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Abstract 
TPLS is a freely available CFD code which solves the Navier-Stokes equations for 
an incompressible two-phase flow. The level set method enables sharp changes 
in interfacial topology and is therefore ideally suited to gaining an understanding 
of problems of interest to the oil and gas industry as well as looking at the 
implications of the inherent instability of the interface in a two-phase system. 
This eCSE project aimed to improve the architecture and performance of the 
software, reduce overall runtime, and improve usability and maintainability, 
opening up the software to a large user community. The main aims of this project 
were to introduce TPLS 3.0 with: i) Implementation of 3D domain 
decomposition, ii) Replacing all SOR/Jacobi hand-coded routines with PETSc and 
iii) Implementation of density-contrast flows and implementation of a choice of 
boundary conditions. This eCSE work has resulted in a significant re-factoring of 
the TPLS software, improving maintainability by increasing the use of error 
checking, debugging options and the use of modules, functions and subroutines 
to minimise code duplication. This should enable future development work to be 
significantly quicker and easier to debug, as well as providing more runtime 
options, moving away from extensive use of hard-coded compilation options. As 
a result we are now able to provide TPLS 3.0 as a package available on ARCHER 
for all users TPLS 3.0 is released as opensource, available from Sourceforge. 
 
1. Introduction 
 
TPLS is a powerful and efficient 3D Direct Numerical Simulation (DNS) flow 
solver to simulate multiphase flows at unprecedented detail, speed and 
accuracy.   
This flow solver has been developed by Lennon Ó Náraigh (School of 
Mathematical Sciences, University College Dublin), Prashant Valluri (School of 
Engineering, University of Edinburgh), David Scott, Toni Collis and Iain Bethune 
(the Edinburgh Parallel Computing Centre at the University of Edinburgh) and 
Peter Spelt (Université de Lyon1, Claude Bernard) under the aegis of several 
HECToR computer time grants and funding from EPSRC, the HECToR dCSE 
programme administered by NAG and the ARCHER eCSE programme 
administered by EPCC. The solver has clocked over 1300 downloads around the 
world. We summarise the versions so far in Table 1. 
 
Table 1: Versions of TPLS, their features, parallel performance and issues  
Version Features Performance and constraints 
TPLS 0.0 • Primitive version of code, 

using hand-coded SOR and 
Jacobi routines for the linear 
solves 

• Serial I/O 

• Poor scalability 
• Access to density contrast flows 

(branch version) 
• Choice of boundary conditions 

(inlet/outlet or periodic) 
TPLS 1.0 • Hand-coded routines 

substituted by PETSc routines 
in pressure-solver 

• Serial I/O 

• scalability improvement (speed-
up = 10% on 1024 cores)  

• density matched flows only 
(liquid/liquid) 



• inlet/outlet boundary conditions 
only  

TPLS 2.0 • PETSc routines in pressure-
solver 

• Parallel I/O 

• Scalability improvement (speed-
up = 10.9x on 3072 cores) 

• Density matched case only 
• Inlet/outlet boundary conditions 

only 
 
This eCSE work concerns crucial improvements of TPLS 2.0 necessary to enable 
simulation of larger-scale flows relevant to industry involving large density 
contrasts (as in gas/liquid systems) and larger simulated domains in order to 
accelerate its industrial uptake.    
The main aim of this work has been to introduce TPLS 3.0, which (among other 
things) will bring together features from branch versions of the code, and 
remove the remaining drawbacks. In particular: i) Implementation of 3D domain 
decomposition, ii) Replacing all SOR/Jacobi hand-coded routines with PETSc and 
iii) Implementation of density-contrast flows and implementation of a choice of 
boundary conditions (inlet/outlet or periodic). 
 
2. Objectives and Success Metrics 
 
Objective 1:  Full 3D domain decomposition, leading to improved strong scaling 
(80% parallel efficiency on 64 ARCHER nodes for a 5.6 million element problem) 
 
This is important for real gas/liquid turbulent systems that demand a higher 
resolution and larger number of cores – 3D decomposition would allow us to 
simulate non-linear late time flow behaviour within a single ARCHER job (needs 
multiple restarts with TPLS 2.0) 
 
Outcome: A full 3D domain decomposition has been implemented successfully. 
Surprisingly, the parallel efficiency on 64 nodes is a disappointing 20% but the 
speed-up relative to the 2D code is greater than 2. 
 
Objective 2:  Replace all SOR solvers with PETSc2  (50% speedup in each compute 
routine on 64 nodes) 
 
This is necessary to improve the scalability of TPLS 2.0. 
 
Outcome: All the three momentum solvers, which were SOR-based, have been 
implemented with PETSc. However, the interface detection solvers have not.  
The measurements were actually carried out on 32 nodes using the density 
contrast code on an 11 million grid point domain. The PETSc (Krylov) momentum 
solvers ran at only 2/3 the speed of the SOR solvers. The PETSc pressure solver ran 
at the same speed as the corresponding SOR solver. The expected speed-ups were 
based on the speed-up produced by the introduction of a PETSc solver into the 

                                                        
2  PETSc is the Portable, Extensible Toolkit for Scientific Computation, see 
https://www.mcs.anl.gov/petsc 

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc


Figure 1: Complex “turbulent” interface of a two-phase 
flow simulated at moderate density ratios and flowrates. 

pressure calculation during a previous project. Unfortunately, the implementation 
of the previous solver was faulty and correcting the error led to a substantial 
decrease in speed. 
 
Objective 3:  Implementation of density-contrast flows (demonstration gas/liquid 
flow calculation using 3D PETSc code) 

• TPLS 3.0 with density contrasts should give the same performance as TPLS 
2.0 without density contrasts and at least 7 times as fast as the TPLS 0.0 
branch for a density ratio of 1000.  

• Validate against the reference case of Trygvasson (1988) for Rayleigh-
Taylor instability – a canonical density-contrast two-phase instability. 
 

This is an essential improvement to encourage industry uptake. 
 
Outcome: Density contrast flows have been successfully implemented. A gas/liquid 
flow calculation has also been demonstrated using this TPLS 3.0 solver. A 
comparison with TPLS 2.0 has not been carried out because the result would be 
uninformative. It was noticed that TPLS 2.0 had incorporated a faulty pressure 
solver which has a significant impact on the execution speed of the code. This has 
been corrected in TPLS 3.0. For the 11 million point problem running on 32 nodes 
TPLS 3.0 was 18% faster than TPLS 1.0 when using the SOR solvers. The PETSc 
solvers were 39% slower. The implementation has been validated for the case of 
the Rayleigh-Taylor instability. 
 
Objective 4:  Release TPLS 3.0 
 
This is necessary to ensure dissemination of the solver to the wider audience. 
 
Outcome: TPLS 3.0 has been released via Sourceforge on 08 December 2017 under 
the aegis of the UK-wide Special Interest Group Meeting on Multiphase Flows and 
Transport Phenomena. This was attended by around 55 experts and students from 
both UK industry and academia. The total number of downloads so far have been 
1361 (55 downloads more since TPLS 3.0 release on Sourceforge) 
 
The project was a success with most of the objectives met. Key highlights 
include: 
• A fully implemented 3D decomposition and momentum solvers strengthened 

by implementing PETSc routines (and 
removing older SOR routines). This 
resulted in TPLS 3.0 solver being at least 
two times faster than the TPLS 2.0. 

• Fully capable of efficiently handling 
density contrast flows, see Figure 1. 
Density ratios of 1000 (similar to 
water/air) are now easily achievable at 
top-speeds. Most available solvers fail for 
high density ratios due to the excessive 
computational requirement and are 



therefore unable to simulate industrial scale flows. The fact that TPLS now 
offers high-density ratio solvability alongside its proven ultra-high resolution 
industrial-scale parallelism is a major improvement. This will therefore widen 
the application of TPLS to industry. 

 
3. TPLS 3.0 Performance 
 
The project set out to improve the performance of the code 

• by changing from a 2D to a 3D decomposition of the domain and 
• by replacing the hand crafted iterative solvers (mostly Jacobi plus SOR 

solvers) present in the code by solvers from the PETSc library (i.e. by 
preconditioned Krylov solvers). 

 
It also set out to extend the range of problems that could be studied using the 
code by allowing the different fluid components to have differing densities. This 
was achieved by integrating existing, bespoke, 2D code into the more general 
framework of the publicly released TPLS code (converting it to 3D in the 
process). 
 
Finally, the project also set out to provide the user with a choice of inlet or 
periodic boundary conditions in the direction of flow. 
 
In the past, much work related to TPLS has resulted in more or less stand alone 
code. An unstated objective was to encourage those people working on 
developments related to TPLS to do so in the context of the public TPLS code by 
working on branches which could then be more easily merged into the public 
code. The code has been written so that it is possible to select at run time (solver 
by solver) whether a 3D reimplementation of the original solver or a Krylov 
solver is used. It is hoped that this will lower the barrier to the code being used 
as a basis for future developments. 
 
The objectives listed above proved to be ambitious although most of the work 
was carried out.  The main reason for this was that it took much longer than 
expected to get the PETSc solvers working properly. Exact work undertaken is 
described below. 
 
The TPLS code contains six iterative solvers: 

• three momentum solvers (one for each component) 
• a pressure solver 
• a levelset solver 
• a diffuse interface method solver 

 
Four of these six have now been implemented using PETSc solvers. The interface 
solvers have not been reimplemented. They contain peculiarities that would 
have complicated their reimplementation. Furthermore, testing showed that the 
interface solver took only a small part of the execution time compared to the 
momentum solvers. As a result, the team decided that the available effort would 
be better spent on other goals of the project. 
 



As a team, we also decided that for research purposes the availability of a 
periodic boundary condition was more important than the availability of an inlet 
boundary condition. Hence, priority was given to the implementation of periodic 
boundary conditions. This goal was achieved. However, a version of the code 
implementing an inlet boundary condition also exists as a branch. This branch is 
close to being ready to release as a separate download but is not currently 
publicly available. 
 
Full 3D domain decomposition was implemented and the density contrast code 
has been merged into the 3D code, so most of the planned implementation work 
has been achieved. The 3D domain decomposition was achieved by exploiting 
the capabilities of the PETSc toolkit which made this much easier to do than 
would otherwise have been the case. The parallel efficiency on 64 nodes for a 5.6 
million (256x144x152) element problem is a disappointing 20% (see the graph 
in Figure 2) but the speed-up relative to the 2D code is greater than 2.  

 
Figure 2: Scaling as a result of full 3D decomposition. 

 
While a 20% speed up is obviously lower than what we envisaged, during the 
project we realised that implementation of the pressure solver in a previous 
project was faulty and led to an unrealistic expectation regarding the speed-up 
that the current reimplementation would achieve. Correcting the fault 
approximately doubled the execution time of the solver. 
 
Doubling the size of the domain improves the scaling behaviour as shown by the 
Figure 3. For this larger problem the parallel efficiency is 0.65 on 64 nodes. 
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Figure 3: Scaling of TPLS 3 for 11 Million Point Domain 

 
PETSc allows one to select which of the available Krylov solvers is used at run 
time and one can use this flexibility to tune performance. Unfortunately, the hope 
that a clever choice of solver will radically improve the performance of the code 
is unfounded as the matrix orientated approach adopted means that a new 
matrix has to be constructed for each solver at each time step and this 
construction process takes about as long as obtaining the approximate solution 
once the matrix is available. The performance figures quoted below were 
obtained using a GMRES solver and ILU preconditioner for the momentum 
equations and a MINRES solver with a SOR preconditioner (with omega = 1.5) 
for the momentum equations. 
 
The three momentum solvers have been implemented with PETSc, the interface 
detection solvers have not. Measurements to determine the speed-up achieved 
were carried out on 32 nodes using the density contrast code on an 11 million 
point grid. The PETSc (Krylov) momentum solvers ran at only 2/3 the speed of 
the SOR solvers. The PETSc pressure solver ran at the same speed as the 
corresponding SOR solver. These speed-ups fall short of the expected speed-ups 
but these were based on the speed-up produced by the introduction of a PETSc 
solver into the pressure calculation during a previous project. Unfortunately, as 
explained above, the previous implementation of the pressure solver was faulty 
and correcting the error led to a substantial decrease in speed. 
 
The speed-ups reported above were not simple to determine as the SOR solvers 
terminate after a fixed number of iterations whilst the termination conditions of 
the PETSc solvers depend on the behaviour of the preconditioned residual norm. 
When setting up the experiments code to compute true residual norms was 
activated and the convergence criteria of the PETSc solvers were adjusted to try 
to match the true residual norms of the PETSc solvers to those of the SOR 
solvers. 
 
Density contrast flows have been implemented and the implementation has been 
validated for the case of the Rayleigh-Taylor instability. Some experimental 
results have been obtained for an 11 million (512x144x152) grid point domain.  
Running on 32 nodes TPLS 3.0 was 18% faster than TPLS 0.0 when using the 
SOR solvers. The PETSc solvers were 39% slower. Also some scaling results have 
been obtained. The density ratio was 30 and gravity was zero. 
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Number of nodes 1 16 32 
Parallel efficiency (SOR) 1 1.1 0.5 
Parallel efficiency (Krylov) 1 2.0 1.0 

 
4. Conclusions 
 
As a result of this eCSE project, TPLS 3.0 solver outperforms its predecessor in 
terms of both speed-up and resolution. It remains one of the few ultra-high 
resolution DNS solvers for two-phase flows available globally. The new 3D 
decomposition and PETSc routine implementations make it highly parallelisable 
and at the same time customisable for bespoke supercomputing architectures. 
This, therefore, makes it popular (evidenced by the high number of downloads) 
amongst academics and industry. TPLS 3.0 has been successfully tested already 
in industrial, Irish, American and UK supercomputing systems.  
 
TPLS 3.0 is now available free to use under the BSD Licence and can be obtained 
from: http://sourceforge.net/projects/tpls/ 
 
Key features are: 

1. Highly parallelisable using an MPI architecture; 
2. Optimised on ARCHER (> 1536 Cores); 
3. Fortran coding with PETSc subroutines and parallel-NETCDF I/O. 
4. Density contrast flows (liquid/gas flows, density ratios > 1000/1) 
5. 3D Domain decomposition and PETSc momentum solvers for efficient 

parallelism 
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