A parallel algorithm for Hamiltonian matrix
construction in electron-molecule collision calculations:
MPI-SCATCI

Ahmed F. Al-Refaié, Jonathan Tennysén

aDepartment of Physics & Astronomy, University College London, Gower Street, London
WCL1E 6BT, United Kingdom

Abstract

Construction and diagonalization of the Hamiltonian maisixhe rate-limiting
step in most low-energy electron — molecule collision clatons. Tennyson (J
Phys B, 29 (1996) 1817) implemented a novel algorithm for Htamian con-
struction which took advantage of the structure of the wawvetion in such calcu-
lations. This algorithm is re-engineered to make use of modemputer archi-
tectures and the use of appropriate diagonalizers is ceregid Test calculations
demonstrate that significant speed-ups can be gained usiligplen CPUs. This
opens the way to calculations which consider higher coltistnergies, larger
molecules andor more target states. The methodology, which is implentease
part of the UK molecular R-matrix codes (UKRMol and UKRM9Ican also be
used for studies of bound molecular Rydberg states, phasaiton and positron-
molecule collisions.

Key words. electron-molecule scattering, photoionisation, Rydb&ates,
Slater’s rules, Hamiltonian construction, diagonalisati

1. Introduction

Modelling low-energy electron-molecule scattering syses vital to the un-
derstanding of a range of physical processes in fields suplaasia physics [1],
astrophysics [2], cell and DNA damage [3]. There are a nurobeodes avail-
able for performingab initio calculations on such collisions. The most general of
these rely on use of the so-called close-coupling expansiere the scattering

Email addresses: ahmed.al-refaie.120ucl.ac.uk (Ahmed F. Al-Refaie),
j.tennyson@ucl.ac.uk (Jonathan Tennyson)

Preprint submitted to Computer Physics Communications July 17, 2017

wavefunction¥y, is represented, at least in the region of the moleculaetaby:

Wy = ﬂz Bin(X1, X2, ... Xn) Ui j (Xn41)@injk + ZX&’(XL X, .. Xn+1)bk (1)
ijn 13

whereg¢;, are the target wavefunctions ang are continuum orbitals. The index
I is the target symmetryj,is the continuum orbital index amdcounts over target
states belonging to symmetry A is the anti-symmetrization operator to ensure
that the target times continuum wavefunction obeys theiRawciple. They,
are short-range dr? functions where all electrons occupy target orbitajsrep-
resents the coordinates of electrprwhere it is assumed that the target is
electrons and hence the scattering systemNhasl electrons. Finallya;,jx and
b are the variational cdgcients obtained by diagonalization of the Hamiltonian.

A variety of different models can be represented by this close-couplinghexpa
sion [4], including ones based on the use pseudo-stategytoent expansion in
physical target states. This approach is employed in the ®Rixneith pseudo-
states (RMPS) procedure [5-7]. In general, the target wanetibn is expanded
in configuration interaction (Cl) form as a linear combinatiof configuration
state functions (CSFg)

din = Z Cirmlim- (2)

The Hamiltonian matrix derived from the use close-coupkxgansion de-
scribed above has a characteristic structure, see Figotvbét 1996, Tennyson
[8] showed that it was possible to exploit this structure teagly speed-up the
construction of scattering Hamiltonians. His algorithm,implemented in mod-
ule SCATCI and which is discussed in detail below, has formedotickbone of
various implementations of the UK Molecular R-matrix cod8s1[3]. The al-
gorithm used by SCATCI is extremelyteient leading it to be used for extensive
close-coupling calculations on electron collisions[¥4], SiN [15], CH;CN [16],
uracil [17, 18] pyramidine [19] and many others systems, el as for studies of
positron—molecule collisions [20-22].

Hamiltonian construction and diagonalization is usudily $lowest step in the
ab initio treatment of low-energy electron-molecule scattering. [&/tiagonal-
ization can usually spread over a number of cores, SCATCI iently limited
by its serial nature. This step in the calculation can becerpensive if one or
more of the following applies: (a) the use of an extensivietéigget states araolr
pseudo-state; (b) large target Cl expansions; (c) largeraaurn orbital basis sets.
With modern calculations it is quite possible that all thoée¢hese criteria apply
and it is quite easy to design desirable but intractableutations for even di-
atomic targets [23]. The recent development of the B-spliased UKRMok
code [13, 24], which extends both the range of energies aedé$itarget that it is
possible to treat, has only further exacerbated this situat

2

It would therefore appear timely to revisit Tennyson’s Hiomian build al-
gorithm. This algorithm was designed to run on serial comyzuand, given the
prevalence of modern multi-core architectures, it is onralfe implementation
that we particularly focus. At the same time, it has beengeized that the struc-
ture of various the Hamiltonian matrices that can be geadnasing this algorithm
lend themselves to fierent diagonalization procedures [22, 25]. Thesiednt
diagonalization options are also integrate into a new MRIecdVIPI-SCATCI.
The next section specifies the formal aspects of the new c8detion 3 intro-
duces the code itself, which is freely available from thenuddrin project in the
CCPForge program depositBr)Section 4 gives some illustrative timings. Our
conclusions and suggestions for future work are given ini@esé.

2. Theory

Using the close-coupling expansion in the form of Eq. (1) #dreltarget Cl
expansion of Eq. (2) to build the final Hamiltonian matrix ameeds, at least in
principle, to evaluate many Hamiltonian matrix elementthefform

Himjirmrjr = iU I F1im Ui) (3)

In practice the CSFs are expanded in terms of an orthogonaf sgin-orbitals

which in turn are represented by atom and molecule centmectiins of various
types [26], which are discussed further below. However, ot that for accu-
rate calculations, the target Cl expansions can be very ladgle the number
of target states is usually significantly smaller than thenber of target CSFs.
To allow the identification of target states within the exgan, for example to
correctly assign asymptotic channels, it is desirable tdreat the matrix:

Hinjimj = Z CironGirnvrv Himijirny j7 4)

m

wherec, is the codicient of the target Cl expansion, see Eq. (2). The takget-
part of the calculation undergoes a similar contractioresuit

Hinj) = Z CimnHimiy1- (5)
m

These steps very significantly reduce the size of the Hamétg hence the de-
scription contraction, and the majority of matrix elemergtained are usually
between thé.2 functions.

"https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in (registration required)

https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in

2.1. Symbolic evaluation, prototyping and expansion

Whilst the matrix itself is smaller, evaluating Eq. (4), inmmiple, requires
the evaluation of all integrals in Eq. [(3). SCATCI implemerits algorithm of
Tennyson [8] that avoids evaluating integrals and expticihputation of the un-
contracted Hamiltonian. This is done through the manipamadf symbolic ma-
trix elements [27] generated using prototype CSFs [28, 28]s Procedure ex-
ploits the structure of the scattering wavefunction, see(Ex) where a particular
target wavefunction or CSF is multiplied by a (long) list ohtimuum functions.

The Hamiltonian construction is driven from a list of CSFseTaquired inte-
grals are identified by the application of Slater’s rulesite @ list of symbolic ma-
trix element. The published versions of the UKRM#&KRMol+ codes are based
on a traditional algorithm for Slater’s rules. Scemama aimtkeG[30] proposed
an alternative algorithm that represents all possible spditals that an electron
can occupy as an array of 64-bit integers. Each integer ganresent 64 spin
orbitals and each set bit in thé' position represents an electron occupying the
n" spin orbital. Determining the substitutions between twtedwminants can be
easily computed by performing an exclusive-or (XOR) folloWsy a population
count (popcnt). Their algorithm also determines the rastilphase from possi-
ble spin orbital reordering by computing the number of ocedprbitals between
the difering orbitals using bit masks. A bug fix was applied to thetimized
implementation that caused incorrect masks to be genewndted orbital indices
where of a multiple of 64, this fix has since been applied toattginal authors
source code. The majority of the computation relies maimiyhardware native
instructions such as bit shifts, XOR and popcnt (AVXstruction set) making
it extremely dficient and reducing overall Hamiltonian build times by fastof
two to five. This algorithm is also independent of the numbelectrons making
it ideal for large polyatomic molecules. Thiffieient algorithm is the one used in
MPI-SCATCI

To briefly summarize, the SCATCI procedure involves transfogihe eval-
uation of both Hamiltonian into symbolic form. For Eq! (3)glis of the form:

Himj,i/nﬂ’ = Z Cﬁnj,i’mj'x(lﬁnj,i’mj/) (6)

Wherea are the associated integral indidésand codficientsC* generated for the
matrix element an& is the integral function. Within the UK molecule R-matrix
codes, the indices are four 16-bit integers representiagfisociated orbitals in
the integral packed into a 64-bit integer. As the configoraiobey the Slater-
Condon rules, there are a fixed number of one and two electtegrals that can
be precomputed ahead of time. Therefokds a function that maps the indices
| into a one and two-electron integral array and returns tipecgguiate integral
value.

The contracted matrix can also be expressed similarly:
3 _ B
Hinj,i’n’j’ - Z Dfnj,i’n’j’x(lij,i’j’) (7)
B

Whilst there are essentially no integral evaluations, lamg@bers of contin-
uum orbitals and target configurations make this computatip undesirable.
One way this is circumvented is to utilize symbolic protabgp This method-
ology removes the need to explicitly evaluate matrix eletsiér each continuum
orbital j by instead evaluating the full Hamiltonian matrix elemefatisone or
two prototype configurations corresponding to one or fwand generating the
full symbolic lists by manipulating the integral indices hi$ is the essence of
Tennyson’s algorithm [8].

Transformation the full Hamiltonian matrix to the CI contiedt one can be
performed by contracting the minimal prototype symbolieneénts ofH. The
prototype integral labels do not change but the associateffi@ents do depend-
ing on the target symmetries and states:

Diﬁnj,i’n/j/ = Z Cimnci/mn/Cﬁnj’i/mj/ (8)
m,ny

after which the labels are expanded into the full rangg. ofhis means that the
full Hamiltonian is never explicitly evaluated.

2.2. Matrix classes

The consequence of this contraction is that the matrix is spht into dif-
fering contraction classes based on the symmetry propesfi¢he target states
and thelL? functions. Below is a summary of these contracted classédsFigf-
urel 1 illustrating them. Since the Hamiltonian is real syrtogonly the lower
triangular portion is considered.

2.21. Classesland 3

Classes 1 and 3 involve matrix elements between functiorrsthé same tar-
get symmetry. Class 1 are the diagonal matrix elements im@la target state
times a continuum orbital. These integrals can also occoffidiagonal elements
involving different states of the same symmetry. Class 3 areffhgiagonal ele-
ments involving diferent target states of a given symmetry; they have a synmunetri
block structure. The upper triangular block is the transpighe lower triangular.
The contraction is of the form:

Hinjinj = Z CimnCirmy Himjimjr + Z(Cimn + Cimrry + CinvnCimey) Himjine . (9)
mnv mmnv

The symbols are then expanded for all target states andchcomti orbitals of the
target symmetry.

L 4 4 4 4 8

o, ¢, 9. 9, L

Figure 1: Class structure of the contracted Hamiltonianafarcattering calculation with three
target symmetriesp; j denotes a target staitéor a target symmetry. Target symmetries 1 and 2
couple to the same continuum symmetry and symmetry 1 hasangettstates ; andg, 1.

2.2.2. Classes2 and 8

Classes 2 and 8 are the diagonal affddeagonal matrix elements of tHe?
functions. These undergo no form of contraction and areadsévaluated explic-
itly. These are referred below to as ‘puré& elements.

2.2.3. Classes5and 6
These classes involve elements where the target symmefeysdbut their
coupled continuum symmetry is the same. Class 5 is the didgteraent of the
local matrix block and class 6 is thé&aliagonal element. The contraction scheme
is of the form: N
Hinjirmj = Z CironCirnvrv Himijirny j7 (10)

m,nY

2.2.4. Class7

This class involves matrix elements where both the targggtantinuum sym-
metry difers. The contraction is the same as Eq. (10) and is expandeskdith
target states and continuum orbitals of the target symasetri

2.25. Class4
For matrix elements between continuum drfdfunctions the contraction is
one-dimensional and is of the form given by Eg. (5).

2.2.6. Jarsity and diagonalization

For almost all classes, the matrix blocks are dense with xbepion of the
off-diagonal purd-? class which is sparse. An example test case calculation of
electron-HO [31] given in Figure 2 illustrates these properties. Thieireaof the
matrix changes depending on the choice of CSF. For this test tlae matrix is
considered dense due to the smaller numbdr?diunctions, which encourages
the usage of a dense diagonalizer such as LAPACK[32]. Whelndeaith large
scattering systems of interest such as phosphoric acidutimder ofl_? functions
can be several orders of magnitude larger than the size obtiiteacted part of the
matrix. The matrix at this point becomes extremely sparskraay necessitate
usage of a sparse diagonalizer such as ARPACK]33].

2.3. The UK-molecular R-matrix codes

The UK-molecular R-matrix suite, UKRMoal [10], and its new enbad ver-
sion, UKRMok [13], are a set of modules and programs to fully solve theedgpositron-
molecule scattering problem using the R-matrix methodol@dpe suite splits into

& ©

)

o =

S

[¢,]

~

o6 o6 ©

o

\)

r‘

¢, 0 9.0, 9, 0,000, L

Figure 2: The lower-triangular Hamiltonian output for atesse for HO with 8 target symmetries
and 4 continuum symmetries. Symmetry 1 has two target stafagget symmetries 1 and 4
both couple to the continuum symmetry 4, denoted byt 4, leading to the appearance of
contraction classes 5 and 6 in the matrix blogksi(¢1.1) and 1.4, ¢2.1). Other couplings include:
(2,3) > 3,(56) — 2, (7,8) — 1. White colors represent zero values.

two sets of codes: UKRMol-fwhich deals with the inner-region problem and
UKRMol-out® which deals with the outer region.

The codes use a a variety of methods to represent the tardetosatinuum
functions. The original code [9] only consider electronlisans with diatomic
molecules; it was based on the use of Slater type orbital®§$10 represent the
target wavefunction and suitably orthogonalised [34] nuoaé functions for the
continuum. The original polyatomic code [10, 35] uses Gmst/pe orbitals
(GTOs) for both the target and the continuum functions. Tdwe OKRMol+ [13]
also uses GTOs to represent the target but uses a hybrid GTEpH-basis set
for the continuum. Onefect of this is that the continuum expansions can become
significantly larger as the code allows treatment of mordigdavaves (higher
values), larger R-matrix spheres and extensions to highengess, all of which
lead to an increase in the number of continuum functions.

A crucial module in both UKRMol and UKRMael is SCATCI [8]. SCATCI
is a Fortran 77 code that deals with the building and diagoa@bn of the inner-
regionN + 1 scattering Hamiltonian and is the last step before mowvig the
outer-region portion of the calculation.

3. MPI-SCATCI

MPI-SCATCI is a complete rewrite of SCATCI in Modern Fortran (3D€hat
uses MPI to perform both the-NL Hamiltonian build and diagonalization. Its
design is heavily based on an Object-Orientated Progragf@®P) paradigm
to give the code a high degree of flexibility for further mochfiion. Whilst previ-
ously integrating features such as a new integral formatired a fair amount of
modification to build subroutines, the OOP approach allowgply for the defi-
nition of a new Integral class with appropriate procedunes is then attached to
the Hamiltonian at run time without touching the build co&milar functional-
ity also applies to the diagonalizers and as will be disali$ster on in Section
3.2, gives MPI-SCATCI the ability to support almost any diagjorer library and
matrix format with little to no modification.

3.1. Build parall€elization

There are three avenues for parallelisation of the scaggéfamiltonain: Across
prototyping and contraction, across the expansion andsadie 12 functions.
The choice is dependant on the type of matrix class beingileaésd. Regardless
of which method is used, every process performs the same alas the same
target symmetry for the contracted classes as it simplifieslistribution of work.

*https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in
*https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-out

9

https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in
https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-out

Processor O Processor 1

Calculates Calculates

AN AN

N AN
Collectively
D\

AN

Figure 3: A visual representation of two processes evalgdlie matrix elements of classes 2 and
8 in the scattering Hamiltonian

3.1.1. Classes2 and 8
These purd-2 elements are the most straightforward to consider as no con-

traction is required. Each Slater-Condon calculation gsygabols for a single
matrix element. MPI-SCATCI combines both classes into a singlculation and
the nested loop over the lower triangular is collapsed irgmgle loop. This loop
is evenly distributed across all MPI processes and compontezbendently with
no need for any form of communication. Viewing the calcaatas a whole (as
seen in Figure 3), 'collectively’ all matrix elements haveeh calculated. This
is the parallelisation that is also used in the constructibthe target Hamilto-
nian whose solutions are required to give the target wawgifum codficients, see
Eqg. (2), and associated energies, see below.

3.1.2. Classes], 3,5,6,7

For pure continuum classes, there is a two step parallelizdahat occurs.
Figure 4 visually describes this process. The first stepistmef parallelizing
the prototype and contraction stage. The loop across ppdESFs are evenly
distributed among MPI processes. This means each procpgsoduces an in-
complete list of contracted prototype symbﬁlgj’i,n,j/. At this point, a gather and
reduce is performed on al processes in order to retrieve the complete set of

10

contracted prototype symbols:

P
Hinjirjy = Z Higsiom i (11)
p
Whilst this is a significant synchronization step, it is ongriprmed
n(n+1

times where, is the number of target symmetries. This, in general, is lsmoah-
ber of synchronization points as the number of target symesein a calculation
is rarely larger than single digits.

The second step is the expansion of the prototype symboly. IN&e work
is actually done during the expansion as it only requiresifyiog) the indices of
the integral label for each continuum orbital. However, s@ystems have target
symmetries that are coupled to thousands of continuumatsbitheir prototypes
require expanding for millions of matrix elements for tHediagonal classes 3, 5,
6 and 7. Originally each process performed the full expansiotheir incomplete
symbols followed by a reduction to retrieve the full matrigraent. This unfortu-
nately became a significant bottleneck for continuum hegstesns and therefore
necessitated the need for parallelizing the expansioregsoas well. The paral-
lelization of the expansion is performed by evenly disttithg processes across
the j, |’ expansion loop. Essentially, this step behaves similatasses 2 and 8
and collectively the full matrix elements are computed. sTiwo step approach
benefits two types of problem sizes. For systems with a langgoer of prototype
CSFs, the first step gives the greatest gain in performanceyBtems with target
symmetries that contain a huge number of continuum orbithés second stage
provides the greatest benefit.

The original SCATCI had the option to remove all integrals iy only
target orbitals from the matrix elements of classes 1, 3, &né 7. These are
replaced by adding the appropriate (precomputed) targgggralong the diag-
onal. This approach has a number of advantages: it signifyceeduces the
number of integral evaluations and facilitates the maifoih of target energies,
see Ref. [36] for example. In future we plan to use this fagilithich is retained
in MPI-SCATCI, to simplify the treatment heavy atoms via the u$ dfective
core potentials.

As discussed by Oret al. [37], there can be a technical issue with phases of
the wavefunctions generated in a pure target calculatign (@) and the scatter-
ing wavefunction (Eq. (1)) to do with order in which the elects are treated in
the CSFs. Ignoring this problem has in the past led to gewoerafiincorrect re-
sults, see Gillamt al. [38]. SCATCI resolves this problem by using a phase mask

11

o N
8 N
5 Calculates N Contracts []
£ AN i Expand

Himj,i’m’j' Hgn.l.i’,vl’,l

Reduce M Collectively

u N

HEN . Expand
g Calculates Contracts [] it i
. N

rrl
Himj,i’m’j’ H;

i,n,1,i",n’,1

Figure 4: A visual representation of two processes evalgatie matrix elements of continuum
only classes. The first stage involves computing and caimigathe prototype elements into the
first incomplete symbolic elements of the contracted maffite second stage is the all process
reduction into the full symbolic prototype list. The lasage is the expansion acrogg’ for each
process. This means that both processes collectively havill contracted matrix.

which matches the phases between the two wavefunctions T38§ is retained
in MPI-SCATCI.

3.1.3. Class4

Class 4 is the fi-diagonal continuum-? portion of the matrix. This presents
a problem as it requires prototyping and expansion for eagjet symmetry and
L2 function. The number of? functions in a typical calculation is significantly
larger than size of the contracted continuum. This preseptsblem with the two
step procedure as eatf function for each symmetry would require a prototype
synchronization step resulting in possibly millions in@rdo complete.

However we can exploit the fact that the prototyping, carttcen and expan-
sion are all one-dimensional loops as given by Eqg. (5). Treams that a class
calculation for each.? function is significantly easier and faster to perform than
any other contracted class. With this, the parallelizai®imstead performed
acros¥ functions for a specific target symmetry independent of dhgrgorocess
and eliminating any costly synchronization. This is ilhased in Figure 5

3.2. Matrix distribution

One of the key goals for the MPI code is to not only support tiag@hal-
izer already included in the serial SCATCI code but also a walege of MPI
diagonalizers. Since often all eigenvectors are requael@nse diagonalizer such
as SCALAPACK [40] is ideal for its #icient householder approach. However,
for scattering Hamiltonians that have sizes in the order iifans, an iterative
diagonalizer, such as the Scalable Library for Eigenvahadlém Computations
(SLEPCc)[41], is more desirable as matrix sparsity can béoeeg for storage and

12

=1 Proccess O Proccess O
[=2 Proccess 1 Proccess 1
2
L [=3 Proccess 0 Proccess 0
. ® []
. ° °
¢ ° °

P, P,

Figure 5: A visual representation of the class 4 prototy@ing expansion of a single target sym-
metry block containing two states using two processes. Tiwva represent the direction of
generation of matrix elements. The processes are disgtdbinta round robin style across eath
function then prototype, contract and expand for all taggietes in the symmetry.

often these sizes arise in partitioned R-matrix problemsréguire only a small
percentage of eigenvectors.

The Hamiltonian should therefore be built with regards @ fihal processor
arrangement of the matrix elements. However both SCALAPACH ShEPc
have vastly diferent methods of storing the matrix. SCALAPACK uses a block-
cyclic distribution and SLEPc uses a blocked row distritaitiin addition, SLEPc
requires the upper triangular matrix in C-style indexingefdfore separate Hamil-
tonian builds would be required for each type of matrix disttion. This presents
a huge cost in time to write, test and debug every Hamiltofoaevery distribu-
tion.

3.2.1. Matrix formats

In MPI-SCATCI, an abstradtaseMatrix class is defined which provides the
Hamiltonian a standard routine to store a matrix element.inkerited abstract
DistributedMatrix class is also defined which will distribute the matrix el-
ements in any format. It works by allowing the processes thoevery single
matrix element at least once at some point during executidrbg applying rules.

The rules are defined by a virtual boolean function. Eachritdgematrix for-
mat must define this function in order to properly place magtements into the
correct process. Two types of storage are defined, hot addstmiage. Hot stor-

13

age is temporary storage for matrix elements that, aftelyaqgprules, do not be-
long to the computing process. This type of storage is theedamall distributed
matrix class. Cold storage is the permanent storage of malgiments that will
eventually be used in diagonalization. Its representadepends on the format,
for SCALAPACK it is the local matrix array, for SLEPc it is a Petéat object.
At some point during the build an update can be triggereds Tipdate consists
of rotating the hot storage in a ring like fashion acrossepeocess as illustrated
in Figure 6 and applying the defined rules to each elementdssiple placement
into cold storage. This means that communication througimi@nconnect only
occurs with 2 of the processors in a node giving a commumicaiverhead of the
order 261 — 1) wheren is the number of nodes. Once each processes hot storage
has completed a circuit, it is cleared and ready for usagmaga

An update is triggered through two means: When memory hasdéodwusted
and when the Hamiltonian build is completed. MPI-SCATCI tiaakailable free
memory and when a process has exhausted all of its availadteony, this signals
all other processes to begin an update. This has the bendfiairwhen either
given more RAM or more processes, the number of updates egtjuira run
decreases. This is because we can either store more mainneeds or that we
are storing less matrix elements per process. As will baudsed in Section 4 the
update time remains essentially constant across processots.

ThisDistributedMatrix has proved beneficial as, barring initialization, re-
quires only a single function definition to support the ajppiate format without
touching the Hamiltonian build. Currently, MPI-SCATCI has defil three types
of distributed matrices:

e SCALAPACKMatrix

— Stores local matrix in block cyclic distribution
— Used by SCALAPACK diagonalizer
— Distribution rule:
x Call INFOG2L. If it belongs to me then store and return true oth
erwise false
e SLEPcMatrix

— Stores in a PETSc Mat object in blocked row distribution
— Used by SLEPc diagonalizer
— Distribution rule:

x Convert into upper triangular matrix and C index format
x If it is within block row, store and return true otherwisedsal

14

Exchange

Processor 1
Processor 2

@'I" 066000 le»
(

Processor O

Figure 6: Ring rotation of the each processes hot storage

15

o WriterMatrix

— Writes matrix elements to file
— Used by original SCATCI diagonalizers
— Distribution rule:

x |f | am master process, store (and write) and return truerotise
false

The SLEPcMatrix class presents another interesting featiie rule function
can also be used to preprocess a matrix element and in thes casvert into
upper triangular and C-style indexing before storing. Aiddilly, PETSc matrix
assembly time is non-existent as the elements are all indirect process.

3.2.2. Diagonalization

The abstracbiagonalizer class provides a standard diagonalization routine
that accepts 8aseMatrix as input. There is, however, no standard matrix ele-
ment retrieval routine due to the vastlyfféring ways the matrix is stored (and
sometimes not stored). Whilst it is technically valid to pasgBaseMatrix into
any diagonalizer routine, it is up to the implementer to datee how to access
the element for each format. The currently implementedahiatizers perform
a type check on the matrix pointer and either halts if it is siggpported or calls
the correct subroutine that typecasts back into its dermle@ss. Whilst this seems
to go against the OOP approach used in the rest of the cod@etifi@mance
benefits are massive. For the SCALAPACK diagonalizer, the SCRAGKMa-
trix provides the correct local array to immediately begmgdnalization and the
same goes for the SLEPc diagonalizer and its corresponditigdm

It is also worth noting that both SLEPc and SCALAPACK can be ugrdtie
same run. Itis common for arun to use SLEPCc to retrieve tigetaodficients for
the Hamiltonian build to then shift to SCALAPACK for the diagdization of the
scattering Hamiltonian. The diagonalizers currently supgd by MPI-SCATCI
are: LAPACK, Davidson [42], ARPACK, SCALAPACK and SLEPc and alhca
be mixed in the same run. Additionally, there is an experitaleieature for non-
MPI diagonalizers to utilize all threads in a node by slegmther MPI processes
whilst the master process performs OpenMP diagonalizadibis is beneficial for
the parallel MKL LAPACK as it is generally mordiient in a single node than
SCALAPACK. However, this feature is unreliable as it is departcon the non-
polling barrier implementation of the MPI library and theping modes used.

3.3. LargeIntegrals

Under MPI, each process is given a private memory spacengala exam-
ple 24-core node with 64 GB of memory and distributing evetilis allows for

16

a maximum of 2.5 GB per MPI process. Each process must swmvit local
copy of the CSFs, the local matrix and the integrals with thisls amount of
memory. The biggest cost comes from the integrals themseler instance, a
the UKRMol phosphoric acid scattering calculation consddyelow requires 1.5
GB of memory to store the integrals leaving only 1 GB for eting else. This
is a bigger issue with UKRMael calculations using B-splines. The integrals for
the recent electron-beryllium mono-hydride (BeH) UKRMdalalculation [24] re-
qguire 3.0 GB, preventing them from being used as one of our plasystems.
Scattering calculations on larger systems such as uraad B splines may re-
quire tens of gigabytes of memory to store all of the integral

The fundamental issue is that the integral data is beingatepgemultiple times
in each node as illustrated in Figure 7a. Naturally a metHodistributing the
integrals is needed and there are many to choose from.

Firstly, an integral scatter method could be implementedreleach process
has a portion of the integrals and are then moved across wdessary. How-
ever it is dificult to predict which integrals are needed by which procesisthis
is compounded by the fact that expansion of the prototypeehés can introduce
hundreds of dtering integrals that are not present within the computiragess.
In a sense, at each integral evaluation it is likely thatehveil be a significant de-
gree of communication which will kill performance, espdlgiat higher process
counts.

Another method would be to reduce the number of MPI processssch node
but to then restore parallel performance by utilizing Op&k single occurrence
of the integral could occur at each node giving us a large amoumemory to
store integrals as well as minimizing the communicatiort @osynchronization
as it will only occur at each node rather than each procesaekier, OpenMP 4.0
support of modern Fortran is still not mature enough anduagg features such
as polymorphism are not fully supported resulting in crashaditionally some
MPI diagonalizers are not hybrid OpenMWMPI and therefore dter in perfor-
mance.

The method used by MPI-SCATCI utilizes a feature of the MPIs3ahdard:
Shared memory

3.3.1. Shared Memory

Shared memory is a feature which allows a portion of memobgeteeen by a
group of processes. This feature was actually present ie $orm with the MPI-
2.0 standard through the use of windows but was in a senséegtoed operation
requiring many synchronizing epoch’ in order to get or pdditionally it is
not aware of the node-locality of certain processes andhassuemote memory
access (RMA) at all times. The MPI-3.0 standard introducessaagommunicator:
MPI_COMM_TYPE_SHARED. this communicator groups process by which node they

17

v © v w v © v w
T &8 © © T 8 & c
— — — — — — — —
60 50 B0 6D 60 50 b0 bD
o O O QNN oY O O o
+J +J +J +J +J +J +J +J
EEEE |EEEE
O 1 2 3 O 1 2 3
b)
ARl
Integrals Integrals
O 1 2 3 O 1 2 3

Figure 7: Two Memory layouts of the integrals for two fouremodes with interconnect (red)
between the two. a) The standard private memory layout uxérand highlights the amount of
repeated data on each compute node. b) MPI-3.0 Shared méayoryt, Only a single instance
of the integral is loaded for each node.

18

occur in. A shared window can be allocated that is node awada@moves the
need for RMA, improving memory access times. Additionallgrihis no need
for synchronization for any puts or gets but is still necegs¢a ensure no race
conditions occur. However this is ideal as the integralgeolmaded, become
read only eliminating any further fencing on gets. The aliation of fencing
also prevents costly cache synchronization steps thowaghk Hre still local cache
misses due to the random access nature of the integrals. iffipécgty of this
usage is a significant advantage as the shared memory atraydsadentically to
a normal Fortran array once it has been set up. The memorytlajour integrals
now reflects the illustration in Figure 7b anficads the code the ability to handle
extremely large integrals that fit within the nodes total rogm

A new module was created in order to facilitate this funcidy. It replaces
the standard Fortran allocate function for arrays that wahwo share. For exam-
ple, allocating an array for the one electron integrals:

allocate(one_e_int (num_one_e_int) ,stat=ifail)

Becomes this:

one_electron_window =
mpi_memory_allocate_real (one_e_int ,num_one_e_int)

If there is no available MPI-3.0 library, this will fallbadkto the standard For-

tran allocate routine. The window variable is used both &tedmining if shared

memory is being used and for deallocation. No other changfeeiintegral rou-

tines is necessary. No change in performance has been ebddstween having

a local private copy of the integrals and utilizing sharedmogy.

4. Performance

MPI-SCATCI has been successfully run and benchmarked on baitreksity
College London’s Grace@UCL supercomputing cluster and ARCHE& UK
National Supercomputer Service. Grace@UCL has 360 nodéasntdtr16 Intel
Haswell cores and 64 GB of memory connected by non-blockitej Truescale
Infiniband. ARCHER'’s Cray XC30 nodes comprise of two 2.7 GHz, 1&co
E5-2697 v2 CPUs with 32 GB each arranged in a non-uniform megraocess
(NUMA) configuration giving 24 cores and 64 GB total connecteith Cray
Aries interconnect. The benchmark runs all stored the extagf Hamiltonian
on disk rather than in a format ready for diagonalizationisT$ to allow a bet-
ter "apples to apples’ comparison to the serial SCATCI codethedact that we
are not assessing the performance of the diagonalizers#iees. This will still
test the matrix distribution performance as the runs relthenVriterMatrix class
which can be considered a worst case example due to the ettlonerhead of
disk 10.

19

The single core build tim&j is equivalent to the serial SCATCI build time.
The ideal timeT; for N, processes is computed as:

T.
| Np

(13)
and is based on the assumption that all aspects of the dabcu{ancluding 10)
are perfectly parallel. Whilst unrealistic, it at least give general sense of how
the build times should scale with process count. The updadd@ time is the
time taken to perform any kind of MPI synchronization whidgcludes the ring
cycling of data in the matrix class. Since the WriterMatrixfpems a disk write
in this step, this overhead is also partially due to 10.

The node counts used were 1, 2, 3, 8 and 50. The total core domt
ARCHER are 24, 48, 72, 192 and 1200 and for Grace@UCL 16, 32, 4B, 12
and 800 respectively. The first four tests were used to asemgshe scaling
behaves incrementally and the last test assessedfduwt af synchronization at
overly generous core counts.

4.1. Phosphoric acid

Our phosphoric acid (5POy) test is based on the study of Bryjlebal [43].
This is an example of ah? heavy calculation. The contracted portion of the
matrix is only of size 712 whilst the un-contracted portisiof size 122103 giving
a total Hamiltonian size o = 122815. The total storage space required for the
integrals was 1.5 GB. Using shared memory, the cost to eadegsor was only
64—-96 MB. The serial SCATCI reference timelig=8820 s. A serial single core
run on MPI-SCATCI gives a time of 7800 s, a 12% improvement)yikem the
more dficient Slater rule code.

Figurel 8 shows the performance scaling for the phosphorit adculation.
For a single node run on ARCHER, the time taken is 410 s correspgrd
a speed up ok 21 times and a parallelfiéciency of~ 87%. A Grace@UCL
single node run is 630 s giving a speed up of 14 and a pardllelency of ~
87.5%. The speed up behaves linearly up to 72 cores befaueingdat 192 cores
and approaching the updat® time at 1200 cores. This reduction comes from
the fact that the update time now becomes a significant podidhe total time,
reaching toxr 70% of total and reducing paralleffieiency to~ 11 %. However
it is worth noting the behaviour of the updat®© time is essentially constant as
discussed previously and arises solely from the fewer nuwigodates required
in a single run @setting the communication overhead at higher node counts.

For phosphoric acid, the build phase requires between 1 tw&sfor max-
imum dficiency and reduces the calculation from hours to minutek higher
counts considered overkill. However a higher process caontd still be benefi-
cial if one wishes to perform diagonalization afterwards.

20

Time to build Hamiltonian
(H3PO4 N=122815,SWEDEN,WriterMatrix)

10000.00
6309.57
3981.07
2511.89
1584.89
1000.00

630.96
398.11
251.19

Time(s)

158.49
100.00
63.10

39.81 S *

25.12 /

15.85
10.00

6.31
1 3 10 32 100

Processors

-8 MPI-SCATCI (ARCHER)

MPI-SCATCI (GRACE)
—+— Update+IO (ARCHER)
—4— Update+lO (GRACE)
=>—|deal

Figure 8: Time taken (log scale) to build the scattering Hemmian for phosphoric acid against
process counts (log scale). The size of the Hamiltonidh4s122815. The ideal time is computed
using Eq.[13. The updat¢O time is the time taken for MPI synchronization steps tinatuide

disk writes by the WriterMatrix. The time taken by MPI-SCATi@tludes the updatdO time.

21

Time to build Hamiltonian
(BeH,N=30667,WriterMatrix)
2511.89
1584.89
1000.00
630.96
398.11
251.19
158.49

100.00 -~ MPI-SCATCI (ARCHER)
MPI-SCATCI (GRACE)
63.10 —— Update+l0 (ARCHER)
39.81 . — —&— Update+/O (GRACE)
/ = |deal
25.12

15.85

Time (s)

10.00
6.31
3.98
251
158
1.00

[
w
P
S

32 100 316 1000

Processors

Figure 9: Time taken (log scale) to build the scattering Hammian for BeH against process counts
(log scale). The size of the HamiltonianNs= 30667. The ideal time is computed using Eg. 13.
The updatelO time is the time taken for MPI synchronization steps timatide disk writes by
the WriterMatrix. The time taken by MPI-SCATCI includes thedate-10 time.

4.2. Beryllium mono-hydride

The Beryllium mono-hydride (BeH) [24] calculation is a comtian heavy
calculation. The contracted portion of the matrix is of diveien 10104 and thie?
portion is of dimension 20563 giving a total dimensioMbf 30667. Whilst this
matrix is significantly smaller than phosphoric acid, itsaas a better system for
assessing the scaling of the heavier contraction calonlatith its higher number
of target symmetries (4) and with 19 target states per target symmetry. The total
storage space required for the integrals was 3.0 GB. Usingdhmemory, the
cost to each processor was only 128-196 MB. The referencal SELATCI time
is Tp =1993.6 s. A serial single core run on MPI-SCATCI gives a timel#4ls,

a 58% improvement from SCATCI.

Figure 9 shows the performance scaling for the BeH calculatith a refer-
ence single core tim&, =1993.6 s. Almost identically to phosphoric acid, the
single node ARCHER run corresponds to a speed up @0 times and a par-
allel efficiency of~ 84%. The Grace@UCL single node run gives a 17.3 times
speed up giving 100 % parallel &ciency. However, the parallelfeciency

22

drops almost immediately past this core count. This agasesufrom the update
time comprising the majority of the calculation past thisnoAt 1200 cores the
total time has converged with the update time. Interestitige baseline update
time also remains constant across core counts and onlyaseseby 10 % from
phosphoric acid. This comes from the increased number@étaymmetries that
require the prototype symbols to be synchronized for theraoted classes sans
class 4. The constant behaviour of this across high procesgsmay come from
the fact that the number of prototype symbols are in the astigrousands and the
parallelization reduces this to tens of symbols for eacltgss. These likely fit
into a single packet for the interconnect. Therefore thé ©@s/ only come from
the latency of the interconnect itself which is in the ordenanoseconds. Again,
a single node may be considered the sweet spot for bffildency for BeH and
higher counts benefiting diagonalization.

Grace@UCL in general has a slightly lower update time, bstihmost likely
due to better disk 10 as its single node update time 80 % better than its
> 1 node performance. Running a smaller scale test on BeH with &ies
over 1Gbps Ethernet, update times are 91.1 s and 171 s riegpedcConsidering
that the resulting Hamiltonian is 5.6 GB, the update message moving between
nodes can be as big as 1 GB, oversaturating the interconnegwizith. Since
both Infiniband interconnects are in the realmxd0 Gbps, and that each core is
limited to a maximum ok 2 GB of matrix elements, the Infiniband bandwidth is
not fully utilized. Therefore it is most likely the 10 bandith that is limiting the
synchronization time. This is most apparent when using a SKFRCK Matrix
as it only requires a look-up and insertion into an array. lk@h GRACE and
ARCHER, the update times for this matrix type is aroundl7.2 s.

For both examples, the overall behaviour of the code is thaparallel &i-
ciency is determined by the percentage of the total timentékethe update. In a
sense, the update for both matrices isftexaed by core count. The greatest ben-
efit of the code may lie in problems in the order of millionsemg of millions that
take days or months to complete. High core counts may redhese tcalculations
to hours which would still remain significantly greater tithe update time.

5. Conclusion

The UKRMol code SCATCI has been rewritten to modern standartsMip|
integrated for large parallel build and diagonalizatidreXploits OOP paradigms
to provide flexibility for future development. A parallediion of the dicient
algorithm provided by Tennyson [8] reduces a 3 hour-longuation on phos-
phoric acid to several tens of seconds with only 1-3 nodesotks by integrating
several new parallel algorithms for each class to expl@irtparticular contrac-
tion behaviour in order to achieve a high degree fitency. Additionally the

23

code supports LAPACK, ARPACK, SCALAPACK and SLEPc diagonalizerd
has the ability to support many more if desired with only a fiews of code.

Use of the R-Matrix with pseudo-states (RMPS) method can kafedd to
desirable cases where the matrix build is both large (10@@8,) and computa-
tionally demanding [23]. Such calculations, which are imi@ot to model polar-
ization efects in a trulyab initio manner [44], are the key for studying low-lying
resonances in systems such as electron-uracil. Such &idad are currently
underway.

This article has focused heavily on electron - moleculetsgaty aspects of
the UK Molecular R-matrix codes. In fact MPI-SCATCI can be usedddress
other problems. A powerful but not greatly used aspect oftiues is for the stud-
ies of high-lying but bound Rydberg states of molecules. isidave shown the
use of scattering wavefunctions provides a much mfireient means of identify-
ing these states than standard quantum-chemistry elécgtacture calculations
[45]. The UKRMol codes are also being increasingly used tdysghotoioni-
sation [46—-49] and photodetachment [50]. This use raisesipartant technical
issue with the SCATCI algorithm since the contracted Hamidtoms based on the
use of very lengthy strings offective configuration state functions (CSFs). These
CSFs, which represent entire target Cl wavefunctions, do bey the standard
Slater’s rules. This means their use in computing the tti@nsdipole moment
matrix elements required for photon-driven processesiresjgpecial algorithms.
Harveyet al [46] have implemented such an algorithm for SCATCI and we an-
ticipate MPI-SCATCI being extensively used for future cadtidns on processes
involving photons.

6. Acknowledgements

This work was funded under the embedded CSE programme of the ARCH
UK National Supercomputing Service (hiffmww.archer.ac.uk) as project eCSE08-
7. The authors acknowledge the use of the UCL Grace High eafoce Com-
puting Facility (Grace@UCL), and associated support sesyim the completion
of this work. We thank Jimena Gorfinkiel and Zdenek Masin feipful discus-
sions, and Daniel Darby-Lewis and Kalyan Chakrabarti fopheith input files.
AFA would also like to thank Dr. Faris N. Al-Refaie, Lamya ABarfraz and Eri
Aziz, and Rory and Annie Gleeson for their support.

References

[1] K. Bartschat, M. J. Kushner, Electron collisions with @i® ions,
molecules, and surfaces: Fundamental science empowerthg a
vances in technology, Proc. Nat. Acad. Sci. 113 (2016) 70Q84.
doi:{10.1073/pnas.1606132113}.

24

http://dx.doi.org/{10.1073/pnas.1606132113}

[2] J. Tennyson, A. Faure, Electron-driven processes incepan: Gas
Phase Chemistry in Space: From elementary particles to exngpganic
molecules, IOPP, Bristol, UK, 2017.

[3] B. Bouddfta, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Resonant
Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Hlews,
Science 287 (2000) 1658-166fhi:10.1126/science.287.5458. 1658.

[4] K. Bartschat, J. Tennyson, O. Zatsarinny, Quantum-meic&calculations
of cross sections for electron collisions with atoms andenules, Plasma
Proc. Polymers 14 (2017) 160009&i:10.1002/ppap.201600093.

[5] K. Bartschat, The R-matrix with pseudo-states method:offh@nd appli-
cations to electron scattering and photoionization, Coemplahys. Comm.
114 (1998) 168-182.

[6] J. D. Gorfinkiel, J. Tennyson, Electronittollisions at intermediate ener-
gies, J. Phys. B: At. Mol. Opt. Phys. 37 (2004) L343—-L350.

[7] J. D. Gorfinkiel, J. Tennyson, Electron impact ionisataf small molecules
at intermediate energies: the R-matrix with pseudostatéisadeJ. Phys. B:
At. Mol. Opt. Phys. 38 (2005) 1607-1622.

[8] J. Tennyson, A new algorithm for Hamiltonian matrix ctmstion in
electron-molecule collision calculations, J. Phys. B: AbIMDpt. Phys. 29
(1996) 1817-1828.

[9] C. J. Gillan, J. Tennyson, P. G. Burke, The UK molecular Rfiratcat-
tering package: a computational perspective, in: W. Hu@.Fsianturco
(Eds.), Computational methods for Electron-molecule sighs, Plenum,
New York, 1995, pp. 239-254.

[10] L. A. Morgan, J. Tennyson, C. J. Gillan, The UK moleculanfirix codes,
Comput. Phys. Commun. 114 (1998) 120-128.

[11] J. M. Carr, P. G. Galiatsatos, J. D. Gorfinkiel, A. G. Hatvd. A. Lysaght,
D. Madden, Z. M&in, M. Plummer, J. Tennyson, The ukrmol program suite,
Eur. Phys. J. D 66 (2012) 58.

[12] J. Tennyson, D. B. Brown, J. J. Munro, I. Rozum, H. N. VararabN. Vinci,
Quantemol-n: an expert system for performing electron ma&collision
calculations using the r-matrix method, J. Phys. Conf. $(26807) 012001.

[13] Z. MaSin, The UKRMok codes (2016).

25

http://dx.doi.org/10.1126/science.287.5458.1658
http://dx.doi.org/10.1002/ppap.201600093

[14] D. A. Little, J. Tennyson, An R-matrix study of singletdatriplet continuum
states of M, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 105204.

[15] S. Kaur, K. L. Baluja, Electron-impact study of SIiN us-
ing the R-matrix method, Eur. Phys. J. D 69 (2015) 89.
doi:10.1140/epjd/e2015-50530-1.

[16] M. M. Fujimoto, E. V. R. de Lima, J. Tennyson, Low-enerdgatron col-
lisions with CHCN and CHNC isomers, Eur. Phys. J. D 69 (2015) 153.
doi:10.1140/epjd/e2015-60189-1.

[17] A.Dora, L. Bryjko, T. van Mourik, J. Tennyson, R-matrixicalation of low-
energy electron collisions with uracil, J. Chem. Phys. 13D@ 164307.

[18] Z. Masin, J. D. Gorfinkiel, Resonance formation in low &y
electron scattering from wuracil, Eur. Phys. J. D 68 (2014)2.11
doi:{10.1140/epjd/e2014-40797-y}

[19] Z. Masin, J. D. Gorfinkiel, Eect of the thirdr resonance on the angular
distributions for electron-pyrimidine scattering, EuhyB. J. D 70 (2016)
151.doi:10.1140/epjd/e2016-70165-x.

[20] K. L. Baluja, R. Zhang, J. Franz, J. Tennyson, Low-energgitpoon colli-
sions with water: elastic and rotationally inelastic seaitig, J. Phys. B: At.
Mol. Opt. Phys. 40 (2007) 3515-3524.

[21] R. Zhang, K. L. Baluja, J. Franz, J. Tennyson, Positrorisiohs with
molecular hydrogen: cross sections and annihilation patrars calculated
using theR-matrix with pseudo-states method, J. Phys. B: At. Mol. Opt.
Phys. 44 (2011) 035203.

[22] R. Zhang, P. G. Galiatsatos, J. Tennyson, Positronsoatis with acetylene
calculated using the R-matrix with pseudo-states metho&hys. B: At.
Mol. Opt. Phys. 44 (2011) 195203.

[23] G. Halmowa, J. D. Gorfinkiel, J. Tennyson, Low and intermediate energy
electron collisions with the £molecular anion, J. Phys. B: At. Mol. Opt.
Phys. 41 (2008) 155201.

[24] D. Darby-Lewis, Z. Masin, J. Tennyson, R-Matrix Calcusat of electron-
impact electronic excitation of BeH, J. Phys. B: At. Mol. OptyB.

[25] J. Tennyson, Partitioned R-matrix theory for molecule$hys. B: At. Mol.
Opt. Phys. 37 (2004) 1061-1071.

26

http://dx.doi.org/10.1140/epjd/e2015-50530-1
http://dx.doi.org/10.1140/epjd/e2015-60189-1
http://dx.doi.org/{10.1140/epjd/e2014-40797-y}
http://dx.doi.org/10.1140/epjd/e2016-70165-x

[26] J. Tennyson, Electron - molecule collision calculataising the R-matrix
method, Phys. Rep. 491 (2010) 29-76.

[27] B. Liu, M. Yoshimine, The alchemy configuration-intetian method .1.
the symbolic matrix-method for determining elements of iraiperators,
J. Chem. Phys. 74 (1981) 612—-616.

[28] M. Yoshimine, CONSTRUCTION OF HAMILTONIAN MATRIX IN
LARGE CONFIGURATION INTERACTION CALCULATIONS, J. Com-
put. Phys. 11 (1973) 449-454.

[29] L. A. Morgan, J. Tennyson, Electron impact excitatiooss sections for CO,
J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 2429-2441.

[30] A. Scemama, E. Giner, Arfiicient implementation of Slater-Condon rules,
ArXiv e-printsarXiv:1311.6244.

[31] J. D. Gorfinkiel, L. A. Morgan, J. Tennyson, Electron iagb dissociative
excitation of water within the adiabatic nuclei approximoat J. Phys. B: At.
Mol. Opt. Phys. 35 (2002) 543-555.

[32] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, &nBarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. SsganLA-
PACK Users’ Guide, 3rd Edition, Society for Industrial andphpd Mathe-
matics, Philadelphia, PA, 1999.

[33] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK Users’ Guideu-Sol
tion of Large-scale Eigenvalue Problems with Implicitly Reted Arnoldi
Methods (Software, Environments and Tools), Society foubtrial & Ap-
plied Mathematics, U.S., 1998, skt&;/www.caam.rice.edsoftwar¢ ARPACK/.

[34] J. Tennyson, P. G. Burke, K. A. Berrington, Generation aftcauum or-
bitals for molecular R-matrix calculations using lagrangdagonalisation,
Comput. Phys. Commun. 47 (1987) 207-212.

[35] L. A. Morgan, C. J. Gillan, J. Tennyson, X. Chen, R-matriicoéations for
polyatomic molecules: electron scattering byQN J. Phys. B: At. Mol. Opt.
Phys. 30 (1997) 4087—-4096.

[36] D. T. Stibbe, J. Tennyson, Ab initio calculations of rakionally resolved
resonances in electron collisions with,HHD and B, Phys. Rev. Lett. 79
(1997) 4116-4119.

[37] A. E. Orel, T. N. Rescigno, B. H. Lengsfield Ill, Dissociagiexcitation of
HeH" by electron-impact, Phys. Rev. A 44 (1991) 4328—-4335.

27

http://arxiv.org/abs/1311.6244

[38] C. J. Gillan, J. Tennyson, B. M. McLaughlin, P. G. Burke, Lenergy elec-
tron impact excitation of the nitrogen molecule: opticdllybidden transi-
tions, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 1531-1547.

[39] J. Tennyson, Phase factors in electron-moleculesioflicalculations, Com-
put. Phys. Commun. 100 (1997) 26-30.

[40] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. DemiielDhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan2yWalker,
R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial Apglied
Mathematics, Philadelphia, PA, 1997.

[41] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable ftexdble toolkit
for the solution of eigenvalue problems, ACM Trans. Math.t&afe 31 (3)
(2005) 351-362.

[42] A. Stathopoulos, C. F. Fischer, A DAVIDSON PROGRAM FOR BEING
A FEW SELECTED EXTREME EIGENPAIRS OF A LARGE, SPARSE,
REAL, SYMMETRICAL MATRIX, Comput. Phys. Commun. 79 (1994)
268-290.d0i:{10.1016/0010-4655(94)90073-6}.

[43] L. Bryjko, T. van Mourik, A. Dora, J. Tennysom;matrix calculation of
low-energy electron collisions with phosphoric acid, Jy®MB: At. Mol.
Opt. Phys. 43 (2010) 235203.

[44] M. Jones, J. Tennyson, On the use of pseudostates tolai@anolecular
polarizabilities, J. Phys. B: At. Mol. Opt. Phys. 43 (20105001.

[45] D. A. Little, J. Tennyson, Singlet and triplab initio Rydberg states of N,
J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 145102.

[46] A. G. Harvey, D. S. Brambila, F. Morales, O. Smirnova, Amftrix ap-
proach to electron-photon-molecule collisions: photciete angular distri-
butions from aligned molecules, J. Phys. B: At. Mol. Opt. P& (2014)
215005.doi:{10.1088/0953-4075/47/21/215005}.

[47] A. Rouzee, A. G. Harvey, F. Kelkensberg, D. Brambila, W. &iu,
G. Gademann, O. Smirnova, M. J. J. Vrakking, Imaging the -elec
tronic structure of valence orbitals in the XUV ionizatior aligned
molecules, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 124017.
doi:{10.1088/0953-4075/47/12/124017}.

[48] D. S. Brambila, A. G. Harvey, Z. Masin, J. D. Gorfinkiel, &mirnova, The
role of multichannel ects in the photoionization of the N®olecule: an

28

http://dx.doi.org/{10.1016/0010-4655(94)90073-6}
http://dx.doi.org/{10.1088/0953-4075/47/21/215005}
http://dx.doi.org/{10.1088/0953-4075/47/12/124017}

[49]

[50]

ab initio R-matrix study, J. Phys. B: At. Mol. Opt. Phys. 48 (89p245101.
doi:{10.1088/0953-4075/48/24/245101}

W. J. Brigg, A. G. Harvey, A. Dzarasova, S. Mohr, D. S. Brakab
F. Morales, O. Smirnova, J. Tennyson, Calculated photo#tioia cross sec-
tions using Quantemol-N, Jap. J. Appl. Phys. 54 (2015) 06Z5A0

M. Khamesian, N. Douguet, S. F. dos Santos, O. Dulieu, Rdoult,

W. J. Brigg, V. Kokoouline, Formation of CN CsN-, and GN-
Molecules by Radiative Electron Attachment and their Destru
tion by Photodetachment, Phys. Rev. Lett. 117 (2016) 123001.
doi:{10.1103/PhysRevLett.117.123001}

29

http://dx.doi.org/{10.1088/0953-4075/48/24/245101}
http://dx.doi.org/{10.1103/PhysRevLett.117.123001}

	Introduction
	Theory
	Symbolic evaluation, prototyping and expansion
	Matrix classes
	Classes 1 and 3
	Classes 2 and 8
	Classes 5 and 6
	Class 7
	Class 4
	Sparsity and diagonalization

	The UK-molecular R-matrix codes

	MPI-SCATCI
	Build parallelization
	Classes 2 and 8
	Classes 1, 3, 5, 6, 7
	Class 4

	Matrix distribution
	Matrix formats
	Diagonalization

	Large Integrals
	Shared Memory

	Performance
	Phosphoric acid
	Beryllium mono-hydride

	Conclusion
	Acknowledgements

