines. The
100-member ensemble generates 45TB/mode year.

4.2.2. N512
We initially ran the N512 model at two processor decom-

positions - in Figure 8, N512 runs labelled with a (1) used on
960 PEs/ensemble member, those labelled (2) ran with 5184
PEs/ensemble member. It is worth noting that these and all of
our ensembles ran out of the box - to our knowledge XIOS has
not been tested under such conditions, where the 10-member
ensemble requires half of ARCHER to run on to generate
467TB/model year. Scaling for the N512 ensemble is less en-
couraging at first glance. It is clear that single-file output, based
on MPI-IO has a significant impact on performance, and while
multiple-file output performs better, its scaling is not ideal. The
small model is clearly scaling better than the large model, and
much of this must be to do with the increased processor counts
in the large model and the associated communications, which
are clearly exacerbated when the data is also being reduced to

Resolution Ensemble Size
100 10

N96 9600
N512 54000

Table 1: Maximum core counts for the largest ensembles

no IO XIOS UM IO (single PE)
run time 400 400 830
IO overhead 30 428

Table 2: Single model N512 IO performance. The integration ran for 24 model
hours to create 214GB of diagnostic output (equivalent to 77TB/year.) All times
in seconds with model initialisation time removed. Note, run time jitter is quite
large.

one or a few PEs for writing. None of these results are particu-
larly surprising: XIOS was not designed for ensembles, and the
communications patterns have not been optimised accordingly.
Future work aims to address this.

These initial tests conflate two issues; (i) internal XIOS scal-
ing and; (ii) speed to write to disc. Figure 9 shows some prelim-
inary results aimed at better understandng how internal XIOS
operations scale with ensemble size. These runs write out only
the ensemble averages, are configured for multiple-file output,
and data is written to /tmp to eliminate the actual time to write
to disc. The figure shows data for multiple runs (with signif-
icant jitter) and lines which represent best fits to the scattered
data points. There is no clear candidate responsible for the grad-
ual relative slowing - but nor is the lack of scaling as critical as
might be assumed from results in Figure 8.

5. Summary and Further Work

We have achieved three specific ambitions: (1) We have
adapted a current branch of the Met Office Unified Model to
replace much of the diagnostic system with the XIOS. (2) We
have exploited a single executable MPI environment to run mul-
tiple UM instances with output sent to XIOS, and (3) We have
demonstrated that simple ensemble statistics can be calculated
in-flight, including both summary statistics of individual en-
semble members, and cross-member statistics such as means
and extremes.

We plan to properly profile the ensemble runs to fully under-
stand the scaling behaviour - our previous attempts were frus-
trated by technical difficulties with our utility of choice.

In our current setup, failure of a single ensemble member will
crash the entire ensemble; we have inherited UM checkpointing
of course, so restarting the ensemble mid-stream is possible,
but ideally we should be able to manage such a failure more
gracefully. We can imagine a scenario whereby we would trap
ensemble member errors and subsequently send missing data or
otherwise signal the failure to XIOS; a modified XIOS would
then handle the situation in a manner to be determined.

There is also scope to greatly improve the range of ensemble
processing capability within XIOS and indeed in the entire en-
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Name Resolution Decomposition Output Ensemble-Size/Core-Count
N96:single(1) N96 12x8=96 Single 100/9600 20/4800 1/96
N96:multi(1) N96 12x8=96 Multi 100/9600 20/4800 1/96
N512:single(1) N512 24x40=960 Single 10/9600 5/4800 1/960
N512:multi(1) N512 24x40=960 Multi 10/9600 5/4800 1/960
N512:single(2) N512 72x72=5184 Single 10/51840 5/25920 1/5184
N512:multi(2) N512 72x72=5184 Multi 10/51840 5/25920 1/5184

Table 3: The XIOS experiments carried out. Two different resolutions (N96, N512) with two different output file configurations (single: output from all model
instances and processors writing to one file, and multi: output written to multiple files) and a range of ensemble sizes and processor decompositions (and total core
counts).
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Figure 8: Wall clock time against sensemble size (left panel) and, for the N512 runs, processor count (right panel). Data is shown from the different ensemble
configurations and sizes described in table 3. If XIOS were completely hiding I/O (and ensemble reductions) the lines in the left panel would be horizontal.
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Figure 9: N512 ensemble with a multiple-file XIOS configuration with output to /tmp. Timings for several internal XIOS operations are reported, along with timings
for a represetative ensemble member at each ensembe size (showing flat performace as expected). Multiple runs are reported for selected ensemble sizes showing
moderate jitter.

semble management activity. As a result of the success of this
project, we have secured further funding through ESiWACE2
to address some of these issues.

We note also that the Met Office have expressed an interest in
assisting us to lodge our UM branch into a UM release in light
of our successes and in view of their anticipated use of XIOS in
LFric 1.

1LFric will be the successor to the UM. It uses a cubed-sphere mesh with
mixed finite element methods and a domain specific language. Work is ongoing
to support finite element data types through XIOS.
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