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Abstract

Implicit solvent models provide a simple, yet accurate means to incorporate solvent effects
into electronic structure calculations. Such models avoid the computational expense of explicitly
modelling solvent molecules by representing the solvent implicitly, for example as a polarizable
dielectric medium. In this report, we describe the implementation and extension of an one such model,
the minimal parameter solvation model (MPSM), in two electronic structure packages: CASTEP and
ONETEP. In the MPSM, the electrostatic potential which describes the interaction of the implicit
solvent and solute is determined by direct solution of the nonhomogeneous Poisson equation (NPE),
with a dielectric permittivity derived directly from the quantum mechanical electron density.

The MPSM was previously implemented in ONETEP, a linear scaling density functional theory
(DFT) package. In this implementation, an efficient second-order multigrid solver, DL_MG, was
employed to solve the NPE with open (Dirichlet) boundary conditions (BCs). To allow the model to
describe the solvation of systems with natural periodicity, such as surfaces and polymers, the model
was extended to support periodic BCs. We describe the modifications to the model and software
necessary to support periodic BCs and present the results of test calculations which demonstrate the
validity of our implementation.

To improve the accuracy of the second-order solutions produced by DL_MG for use in the
MPSM, the high-order defect correction method is employed. During this project we ported the
original implementation of this method in ONETEP to DL_MG, allowing the solver to directly
produce higher-order-corrected solutions to the NPE. In this report, we describe the changes made
to DL_MG in order to incorporate and optimize the defect correction. We also present results which
demonstrate the improved performance of the defect correction in DL_MG—a 1.2–1.5× speed-up
was demonstrated over the original implementation in large-scale DFT calculations.

The full MPSM was implemented in CASTEP, a state-of-the-art plane-wave-pseudopotential
DFT code, using DL_MG to solve the NPE. This involved some modifications to the behaviour of the
model compared to the implementation in ONETEP, to account for the differences in the theoretical
methods employed by CASTEP. These modifications are outlined in the report, alongside a general
description of the major new functionality implemented in CASTEP. We also present test calculations
on several small molecules which validate the implementation in CASTEP, producing free energies
of solvation which differ from ONETEP by ∼ 0.1 kcal mol−1 or less.

While significant new capabilities were added to DL_MG, CASTEP and ONETEP during the
course of this project, some components of the original project goals were not completed. We
therefore end the report by defining the key tasks that remain to be completed and suggesting how
these can be attempted in the context of the foundations laid during this project.
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1 Project overview

1.1 Introduction

Modern electronic structure software packages enable the quantum behaviour of matter to be modelled
with great accuracy. By efficiently utilizing massively parallel computer hardware, packages such
as CASTEP1 and ONETEP2 have enabled complex and subtle quantum phenomena to be studied at
scales that would have been inconceivable only decades ago. This capability has opened the door to
electronic structure calculations for technologically interesting extended systems, such as biomolecules,
nanoparticles and materials. For these large-scale electronic structure simulations to reliably inform the
design and development of new technologies, the effect of the environment surrounding the quantum
system must be accounted for. In many cases, this is some kind of liquid solvent.

One approach to account for solvent effects in electronic structure simulations is simply to add a
number of solvent molecules to the quantum system. While conceptually simple, this “explicit solvent”
approach is challenging from both theoretical and computational perspectives. Theoretically, it requires
some method of dealing with very large numbers of degrees of freedom, while the vast increase in the
number of atoms that must be treated is computationally problematic. Implicit solvent models address
both of these issues by representing the solvent environment in an implicit manner, forgoing full atomic
detail in favour of simplified theoretical and computational methods.

A successful and long-standing family of implicit solvent models represent the solvent as a polarizable
dielectric continuum surrounding the solute, which exists within a cavity in the continuous medium. The
interaction of the solute with the solvent is represented by a reaction potential which is incorporated into
the quantum mechanical Hamiltonian. The mutual polarization of solvent and solute can then be captured
by self-consistently solving for the reaction potential and solute charge. The polarizable continuum model
(PCM)3 and conductor-like screening model (COSMO)4 are two well-known and widely adopted models
of this type. For a detailed review describing the continuum dielectric self-consistent reaction field
(SCRF) method and various formulations of this, see Ref. 5.

This project is focused upon a specific variant of the continuum dielectric SCRF method in which
the dielectric cavity is defined in terms of the quantum mechanical charge density of the solute and the
reaction potential is obtained by direct solution of the non-homogeneous Poisson equation (NPE):

∇ · (ε(r)∇φ(r)) = −4πn(r). (1)

Given a solute charge density, n(r), and non-uniform dielectric permittivity, ε(r), Eq. 1 can be solved to
obtain the total electrostatic potential,

φ(r) = φ0(r) + φr(r), (2)

which is the sum of the electrostatic potential, φ0(r), due to the solute charge (i.e. the total charge from
nuclei and electrons) and the reaction potential, φr(r), arising from the polarization of the surrounding
dielectric medium. The solvent model in question was developed by Dziedzic et al.6, 7 for use in large-
scale density functional theory (DFT) calculations, and is a refinement of earlier work by Fattebert and
Gygi8, 9 and Scherlis et al.10 To distinguish the revised model from the earlier Fattebert-Gygi-Scherlis
(FGS) model and other FGS-derived models, such as the self-consistent continuum solvation (SCCS)
model of Andreussi et al.,11 the model used in this work will be referred to as the minimal parameter
solvation model (MPSM). This name emphasizes one of the key advantages of the model—the use of a
very small number of empirical parameters compared to other widely used continuum solvent models.
The theoretical underpinnings of the FGS model and refinements offered by the MPSM are outlined in
section 2.1.

A means of efficiently solving Eq. 1 is critical for the application of the MPSM to extended systems of
technological interest. A key aspect of this in the context of large scale electronic structure calculations
is parallel scaling—in order for a solver to be suitable for use with highly parallelized packages such as
CASTEP and ONETEP, it must scale effectively to thousands of CPU cores. To satisfy this requirement,
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DL_MG, a parallel Poisson solver for electronic structure calculations was developed, with initial funding
under the HeCTOR dCSE programme.12 The solver uses a multigrid approach to solve Eq. 1 with a
second-order discretization of the operator, ∇ · ε∇. A later ARCHER eCSE project extended DL_MG,
adding the capability to solve the Poisson-Boltzmann equation,

∇ · (ε(r)∇φ(r)) = −4π
(
n(r) + nionsol[φ](r)

)
, (3)

which allows solvation in saline solutions to be modelled by the addition of a density of ions in solution,
nionsol[φ](r) which depends non-linearly on the potential, φ(r).13 The design and implementation of
DL_MG, as relevant to this work, is outlined in section 2.2.

A full implementation of the MPSM in ONETEP, using DL_MG to solve the Poisson equation, has
enabled ONETEP users to perform large scale DFT calculations in the presence of implicit solvent. A
few notable examples of recent work supported by the solvation model in ONETEP include:

• the development of a quantum mechanics-based Poisson-Boltzmann surface area (QM-PBSA)
method for computing free energies of binding for ligands and proteins using ONETEP;14

• the implementation of an energy decomposition analysis (EDA) scheme in ONETEP and its
application to the study of biomolecular interactions;15 and

• the development of a computational approach for predicting the effect of solvent on optical tran-
sitions (solvatochromism) using time-dependent DFT (TDDFT) and a hybrid explicit/implicit
solvent representation.16

A significant reason for the success of the MPSM in ONETEP is the use of the defect correction
method to iteratively correct the second-order solutions returned by DL_MG to higher orders. This
technique is essential for obtaining acceptable accuracy in solvation calculations—as demonstrated in
Ref. 7, defect correction can dramatically improve the accuracy of solutions to Eq. 1 with respect to the
original second-order solution. A key benefit of the defect correction method from a software engineering
perspective is its relative simplicity—it is a simple iterative scheme which requires no modification of
the multigrid solver (see section 2.3). This is how the defect correction was originally implemented for
the MPSM in ONETEP, with the defect correction procedure occurring outside of DL_MG, which acts
purely as a second-order solver.

The development of the MPSM in ONETEP was initially targeted at the study of isolated solutes and
the model was thus implemented using fully open (Dirichlet) boundary conditions (BCs). To mitigate
the potentially significant computational cost of evaluating the Dirichlet BCs on the cell boundaries, a
coarse-graining scheme was developed (see section 2.1), which reduces the prefactor of this operation
by 2-3 orders of magnitude.7 While open BCs are suitable for many types of solvated systems, there are
significant classes of materials where periodic BCs along one of more dimension are more appropriate.
Examples include polymers, nanotubes, solid-liquid interfaces and surface-supported nanoparticles,
relevant to the development of a range of technologies, including batteries, solar cells and catalysts.

This project was designed to capitalize on the success of the ONETEP/DL_MG implementation of
the MPSM by improving the existing implementation and extending its availability. In particular, the
project was conceived with the following broad goals:

Enable the CASTEP user community to perform simulations using the MPSM

Implementing the full MPSM in CASTEP would allow CASTEP simulations to incorporate solvent
effects in a simple and efficient manner, without the need to resort to explicit solvent representations.

Enable MPSM simulations to be performed with generalized periodic/open BCs

Support for generalized periodic/open BCs would allow the MPSM to be applied to a range of
materials which exhibit natural periodicity along one or more dimensions.
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Enable the defect correction method to be applied directly within DL_MG

The integration of the defect correction into DL_MG would make the library more versatile, allowing
it to provide high-order-corrected solutions to the Poisson equation directly to electronic structure
codes.

The remainder of this report describes work undertaken over the 12-month duration of this project
to realize the goals just outlined. The key technical objectives of the project, as originally proposed, are
described in section 1.2, while the theoretical underpinnings of this work are presented in section 2. A
section is dedicated to each of the major technical work packages (as outlined in section 1.2), describing
the work completed, any significant limitations, implementation highlights and results (sections 3 to 5).
Finally, concluding remarks and reflections on the project as a whole are offered in section 6.

1.2 Objectives

This project consists of three major work packages (WP1-WP3) relevant to the broad goals outlined in
section 1.1. A fourth work package (WP4) is concerned with publication, reporting and dissemination
of code, and includes the creation and distribution of this report. This report will primarily deal with the
work performed for WP1-WP3.

The major technical objectives for WP1, WP2 and WP3, as initially conceived, are as follows:

WP1: DL_MG defect correction

• Implement the defect correction method within DL_MG to enable higher-order solution of the
Poisson equation within the solver.

• Implement alternative iterate change criteria for the multigrid solver to improve convergence
control.

WP2: ONETEP solvent model extensions

• Add support for fully periodic and mixed periodic and open boundary conditions (BCs) to the
solvent model in ONETEP to complement the existing support for fully open BCs.

• Implement support for all BC types in both ONETEP and CASTEP to allow systems with and
without inherent periodicity to be studied in solution.

WP3: CASTEP solvation

• Port the complete implicit solvent model from ONETEP to CASTEP to enable CASTEP calcu-
lations to account for solvation effects.

• Ensure that the ported model is adapted to fit within the data representation and parallel strategy
employed by CASTEP.

An overarching goal of this project, relevant to WP1-WP3, is that the developments outlined above should
be completed while maintaining or improving upon the numerical accuracy and parallel performance of
existing implementation of the model. In the case of WP3, where the objective is to fully implement the
model in CASTEP, the goal is to obtain good numerical agreement with the existing model in ONETEP
and parallel performance comparable to standard CASTEP calculations in vacuum.

2 Theoretical background

2.1 Implicit solvent model

In the continuum dielectric SCRF methods, the interaction of the polarizable dielectric, which represents
the solvent, and solute occurs via a reaction potential, φr(r). The reaction potential forms part of the total
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electrostatic potential, φNPE(r) (Eq. 2), which may be obtained by solving the non-homogeneous Poisson
equation (NPE, Eq. 1) for a given charge density, n(r), and non-uniform dielectric permittivity, ε(r).

The dielectric medium is polarized by the total charge of the solute, so the NPE should be solved for
the combined charge of the nuclei and electrons,

ntot(r) = nelec(r) + nionic(r), (4)

to obtain the total electrostatic potential, φNPE(r), representing the potential due to the total charge of
the solute and the polarization of the dielectric continuum. The total electrostatic energy of the system
is then given by

Ees[ntot] =
1
2

∫
dr ntot(r)φNPE[ntot](r), (5)

where the factor of 1/2 ensures that interactions are not double-counted.
In an SCRF calculation, the reaction field and solute charge density are solved for self-consistently.

In the context of DFT and Hartree-Fock theory, this can be achieved by modifying the one-particle
Hamiltonian, replacing the usual vacuum electrostatic potential with the electrostatic potential in solvent.
Self-consistently solving the Kohn-Sham equations subject to this potential naturally incorporates the
electrostatic interactions of the solute with the dielectric continuum into the DFT calculation.

The defining feature of the Fattebert-Gygi electrostatic solvation model,8 upon which the MPSM is
built, is the use of a charge-density-dependent non-uniform dielectric function which smoothly varies
between ε(r) = 1 (inside the cavity) and ε(r) = ε∞ (in the bulk solvent). This function has the form

ε(r) = 1 +
ε∞ − 1

2

(
1 +

1 − (nelec(r)/n0)
2β

1 + (nelec(r)/n0)2β

)
, (6)

and is defined in terms of the electron density at r, nelec(r), the bulk permittivity of the solvent, ε∞, and
two parameters: β and n0. The two parameters modify the characteristics of solvent/cavity interface: n0

is the electron density in the centre of the interface region (i.e. where ε(r) = 1 + (ε∞ − 1)/2), while β
determines the width of the interface. These two parameters can be empirically determined based on
experimental data (see Refs. 6, 8, 10).

The electrostatic interaction of the solvent and solute plays an important role in the solvation process,
but is not the full story. To predict how favourable the solvation process for a given solute and solvent is,
we can calculate the free energy of solvation, ∆Gsol, which we define as the change in free energy upon
transferring the solute from vacuum to solution with a fixed nuclear configuration. This process involves
non-electrostatic effects, in particular due the work of creating a cavity in the solvent and dispersion-
repulsion interactions between the solvent and solute. In developing theoretical treatments of solvation,
it is conceptually useful to partition the free energy of solvation into electrostatic and non-electrostatic
components,

∆Gsol = ∆Ges + ∆Gnon-es, (7)

which can then be treated independently.
In the MPSM, the non-electrostatic component of the free energy of solvation is computed based on

the surface area of the cavity, S[nelec], and macroscopic surface tension of the solvent, γ, as described in
Ref. 10. The MPSM builds upon the model of Ref. 10 by introducing an effective surface tension, γeff,
scaled by a constant to account for solute-solvent dispersion repulsion (see Ref. 6):

∆Gnon-es = γeffS[nelec]. (8)

Since the solute-solvent interface in the MPSM is a smooth transition, the surface area of the cavity,
S[nelec], is defined as the volume of a thin film around n0, divided by the thickness of this film. The
surface area of the film can calculated straightforwardly by integration of an appropriate integrand over
the volume of the simulation cell—see section II.C of Ref. 10 for details.

The solution of the NPE (Eq. 1) requires the imposition of boundary conditions (BCs). The MPSM
was originally developed for modelling isolated solutes, so open BCs were adopted for the vacuum and
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solvent calculations required to calculate ∆Gsol. In practice, the BCs are calculated approximately using
a charge coarse-graining approach and assuming a homogeneous dielectric permittivity equal to the bulk
permittivity, ε∞, i.e.

φBC
es (r) ≈

1
ε∞

NCG∑

i

nCG
tot (Ri)

|r − Ri |
for r ∈ ∂Ω, (9)

where the BCs are evaluated on simulation cell faces, ∂Ω, as the potential due to a set of point charges,
nCG

tot (Ri), which provide a coarse-grained representation of the charge density in the cell (see Ref. 7 for
further details).

In vacuum DFT calculations it is typical to use point charges to represent nuclear/ionic core charges.
This representation is not well-suited for use in multigrid calculations (section 2.2), where the total
(electronic and nuclear) charge density is a continuous quantity represented on a real-space grid. The
MPSM follows Refs. 10, 17 and uses a distributed charge or “smeared ion” representation of ionic core
charges when calculating the electrostatic potential, i.e.

nsi(r) =

Nions∑

I

nI (r), (10)

where the smeared ionic charges are represented by Gaussians, normalized to the charge of the ionic
core, ZI , with an adjustable width parameter, σ:

nI (r) = −
ZI

(σπ1/2)3
exp

(
−
|r − RI |

2

σ2

)
. (11)

The total electrostatic potential (Eq. 2) can then be obtained by solving the NPE (Eq. 1) for the total
solute charge density (Eq. 4, with nionic(r) given by nsi(r)) and corresponding density-dependent dielectric
function (Eq. 6).

The use of smeared ionic core charges to construct ntot(r) for use in Eq. 1 modifies the form of
the ion-ion and ion-electron interactions compared to the representation used in pseudopotential-based
DFT calculations. To restore the usual representation of these interactions, it is necessary to introduce
correction terms. The total electrostatic energy (Eq. 5), corrected for smeared ion interactions is then,

Ees[ntot] =
1
2

∫
dr ntot(r)φNPE[ntot](r) +

(
Elocps[nelec] − Esi-elec[nelec]

)
+ (Eion-ion − Esi-si) , (12)

where the usual local pseudopotential, Elocps[nelec], and ion-ion, Eion-ion, energies have been added and
the corresponding smeared ion-electron, Esi-elec[nelec], and smeared ion-smeared ion energies have been
subtracted. When applying the electrostatic potential in an SCF procedure, the smeared ion-electron
interaction may be replaced by the local pseudopotential-electron interaction in the same way, so that

φcorr
es (r) = φNPE[ntot](r) +

(
Vlocps(r) − Vsi(r)

)
. (13)

See the appendices of Refs. 7,10 for further details on the smeared ion representation and the correction
terms introduced.

In practical calculations, the MPSM can be applied with fixed or self-consistently optimized cavity.
In a fixed-cavity calculation, the dielectric function (Eq. 6) is constructed using the ground state density
of the solute in vacuum and kept fixed over the course of the calculation in solvent. In a self-consistent
cavity calculation the dielectric function is updated during the SCRF process in response to changes in
the electron density. This introduces additional potential terms to the one-electron Hamiltonian, which
are not present in the fixed-cavity variant. These terms originate in the dependence of the dielectric
function ε[nelec](r) and cavity surface area S[nelec] on the electron density and appear in the functional
derivatives of Ees and ∆Gnon-es with respect to nelec (see Refs. 6, 8, 10).

The use of a self-consistent cavity introduces numerical noise to the evaluation of the functional
derivative δEes/δnelec, necessitating the use of finer grids and higher-order finite differences and thus
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increasing computational cost. It has been demonstrated that the error introduced by using a fixed cavity,
rather than a self-consistently optimized cavity, is modest6 and this has therefore become the preferred
mode of operation for the MPSM in ONETEP. In this report, only the fixed-cavity variant of the MPSM
is considered.

2.2 Multigrid solver

The multigrid method18 is a technique for solving a broad range of linear and non-linear problems in
which a hierarchy of progressively coarsened grids is employed to improve rates of convergence over
single-grid approaches. By transforming a problem to coarser grids, a multigrid solver can rapidly
remove low frequency modes in the error which would otherwise cause single-grid solvers to converge
very slowly to a solution. Multigrid solvers have been successfully applied in many fields of study.
For example, in the field of electronic structure theory, the multigrid approach has been employed to
efficiently solve the Kohn-Sham equations in real-space implementations of DFT—see Refs. 19, 20.

The multigrid approach is based on two key observations:21 (i) iterative methods (such as the Jacobi
or Gauss-Seidel methods) can rapidly attenuate high frequency components of the error but are slow to
remove low frequency components; and, (ii) smooth errors on a fine grid can be well approximated on a
coarser grid. These observations may be applied to accelerate convergence via three basic operations:

Smoothing

Apply an iterative method to remove higher frequency components of the error on a given grid.

Restriction

Transfer the defect computed on a finer grid to a coarser grid.

Prolongation

Transfer the error computed on a coarser grid to a finer grid.

Using these operations, lower frequency components of the error can be removed by applying smooth-
ing operations on coarser grids, where these lower frequency components appear as higher frequency
components.

For the general linear equation
Âu = f , (14)

a simplified two-grid procedure with a fine grid spacing of h and coarse grid spacing of 2h has the form:

1. Apply an iterative method to solve Âhuh = fh with the current guess um
h

to obtain a new guess,
um
h , with smoothed error.

2. Compute the defect for the smoothed solution on the fine grid, rmh = fh − Âhum
h .

3. Transfer the defect to the coarse grid using the restriction operator, i.e. Î2h
h

rmh = rm2h.

4. Apply an iterative method to solve the defect equation on the coarse grid, Â2he2h = r2h , yielding
the error, em2h .

5. Transfer the error from the coarse grid to the fine grid using the prolongation operator, i.e.
Îh2hem2h = em

h
.

6. Update the current guess on the fine grid using the error, um+1
h
= um

h + em
h

.

7. Smooth the error in the updated solution using an iterative method.

This procedure may be repeated iteratively until a convergence criterion is satisfied. In practice, multiple
levels of progressively coarser grids can be employed, with recursive application of the two grid procedure
outlined above. See Ref. 21 for a detailed exposition of the multigrid approach.
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To solve the NPE for use in the MPSM both CASTEP1 and ONETEP2 employ DL_MG, a multigrid
solver library developed in previous HeCTOR dCSE and ARCHER eCSE projects.12, 13 The multigrid
scheme implemented in DL_MG was based on standard recommendations — technical details are
available in the original technical report12 and in documentation accompanying the software.22 For the
purposes of this project, it is sufficient to note the following key aspects of the solver:

• Uses a second-order discretization of the differential operator ∇·ε∇with a 7-point finite difference
stencil.

• Capable of solving the NPE (Eq. 1) and Poisson-Boltzmann equation (Eq. 3) to second order in
fully periodic, fully open and mixed open/periodic BCs.

• Utilizes MPI parallelism based on a 3-dimensional cuboidal distribution of data among MPI ranks.

• Utilizes OpenMP parallelism to distribute work among threads for each MPI rank.

• Combined MPI and OpenMP parallelism scales effectively to thousands of cores.

During this project, further capabilities were added to the solver library, most notably the incorporation
of the defect correction scheme.

2.3 Defect correction

The approximate solution of the NPE (Eq. 1), is associated with an error,

e = φ − φ′, (15)

where φ is the exact solution of the NPE and φ′ is the approximate solution. The defect (or residual),

r = f − Âφ′ (16)

is related to the error by

Â (φ − φ′) = f − Âφ′

Âe = r,
(17)

where we have used simplified notation for the terms in the NPE: Â ≡ ∇ · ε[n](r)∇ and f ≡ −4πn(r).
This relationship can be used to iteratively correct an approximate solution obtained with a lower-order
discretization of Â towards a higher-order solution—this is the “high-order defect correction” method
(or simply “defect correction”). The key steps in the defect correction method are outlined below. For
additional details, see Refs. 7 (appendix A), 21 (ch. 5) and 23.

In the implementation of the MPSM in CASTEP and ONETEP, the high-order defect correction
method is used to correct the second-order solution to the NPE produced by DL_MG to higher orders.
In this case, the defect correction procedure starts with the solution of the second order NPE,

Â2φ
(0)
= f , (18)

by DL_MG, where Â2 is the second-order discretization of the operator Â on the fine grid used by the
multigrid solver.∗ An approximation to the high-order defect is then computed using a higher-order
discretization of Â, i.e.

r
(i)

d
= f − Âdφ

(i) (19)

∗Note that the meaning of the subscripts for Â, r and e used here differ from those used in section 2.2. In section 2.2, the
subscripts of these quantities refer to the spacing of the grid on which the quantity is represented, while in this section, the
subscripts refer to the order of discretization used in finite differences.
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where d > 2. This high-order defect can then be used to solve Eq. 17 for a second-order approximation
to the error, e

(i)

2,d , again using DL_MG:

Â2e
(i)

2,d = r
(i)

d
. (20)

Finally, using Eq. 15, the approximate error is used to correct the potential:

φ(i+1)
= φ(i) + e

(i)

2,d . (21)

The updated φ(i+1) then becomes the starting point for the next iteration of the defect correction loop,
being used to construct the residual r

(i+1)
d

using Eq. 19. This process can be repeated until a convergence
criterion is met (e.g. when

��φ(i) − φ(i+1)
�� is reduced to below some threshold), allowing control of the

accuracy of the potential.
In the original implementation of the MPSM in ONETEP,6, 7 the defect correction loop was imple-

mented in ONETEP, calling routines from DL_MG to provide the initial second-order solution (Eq. 18)
and then to solve the defect equation (Eq. 20) in each iteration of the defect correction. As part of this
project, the defect correction was implemented within DL_MG, enabling defect-corrected solutions to
the NPE to be obtained with a single call to the library—see section 3 for details. Incorporating the
defect correction into DL_MG simplified the subsequent implementation of the MPSM within CASTEP
(section 5), avoiding the need to reimplement the defect correction.

2.4 CASTEP

CASTEP1 is an electronic structure software package based on the plane-wave pseudopotential formu-
lation of DFT. The code is highly parallelized, combining distributed and shared memory parallelism
(MPI and OpenMP) to scale effectively to thousands of cores. It is also under active development, with
a growing list of capabilities which supplement or extend the core plane-wave DFT functionality—a list
of features, with relevant publications and documentation, is available on the CASTEP website.24 The
academic distribution of the software is free to UK academics and it is available to industrial users as
part of BIOVIA’s Materials Studio package.25

The plane-wave pseudopotential DFT approach has been comprehensively covered in numerous
books and reviews and will not be described in detail here. In the following we provide only a brief
account of the key features of the method, as relevant to the implementation of the MPSM—curious
readers are referred to Refs. 26–28.

To solve the NPE (Eq. 1) for the electrostatic potential, in vacuum or solution, the charge of the
system (Eq. 4) is required. The electron density in CASTEP is given by

nelec(r) =
∑

m,k

fmk |ψm,k(r)|
2, (22)

with occupancies fmk and where the summation is over eigenfunctions of the one-electron Hamiltonian,
m, for each wavevector, k. The one-electron eigenfunctions are represented as expansions in a periodic
plane-wave basis set,

ψm,k(r) =
∑

G

cGmk exp (i(G + k) · r) , (23)

with expansion coefficients, cGmk. The quality of the plane-wave basis set is determined by a single
parameter, the cutoff energy, Ec, which determines the highest energy plane-wave available in the basis.

The nuclei and core electronic states are represented by pseudopotentials, with which the one-electron
wavefunctions (Eq. 22) interact. The ionic charge, nionic(r), is thus represented as a set of point charges
centred on the nuclei, each with the combined charge of the nucleus. As mentioned in section 2.1, this
representation of the ionic charge is problematic for multigrid operations, and the MPSM introduces a
smeared ion representation (Eq. 10).

The ground state energy of a system is determining by self-consistently optimizing the plane-wave
expansion coefficients, cGmk, for the electronic states, to produce the electron density, nelec(r), which
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minimizes the total energy functional, Etot[nelec]. Of particular relevance to the MPSM is the electrostatic
energy component of the total energy, Ees[ntot] (Eq. 12), through which the electrostatic potential obtained
by solving the NPE enters into the total energy expression.

CASTEP offers several methods for self-consistently obtaining the ground state energy and density of
a system (see the CASTEP documentation for details24), but for the purposes of this report it is sufficient
to note that two slightly different total energy expressions are used depending on the method. In one
expression, each term contributing to the total energy is computed separately and summed:

Etot[nelec] = Ekin[{ψm,k}] + Enl[{ψm,k}] + Exc[nelec]

+

{
EHart[nelec] + Elocps[nelec] + Eion−ion

}
,

(24)

where the individual contributions are the kinetic, Ekin, non-local pseudopotential, Enl, exchange-
correlation, Exc, Hartree, EHart, local pseudopotential, Elocps, and ion-ion interaction, Eion−ion, energies.
While the total energy is a functional of the electron density, the kinetic energy and non-local pseudopo-
tential terms depend on the electron density via the one-electron wavefunctions (Eq. 23) and the ion-ion
interaction depends only on the ionic centres and charges. In the other expression,

Etot[nelec] = EBS[{ψm,k}] + Ecorr
xc [nelec] − EHart[nelec] + Eion−ion, (25)

the total energy is computed by correcting the band structure energy, EBS{ψm,k}], which is a sum over
eigenvalues of the one-electron Hamiltonian and includes contributions from the Hartree potential and
local pseudopotential. Of particular relevance to this work is the double-counting of the Hartree energy
in EBS, which must be corrected in the total energy expression by subtracting EHart.

The modified electrostatic energy used in the MPSM (Eq. 12) can be considered to replace the
three electrostatic terms in Eq. 24 (these are grouped in curly braces). In Eq. 25, the situation is more
complicated, since some electrostatic terms are included in the band-structure energy and some must be
corrected for double counting—see section 5.3.

2.5 ONETEP

ONETEP2 is a linear-scaling density-matrix DFT package, focused on the application of high-accuracy
DFT to extended systems containing thousands of atoms. Such large systems present difficulties for
conventional DFT approaches (as used in CASTEP), where the computational cost asymptotically scales
as O(N3), with N a measure of the size of the system. In linear-scaling DFT methods, O(N) scaling
is achieved by exploiting the locality of electronic interactions, making such large scale calculations
practical.

ONETEP combines distributed and shared memory parallelism (MPI and OpenMP)29, 30 with efficient
sparse-matrix algebra routines31 to scale across thousands of cores. Using ONETEP, linear-scaling DFT
calculations on systems with tens of thousands of atoms are practical using tier-1 computing resources,
such as ARCHER. As with CASTEP, ONETEP is under active development with an extensive and
growing list of features—see the ONETEP website for an up-to-date summary of recent methodological
developments.32 The software is available to academic users via an inexpensive license or collaboration
agreement and can be purchased, alongside CASTEP, as part of BIOVIA’s Materials Studio package.25

Since the linear-scaling DFT formalism used in ONETEP has been previously described in a number
of publications,2, 29, 33 we will outline only the aspects of the formalism which are directly relevant to the
MPSM and its implementation in ONETEP.

The central quantity in the linear-scaling DFT formalism used in ONETEP is the density matrix,

ρ(r, r′) =
∑

αβ

ϕα(r)K
αβϕ∗β(r

′), (26)

which is constructed as a product of strictly localized non-orthogonal orbitals, {ϕα} and a density kernel,
K. The locality of electronic interactions is exploited by truncation of the density kernel, such that it is
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zero when the distance between localized orbitals, Rαβ, exceeds a cutoff value, rcut, i.e.

Rαβ > rcut =⇒ Kαβ
= 0. (27)

The strictly localized orbitals used in ONETEP are called “non-orthogonal generalized Wannier
functions” (NGWFs) and are constructed from an underlying basis of psinc (periodic cardinal sine)
functions centred on a regular real-space grid.34–36 A key feature of the psinc basis is that it is expressible
in terms of a finite sum over plane waves—this allows ONETEP to make use of the mathematical
machinery of plane-wave pseudopotential DFT.

The electron density, part of the total charge required to solve the NPE (Eq. 1) in the MPSM, is
obtained from the density matrix by setting r = r′:

nelec(r) =
∑

αβ

ϕα(r)K
αβϕ∗β(r). (28)

The use of strictly localized orbitals in ONETEP ensures that the electronic charge cannot exist outside
localization regions of the NGWFs—this contrasts with the situation in CASTEP, where electronic charge
is not constrained and may exist in any region of the cell.

As in CASTEP (section 2.4), ONETEP uses pseudopotentials to represent nuclei and core electronic
states and thus the ionic charge, nionic(r), corresponds to a set of nucleus-centred point charges. To
overcome the difficulties associated with this representation of the ionic charge when solving the NPE
using DL_MG, the implementation of the MPSM in ONETEP uses the smeared ion representation
described in section 2.1.

In density-matrix DFT, the ground state energy and electronic density for a given system can be
obtained by minimizing the total energy with respect to the density matrix. In ONETEP, this is achieved
by two nested self-consistent energy minimizations, i.e.

Emin = min
{ϕα }

(
min

K
E[K, {ϕα}]

)
. (29)

In the inner self-consistent cycle, the total energy is minimized with respect to the elements of the
density kernel, K, with fixed NGWFs, while in the outer self-consistent cycle, the NGWFs themselves
are optimized (see Ref. 34 for further details).

The total energy expression used in ONETEP is similar to Eq. 24, but differs in that the total energy
is formally a function of the density matrix, ρ(r, r′) and the terms depending on CASTEP’s one-particle
wavefunctions, ψm,k now depend on the density kernel and NGWFs, i.e.

Etot[ρ] = Ekin[K, {ϕα}] + Enl[K, {ϕα}] + Exc[nelec] +
{
EHart[nelec] + Elocps[nelec] + Eion−ion

}
. (30)

The terms grouped in the curly braces represent the electrostatic contributions that are replaced by
Ees[ntot] (Eq. 12) in the MPSM.

3 WP1: DL_MG defect correction

3.1 Key outcomes

• The defect correction code from ONETEP was successfully ported to DL_MG.

• The defect correction code in DL_MG was modified to support generalized periodic and mixed
BCs and a general 3-D parallel decomposition of data.

• The halo communication and high-order finite difference components of the defect correction code
in DL_MG were optimized, yielding a 1.2–1.5× speed-up for the combined defect correction and
multigrid solver component of large scale ONETEP calculations.
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• The convergence criteria for the second-order solver and defect correction components of DL_MG
were consolidated in a single module providing default values and a routine for setting alternative
values.

• New convergence criteria for the defect correction based on the norms of the potential and defect
were established.

3.2 Limitations

• Alternative iterate change criteria for the multigrid solver were not implemented.

– No significant issues with convergence of the multigrid solution were encountered during
this project, so it was determined that new criteria were not currently required.

3.3 Implementation details

In the original implementation of the MPSM in ONETEP, the defect correction procedure made
use of routines across several Fortran modules. This was ported to DL_MG as two major new
modules: (i) dl_mg_defco, containing the routine for performing the main defect correction loop,
dl_mg_defco_defect_corr_solver; and (ii) dl_mg_defco_fd, containing routines for performing high-
order finite difference operations. The original code in ONETEP made use of many routines which
provide supporting functionality, such as performing real-space integration on a grid. Where this func-
tionality was not available in DL_MG, replacement routines were implemented—these were placed in a
further new module, dl_mg_defco_utils.

The defect correction and high-order finite differences code ported from ONETEP was initially
restricted to open BCs and a 1-D parallel decomposition of the grid (i.e. with real-space grid data
divided along one direction and each MPI rank holding a “slab”, as described in Ref. 29). The ported
code was modified to support the full range of BCs and the more general 3-D parallel decomposition
of the grid used by the second-order solver component of DL_MG. This involved the creation of a new
derived type, fd_t, in analogy to the existing mg_t type, to hold data required to perform high-order finite
differences with a 3-D parallel data decomposition. An instance of this type is held on each MPI rank and
is initialized with data describing the halo exchanges necessary to perform finite difference operations
over the entire grid.

In addition to the modifications described above, the ported code was also optimized. To improve
cache utilization, the loops computing the higher order derivative over the grid were restructured. The
halo exchange subroutine needed for calculation of the derivative was also rewritten in order to take
advantage of the information provided in newly created fd_t data structure and to reduce the latency in
the case of halos distributed over several MPI ranks by using non-blocking MPI communications.

The high-order defect correction procedure (section 2.3) is an iterative procedure—to determine
when this procedure is complete, some convergence criterion is required. The original implementation
in ONETEP used the norm of the error, |φ(i) − φ(i+1) |, to determine when convergence was achieved. In
the implementation within DL_MG a new criterion based on the norm of the defect, |r(i+1)

d
|, was added.

Support for absolute and relative convergence criteria was also implemented. The high-order defect
correction is now stopped when the following conditions are met:

|φ(i) − φ(i+1) | < max(τabs
φ , τrel

φ |φ(i) |) (31)

|r
(i+1)
d

| < max(τabs
rd
, τrel

rd
|r
(0)
d

|) (32)

where the most-recently updated potential and defect are φ(i+1) and r
(i+1)
d

, the initial (uncorrected) defect

is r
(0)
d

, and where the absolute, τabs, and relative, τrel, convergence thresholds are user configurable
parameters.

In addition to the work described above, a number of other changes were made to DL_MG during
the course of this work package, notably:
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(a) ONETEP defect correction (b) DL_MG defect correction

Figure 1: Execution time for single point energy calculations of T4 lysozyme bound to
catechol with increasing numbers of MPI processes (in vacuum with open BCs). The total
time (blue, circles), time taken by the multigrid solver and defect correction procedure (red,
triangles) and time taken to evaluate Dirichlet BCs (green, squares) are shown for the defect
correction implemented within (a) ONETEP and (b) DL_MG. Further calculation details
are provided in section 3.4.

Simplification of the interface to the library

The need to call a separate initialization routine for nonlinear variants of the Poisson equation was
eliminated and an overloaded interface to dl_mg_solver was created for all variants of the Poisson
equation.

Improvements to convergence parameter control

The convergence criteria governing the behaviour of the multigrid solver and defect correction were
collected in the new dl_mg_convergence_params module and a routine was created for setting the
parameters using values provided as arguments to dl_mg_solver or preset defaults.

3.4 Results

To investigate the performance and parallel scaling of the defect correction implemented in DL_MG,
single-point energy calculations were performed on the T4 lysozyme protein bound to catechol (2615
atoms)† using ONETEP / DL_MG. The calculations were performed in vacuum and solvent, using the
calculation settings described in appendix A, with a 129.5 a0 ×129.5 a0 ×129.5 a0 grid and 0.5 a0 coarse
grid point spacing, yielding a kinetic energy cutoff of 826.827 eV. The fine grid used in ONETEP was
518 × 518 × 518 points, truncated to 513 × 513 × 513 for multigrid operations. The vacuum and solvent
calculations were performed independently (i.e. not part of an autosolvation calculation), with solvent
calculations initialized with the converged density kernel and NGWFs from the vacuum calculations. In
both cases, DL_MG was used to compute the electrostatic potential, using the smeared ion representation
(Eqs. 10 to 13) and coarse graining of the boundary conditions (Eq. 9).

The relative performance of the previous implementation of the defect correction in ONETEP and
the new implementation in DL_MG was compared for calculations performed on ARCHER with varying
numbers of MPI processes, as shown in Figs. 1 and 2. The timing data presented in these figures is for
development versions of ONETEP and DL_MG, compiled using the settings described in appendix B.
All jobs used 6 MPI processes per node, 3 MPI processes per NUMA region and 4 OpenMP threads per
MPI process.

†The structure of the T4 lysozyme/catechol complex was provided by J. Dziedzic, and is the same structure used in solvation
calculations presented in Ref. 6.
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(a) Relative change in cost (b) Speed-up

Figure 2: Comparisons of the computational performance of the defect correction imple-
mented in ONETEP and DL_MG in vacuum (green) and solvent (blue) measured in single
point energy calculations of T4 lysozyme bound to catechol. Plot (a) shows the relative
change in total time spent in the defect correction and solver routines where the defect
correction was performed in DL_MG (tDL_MG) compared to the previous implementation
in ONETEP (tONETEP). Plot (b) shows the speed-up relative to a calculation performed
with 24 MPI ranks for the portion of the calculation spent in the defect correction and
solver routines when the defect correction was performed in ONETEP (dashed, circles) and
DL_MG (solid, triangles). The ideal speed-up for increasing numbers of MPI processes is
shown as a grey dashed line. Further calculation details are provided in section 3.4

The execution times plotted in Fig. 1 for the vacuum calculations show that for more than 120 MPI
ranks (120 MPI × 4 OpenMP = 480 total cores), the execution time plateaus. This plateau is observed
in the total execution time as well as the time spent in the defect correction and solver routines. The
reduction in speed-up for larger core counts is a consequence of the 1-D parallel data decomposition
used in ONETEP—as the number of MPI ranks increases the width of the 1-D slabs decreases. For
120 MPI ranks, the fine grid slabs along the z-direction are already on average four grid points wide,
and this decreases to one grid point at 360 MPI ranks. Such narrow slabs are particularly problematic
for the high-order finite differences used in the defect correction, leading to the need to exchange halos
which extend over more than one MPI rank. The scaling up to 120 MPI ranks is respectable, with an
overall (for the entire ONETEP calculation) ∼ 3× speed-up relative to 24 MPI ranks achieved for both
implementations of the defect correction (compared to an ideal 5× speed-up).

It is clear that the 2615 atom T4 lysozyme complex used in these benchmarks is too small to take
full advantage of the larger numbers of MPI ranks considered in Fig. 1. It should be noted, however, that
ONETEP is capable of performing calculations on systems of tens of thousands of atoms and that the
scaling to higher core counts would likely be more favourable in larger systems (see the results reported
in Ref. 30, for example).

While Fig. 1 shows that the execution time spent within solver and defect correction routines plateaus
for more than 120 MPI ranks regardless of which implementation of the defect correction is used,
Fig. 2(a) demonstrates that the implementation in DL_MG offers a substantial performance improvement
over the previous implementation at all core counts. For 24 MPI processes, the new implementation of
the defect correction (within DL_MG) takes ∼ 15% (vacuum and solvent) less time than the previous
implementation, and this saving increases to ∼ 30% (vacuum) and ∼ 25% (solvent) with 120 MPI
ranks. This improvement is also observed in the parallel speed-up shown in Fig. 2(b). With 120 MPI
ranks, where the parallel performance starts to plateau, the speed-up for DL_MG’s defect correction (and
solver routines) is 2.3× (vacuum) and 2.4× (solvent), compared to the defect correction implemented in
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ONETEP which achieves 1.9× (vacuum) and 2.1× (solvent). Interestingly, despite the plateau observed
in overall execution time for calculations using more than 120 MPI ranks for this test case, the defect
correction in DL_MG continues to yield increasing cost savings over the defect correction in ONETEP
as the number of MPI ranks is increased. This is likely to be a consequence of the introduction of
non-blocking MPI communications for halo exchange in the DL_MG implementation.

4 WP2: ONETEP solvent model extensions

4.1 Key outcomes

• A framework for flexibly performing calculations with open, periodic and mixed BCs was imple-
mented in ONETEP.

• The capability to compute the electrostatic potential in open, periodic and mixed BCs using the
multigrid solver was added to ONETEP.

• The fully periodic Hartree energy computed using DL_MG rapidly converges towards the Hartree
energy obtained by solving the homogeneous Poisson equation in reciprocal space as the order of
finite differences is increased—for a 448 atom graphene sheet, the difference is ∼ 10−2 kcal mol−1

with 12th-order finite differences.

• Smeared ion corrections to the electrostatic energy (Eq. 12) and potential (Eq. 13) in fully periodic
BCs were implemented.

• Fully periodic BC calculations in vacuum and implicit solvent are now possible using ONETEP.

• The consistency of treatment of periodic BCs was demonstrated in calculations with (i) small
molecules located in different positions in the simulation cell and (ii) graphene sheets with different
unit cell sizes.

4.2 Limitations

• Support for mixed BC calculations was not implemented as mixed BC versions of the local
pseudopotential, ion-ion and smeared ion correction terms were required.

– None of these terms were implemented in CASTEP, while ONETEP lacked mixed BC
smeared ion correction terms.

– Derivation and implementation of these additional terms was not feasible within the timescale
of the eCSE project.

• Support for fully periodic BCs for MPSM calculations was only implemented in ONETEP.

– Implementation of the additional terms required for fully periodic BCs in CASTEP was not
feasible within the timescale of the eCSE project.

4.3 Implementation details

In order to perform fully periodic BC calculations using the MPSM, each term in the electrostatic energy
and potential expressions (Eqs. 12 and 13) must be evaluated with consistent, periodic, BCs. At the
start of this project, the second-order multigrid solver component of DL_MG was already capable of
evaluating the electrostatic potential in fully periodic and mixed open/periodic BCs. The changes made
to DL_MG in WP1 (section 3) also allowed the application of the high-order defect correction under
these BCs. Since the fully periodic BC variants of the local pseudopotential and ion-ion terms were
also already available in ONETEP, only the smeared ion correction terms in Eqs. 12 and 13 required
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implementation. The remaining electrostatic potential, local pseudopotential and ion-ion terms simply
needed to be substituted with their periodic BC variants.

The fully open BC expressions for the smeared-ion-corrected electrostatic energy and potential are
presented in appendix A of Ref. 7. In that case, the correction to the local pseudopotential, Vsi(r),
is expressed as a sum over the individual potentials due to each smeared Gaussian charge distribution
representing an ionic core, i.e.

Vsi(r) =

Nions∑

I

VI (r) (33)

where VI (r) is the analytic form for the potential of the smeared Gaussian of ionic core I (see Ref. 7,
Eq. A2). To obtain the correction in periodic BCs, a different approach was used, leveraging the
availability of full simulation cell FFTs in ONETEP to solve the homogeneous Poisson equation in
reciprocal space for the total charge due to the smeared ionic charges. In reciprocal space, the fully
periodic potential has the form

Ṽsi(G) = 4π
ñsi(G)

|G|2
(34)

where ñsi(G) is the Fourier transform of the smeared ion charge density, nsi(r) (Eq. 10). Fourier
transforming Eq. 34 yields a periodic real-space potential for the total smeared ionic charge, Vsi(r), which
can be used in the periodic variant of Eq. 13.

Having obtained a periodic potential due to the smeared ions, it is simple to evaluate the smeared
ion-smeared ion interaction energy energy by integration over the simulation cell in real-space:

Esi-si =
1
2

∫
dr nsi(r)Vsi(r). (35)

A similar integral can be used to obtain the smeared ion-electron interaction energy, Esi-elec (Eq. 13),
though in practice the energy of the interaction of the electron density with the smeared-ion-corrected
local pseudopotential is calculated, i.e.

Ecorr
locps[nelec] = Elocps[nelec] − Esi-elec[nelec] =

∫
dr nelec(r)V

corr
locps(r) (36)

where Vcorr
locps(r) = Vlocps(r) − Vsi(r).

As described in appendix A of Ref. 7, the open BC smeared ion-smeared ion interaction energy in
ONETEP is evaluated as separate self-interaction and non-self-interaction contributions:

Esi-si = Eself
si-si + Enon-self

si-si . (37)

In open BCs, the contributions are separated simply by splitting the summation of contributions from the
interaction of pairs of smeared ionic cores into diagonal and non-diagonal contributions. The use of a
single periodic potential (Eq. 34) to evaluate the smeared ion-smeared ion interaction (Eq. 35) precludes
such a simple separation of self and non-self terms in the periodic BC implementation of the MPSM. To
maintain the separation of the self and non-self terms in periodic BCs, the non-self-interaction energy is
calculated by subtracting the self-interaction energy, which has the same form in open and periodic BCs
(the first term in Eq. A11 of Ref. 7), from the total smeared ion-smeared ion interaction energy (Eq. 35),
i.e.

Enon-self
si-si = Esi-si − Eself

si-si. (38)

Most of the modifications necessary to implement the periodic BC MPSM in ONETEP were
made to the is_smeared_ions module. The routine which generates the smeared ion charge density,
smeared_ion_generate_density, was modified to support periodic BCs, using a minimum-image con-
vention to “wrap around” smeared Gaussian charges at cell boundaries. New routines were created for
evaluating the smeared ion non-self-interaction energy term (Eq. 38) and potential due to the smeared
ion charge density (Eq. 34) in fully periodic BCs. Additionally, the routine for evaluating the correction
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to the local pseudopotential (Eq. 36), smeared_ion_apply_vloc_corr, was modified to use the periodic
smeared ion potential when required.

It was also necessary to modify the code associated with determining the dimensions for grids used in
ONETEP and DL_MG. In the original fully open BC version of the code, the dimensions of the grid used
by DL_MG were determined by rounding down the dimensions of ONETEP’s fine grid to the nearest
multiple of an even number, m, and adding one (m = 2n with n = 3 by default in ONETEP). This ensured
that DL_MG’s grid size constraints were satisfied (open BCs require an odd number of grid points) and
ensured the solver employed a sufficient number of multigrid levels (see DL_MG’s documentation for
details22). In this case, only the charge density in the truncated fine grid is used by DL_MG to compute
the electrostatic potential—this is not an issue in open BCs with strictly localized orbitals, since the
simulation cell can be set up to ensure no charge exists outside of the truncated region.

For periodic BCs, the grid used by DL_MG must have the same dimensions as the fine grid used
elsewhere in ONETEP in order that the electrostatic potential output by DL_MG has the correct pe-
riodicity. Consequently, ONETEP’s fine grid cannot be truncated as in the case of open BCs. To
overcome this issue, the routine used to determine the size of the fine grid used throughout ONETEP,
cell_grid_distribute, was modified to ensure that the number of grid points along each direction of the
fine grid was rounded up to an even multiple of m when periodic BCs are requested (DL_MG requires
an even number of grid points along periodic directions). An unfortunate consequence of increasing the
size of the fine grid in this way is that additional work must be done by ONETEP to interpolate and
filter between the fine grid and a slightly smaller “double grid”, which is used by ONETEP for some
operations (such as evaluation of the electronic charge density from the NGWFs and density kernel).
This is normally avoided by making the fine grid and double grid identical in size, but when the fine grid
is modified to satisfy DL_MG’s grid constraints, this is no longer possible.

In the original implementation of the MPSM in ONETEP, fully open BCs would be automatically
used in all implicit solvent calculations. These could also be manually activated in non-implicit-solvent
calculations for the ion-ion, Hartree and local pseudopotential terms by assigning Boolean values to the
keywords openbc_ion_ion, openbc_hartree and openbc_pspot in the input file. In order to allow users
to flexibly control the BCs used in MPSM (and in vacuum calculations), a new set of input keywords
were added to ONETEP: multigrid_bc, ion_ion_bc, pspot_bc and smeared_ion_bc. These allow the
user to specify the BCs used by the multigrid solver, and in computing the ion-ion interaction, local
pseudopotential and smeared ion interaction terms along each simulation cell dimension as a three-
character string. For each direction, “P” denotes periodic, “O” denotes open and “Z” denotes zero BCs.‡

These new keywords were implemented in a manner which preserved the previous behaviour of ONETEP
in cases where the BCs are not explicitly defined. In practice, since mixed periodic/open BCs were not
implemented in ONETEP during this project, only the BCs corresponding to the specifications “OOO”,
“ZZZ” and “PPP” are currently supported.

The code for evaluating the non-electrostatic contribution to the total energy (Eq. 8) also required
modification since the calculation of the surface area of the cavity requires the gradient of the electronic
density (see Eq. 11 of Ref. 10). In the original implementation of the MPSM, this gradient was evaluated
using ONETEP’s finite_differences module, which only supports fully open BCs, leading to the use of
different finite difference stencils at cell boundaries. In open BCs, this is not an issue, since the solute
should be located far from the cell boundaries. To compute the gradient in periodic BCs, where the solute
may be close to the cell boundaries, an alternative approach was adopted, using ONETEP’s existing FFT
capabilities to apply the gradient operator to the electronic density in reciprocal space. Since there was
no existing routine for applying the gradient operator in reciprocal space to a function on the simulation
cell grid, this was implemented as a general-purpose subroutine in the services module.
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Table 1: Free energies of solvation in kcal mol−1 for toluene (C6H5CH3), deprotonated
benzoic acid (C6H5COO– ) and protonated aniline (C6H5NH3

+) in H2O, computed using
the MPSM in ONETEP with fully open BCs (OBC) and fully periodic BCs (PBC). The
computational details of these calculations are described in section 4.4.

Molecule Charge OBCa PBCa PBCb

Toluene 0 1.666 1.664 1.664
Benzoic acid −1 −56.556 −34.231 −34.232

Aniline 1 −72.386 −49.952 −49.954
a Molecule located at the centre of the simulation cell.
b Molecule located at the origin of the simulation cell.

4.4 Results

The free energies of solvation presented in Table 1 were computed using the MPSM in ONETEP with
the solvent model parameters described in appendix A.1. In all cases, a fixed dielectric cavity was
used, constructed using the converged ground state electronic density of the solute computed in vacuum.
Calculations were performed in fully open BCs, with approximate coarse-grained Dirichlet BCs (Eq. 9),
and fully periodic BCs. The three molecules studied were: toluene (C6H5CH3), deprotonated benzoic
acid (C6H5COO– ) and protonated aniline (C6H5NH3

+). The geometries used in the calculations were
gas-phase optimized geometries from the Minnesota solvation database (2009 version).37, 38

All calculations used a 20 Å × 20 Å × 20 Å simulation cell and norm-conserving pseudopotentials
(see appendix A.2). The number of NGWFs and size of the localization region for each atom type in the
calculations was as described in appendix A.3. The calculations were performed using a kinetic energy
cutoff of 800 eV. For the open BC calculations, a 150 × 150 × 150 fine grid was used, truncated to
145×145×145 grid points for use in DL_MG. In periodic BCs, the fine grid scale was slightly increased
to satisfy DL_MG’s grid constraints, yielding a 152 × 152 × 152 fine grid (used in both ONETEP and
DL_MG).

To test the consistency of the treatment of periodic BCs, the free energy of solvation was computed
with the solutes placed at the centre of the simulation cell (as in the open BC calculations) and at the
origin of the simulation cell. Under periodic BCs, shifting the position of the molecule in the cell should
not meaningfully affect the computed solvation energy. As can be seen in Table 1, the positioning of the
molecule in the cell has no substantial impact on the computed periodic BC solvation energies. This is
strong evidence that the energy and potential components associated with the solvation model have been
correctly implemented for fully periodic BCs.

The comparison of open BC and periodic BC solvation energies in Table 1 reveals an interesting
effect for the charged solutes. While the open and periodic BC solvation energies for the neutral solute,
toluene (C6H5CH3), differ by ∼ 10−3 kcal mol−1, this difference is ∼ 10 kcal mol−1 for the charged
solutes, deprotonated benzoic acid (C6H5COO– ) and protonated aniline (C6H5NH3

+). It is possible that
this large difference in open and periodic BC solvation energies for the charged solutes is a physical
effect, arising because the solvation of an isolated charged molecule and a periodic array of charged
molecules are different processes. However, it is also possible that the discrepancy is due to additional
effects that occur only for charged solutes and which are not currently treated for in the periodic version of
the MPSM. As noted in Ref. 39, special care is required when dealing with the electrostatics of solvated
systems in periodic BCs. Further investigation of this issue is necessary before the MPSM can be safely
applied to periodic BC calculations with charged solutes.

Table 2 contains free energies of solvation computed for neutral graphene sheets under periodic BCs.
As for Table 1, the solvation energies were computed using a fixed dielectric cavity constructed using
the ground state electronic density obtained calculation in vacuum, and with the calculation settings

‡“Zero” BCs are open BCs where the potential is assumed to be zero at the simulation cell boundaries, and only apply to
the multigrid solver.
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Table 2: Free energies of solvation in kcal mol−1 for graphene sheets with fully periodic
BCs. The computational details of these calculations are described in section 4.4.

Material Natoms Total per C atom

Graphene 448 58.096 0.129 68
Graphene 224 29.073 0.129 79

(solvation model, pseudopotentials and NGWFs) described in appendix A. A 448 atom graphene sheet,
automatically generated based on a bond length of 1.43 Å, was used, with a 224 atom sheet created by
cutting along one of the periodic directions.§

The 448 atom sheet calculation was performed in a cell with dimensions 34.31 Å×34.67 Å×31.75 Å,
with the sheet periodic in the xy-plane. A large z-dimension was used to reduce unwanted interactions
between periodic images of the sheet. The 224 atom sheet simulation cell was identical to the 448 atom
sheet cell, but halved along the x-direction. In both cases, the kinetic energy cutoff was set as 800 eV,
yielding fine grid sizes of 256 × 264 × 240 and 136 × 264 × 240 grid points for the 448 atom and 224
atom sheets, respectively (used in ONETEP and DL_MG).

Since graphene is naturally periodic in two directions, it can be used to test that the treatment of
periodic BCs is consistent by comparing solvation energies obtained for different periodic unit cells.
In Table 2, we compare per-C-atom solvation energies computed for the 448 and 224 atom sheets. As
expected, the per-C-atom solvation energy is effectively independent of the size of the periodic unit cell,
differing by ∼ 10−4 kcal mol−1 for the two sheets.

Despite the currently unexplained discrepancy between open and periodic BC solvation energies
for charged solutes, we can be confident that periodic BCs are consistently treated within the existing
model. This is evidenced by the excellent agreement between periodic BC solvation energies obtained
for molecular solutes located at different positions in the simulation cell (Table 1) and per-atom solvation
energies for different periodic unit cells (Table 2).

The numerical accuracy of the calculation of the electrostatic energy and potential in periodic BCs
using DL_MG is further confirmed by the results presented in Fig. 3. This plot demonstrates the
agreement between solutions to the homogeneous Poisson equation obtained using DL_MG’s defect-
corrected multigrid approach and the reciprocal space solution usually used in ONETEP.For the 448 atom
graphene sheet described above, the Hartree energy was calculated using DL_MG with increasing finite
difference order. These calculations were performed in vacuum and without smeared ions, corresponding
to solving the homogeneous Poisson equation (Eq. 1 with ε = 1 and n(r) = nelec(r)). Solving the
homogeneous Poisson equation for the electron density allows direct comparison with the reciprocal
space approach which is usually employed by ONETEP in periodic BCs. The absolute error plotted in
Fig. 3 is with respect to the Hartree energy obtained using this reciprocal space approach.

All calculations presented in Fig. 3 were performed self-consistently, starting with an initial guess
density kernel and NGWFs. The same 34.31 Å × 34.67 Å × 31.75 Å cell was used with a kinetic energy
cutoff of 800 eV and a 256 × 264 × 240 fine grid. Although the reciprocal space approach is not subject
to DL_MG’s grid size constraints, this fine grid was used in all calculations in order to avoid introducing
discrepancies from the use of different grid sizes.

As the order of discretization of Âd (see Eq. 19) used in the defect correction is increased, the
Hartree energy computed using DL_MG rapidly converges towards the energy computed using the
reciprocal space approach. With second-order finite differences (i.e. no defect correction), the error is
485 kcal mol−1, decreasing to ∼ 10−2 kcal mol−1 for 12th-order finite differences.

§The structure of the 448 atom graphene sheet was originally generated by L. G. Verga.
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Figure 3: The absolute error in the Hartree component of the total energy of the 448 atom
graphene sheet computed using DL_MG with increasing order of finite differences in the
defect correction procedure (d in Âd from Eq. 19). The error is with respect to the Hartree
energy computed by solving the Poisson equation in reciprocal space. All calculations were
performed in vacuum with periodic BCs. Further computational details are provided in
section 4.4.

5 WP3: CASTEP solvation

5.1 Key outcomes

• The complete implicit solvation model was successfully implemented in CASTEP, enabling fully
open BC implicit solvent calculations with a fixed dielectric cavity.

• A facility for “autosolvation” was implemented, providing a simple means of computing free
energies of solvation in CASTEP.

• Fully open BC vacuum calculations were also made possible in CASTEP using components of the
solvation model.

• Solvation energies computed using the MPSM in ONETEP and CASTEP demonstrate excellent
numerical agreement—for the small molecules tested (neutral and charged) the free energies of
solvation computed by ONETEP and CASTEP differed by ∼ 0.1 kcal mol−1 or less.

5.2 Limitations

• Only the fixed cavity version of the solvent model was implemented in CASTEP.

– The fixed cavity model is a first step towards the self-consistent cavity model.

– For the computation of solvation energies, the use of a fixed cavity incurs very little additional
error.6

– Self-consistent cavity calculations suffer from numerical instability due to additional dielectric-
dependent terms in the electrostatic potential.

• The multigrid solver and computation of Dirichlet BCs currently run on a single MPI process.
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– The multigrid solver uses contiguous 3-D data distributed in a Cartesian MPI topology while
CASTEP stores real-space data in a non-contiguous representation.

– This necessitated gathering and reordering of real-space data prior to performing multigrid
operations.

– The initial implementation was performed using shared-memory (OpenMP) parallelism for
multigrid operations.

– Work to support contiguous distribution of real-space data in CASTEP suitable for fully
MPI-parallelized multigrid operations is currently being undertaken as part of a PhD project
supervised by P. J. Hasnip.

• Only energetic terms of the solvation model were implemented.

– Force terms related to the fully open BC local pseudopotential and smeared ions were not
implemented.

– The implementation of accurate solvation energy calculation using the model was prioritized.

• Support for ionic solutions was not implemented.

– The addition of an ionic solution significantly increases the complexity of energy expressions
and requires the implementation of steric potentials.

– The implementation of accurate solvation energy calculation in pure solvent was prioritized.

5.3 Implementation details

To implement the full MPSM in CASTEP, a large number of new modules and routines were created,
consisting of a combination of new code and code ported from ONETEP. The integration of the new
functionality into the CASTEP codebase also necessitated significant modifications to existing code. The
following is a summary of the most significant of these changes and additions:

CASTEP/DL_MG interface

A new module, multigrid_dlmg, which provides wrappers for calling DL_MG library routines was
created. The module deals with initialization/deinitialization of the DL_MG library and provides
a simplified interface to the solver routines via the multigrid_dlmg_calculate_hartree routine. The
multigrid_dlmg_calculate_hartree takes CASTEP data structures as arguments and converts these to
a DL_MG-compatible representation. Dirichlet BCs are calculated by an internal module routine,
based on a similar routine ported from ONETEP, but modified for use in CASTEP. The multigrid_dlmg

module is the only part of CASTEP which explicitly makes use of DL_MG routines and variables.
To allow CASTEP to be compiled without DL_MG, a “stub” module was created which replicates
the interface of multigrid_dlmg to satisfy other module dependencies without the need for DL_MG
itself.

Open BC local pseudopotential

A new module, openbc_locps, was created, providing routines for the evaluation of the local pseu-
dopotential in open BCs. The code in this module was largely derived from a similar openbc_locps

module in ONETEP, but modified to make use of the data structures used in CASTEP. In particular,
the openbc_locps_calculate_potential routine was designed to replicate the interface of the CASTEP’s
existing routine for calculating the local pseudopotential in periodic BCs, locps_calculate_potential.
For more details on the theoretical method used to evaluate the open BC local pseudopotential, see
appendix B of Ref. 40.

Open BC ion-ion interaction

The ion_ion module was created to provide a general interface for calculating the ion-ion interaction
energy in fully open and mixed periodic/open BCs. Currently, the ion_ion_calculate_openbc_energy
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routine can only compute the ion-ion interaction energy with fully open BCs, though the routine is
designed to be extensible so that the mixed BC case can be implemented at a later date. Under fully
open BCs, the ion-ion interaction energy is calculated by summation over the interaction energies of
pairs of ionic cores (Eq. A10 of Ref. 7).

Smeared ion representation

The new smeared_ions module provides routines associated with the generation of the smeared ion
charge density (Eq. 10) and calculation of the corrections to the electrostatic energy (Eq. 12) and
potential (Eq. 13). The correction to the potential is applied directly to the local pseudopotential, as in
ONETEP (Eq. 36). The module also provides a routine for computing the electrostatic potential and
energy due to the combined electronic and smeared ion density, smeared_ions_calculate_es_potential,
using DL_MG to solve the NPE. The code in this module is mostly derived from ONETEP’s
is_smeared_ions module, adapted to make use of CASTEP’s data structures and interface con-
ventions.

Non-uniform dielectric permittivity

The dielectric_permittivity module provides the dielec_perm derived type, which represents the non-
uniform dielectric permittivity, ε(r), which features in the MPSM (Eq. 6). The module features
routines for initialization and deallocation of the dielectric permittivity object based on pre-defined
parameterizations, which can be flexibly defined using extended types. A routine for calculating the
surface area of the solute cavity in the dielectric medium, S[nelec] (Eq. 8), is also provided. The
module was designed to be sufficiently general to allow alternative functional forms for ε(r) (other
than Eq. 6) to be implemented in future.

Non-electrostatic solvation contribution

The implicit_solvent module was created to contain routines that specifically deal with implicit solva-
tion (many of the other new modules have functionality which can be applied in other contexts). One
of these routines computes the non-electrostatic contribution to the solvation energy (Eq. 8) using the
dielectric cavity surface area from dielectric_permittivity_cavity_surface_area.

Addition of autosolvation task

A new autosolvation task was implemented, in which the free energy of solvation (Eq. 7) is computed
automatically by performing the vacuum and solvent calculations in a single CASTEP run. This can
be activated by setting the task keyword to “AUTOSOLVATION” in the CASTEP input file. To achieve
this, a new routine was added to the main castep.f90 file, castep_autosolv_vac, which performs
the initial vacuum calculation and copies the relevant calculation results (converged charge density,
wavefunction and energy) to an instance of CASTEP’s model_state derived type, which is then used
to perform the calculation in the presence of solvent. The results of the autosolvation calculation
are reported at the end of the CASTEP run by calling implicit_solvent_autosolvation_report, a routine
from the implicit_solvent module.

Modification of model data structure

CASTEP’s model_state derived type is a container for information which has been about computed
about a system. Properties associated with implicit solvation and the solution of the NPE (Eq. 1),
such as the non-uniform dielectric permittivity and non-electrostatic energy contributions (Eq. 8)
were added to model_state. These additions were particularly important in the implementation
of the autosolvation task, which involves copying relevant data between instances of model_state

corresponding to vacuum and solvent calculations.

Modification of total energy expressions

The expressions used to evaluate the total energy of the system in the electronic energy mini-
mization procedure were modified to incorporate the smeared ion energy correction terms (Eq. 12)
and the non-electrostatic energy contribution (Eq. 8), when required. This involved the modifica-
tion of several routines in the electronic module featuring both the energy expressions described
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in section 2.4. Additionally, code was added to the routine for outputting the energy components,
electronic_write_energies, to output the additional energy components involved in an MPSM calcu-
lation.

Integration of DL_MG into CASTEP build system

Compilation of DL_MG was incorporated into the CASTEP build system, so that the library could
be distributed with CASTEP and easily compiled into the binary. The method used to integrate other
libraries distributed with CASTEP (e.g. spglib41) into the build system was adopted for DL_MG. The
value of the DL_MG variable in the main CASTEP Makefile determines if and how DL_MG is linked
to CASTEP: “none” for compilation without DL_MG (using the stub module); “compile” to compile
and link the version of DL_MG distributed with CASTEP. The capability to use an alternative version
of DL_MG by setting DL_MG to “system” is planned, but not yet implemented.

New MPI communicator for multigrid operations

DL_MG requires an MPI communicator with a Cartesian topology which defines the relationships
between local data held by each rank. To allow the creation of communicators with appropriate
Cartesian topologies, the comms_cart_create routine was added to the comms module. Although
the current implementation of the DL_MG interface only supports a single MPI process, a flexible
framework for defining the parallel strategy to be used in multigrid operations was implemented in
the comms module. This was based on CASTEP’s existing parallel framework, where parallelism
can be distributed based on k-points, bands and/or G-vectors. The multigrid MPI communicator is
formed as a subset of the G-vector communicator, which is natural since the real-space charge density
is distributed across members of the G-vector group. This framework should form the foundation for
future work to allow DL_MG to make use of multiple MPI processes.

As mentioned in section 5.2, the multigrid operations and the calculation of Dirichlet BCs are
currently only executed on a single MPI rank. The remainder of the CASTEP calculation can use
an arbitrary number of ranks, but the calculation of the electrostatic potential using DL_MG (via the
multigrid_dlmg module) uses only one of these MPI ranks. The fundamental reason for this is that CASTEP
distributes the real-space charge density among MPI ranks in a non-contiguous form—columns of data
along the z-direction of the simulation cell are distributed among MPI ranks in round-robin fashion to
balance the load across the G-vector communicator.

DL_MG requires that the real-space charge density local to each MPI rank is contiguous along the
x-, y-, and z-directions. The Dirichlet BC calculation code ported from ONETEP also requires this
contiguous distribution of data. Consequently, it was necessary to reorder the real-space charge data
held by MPI ranks in the G-vector communicator before passing this to the BC calculation routines and
DL_MG. It was similarly necessary to reorder the contiguous electrostatic potential output by DL_MG
to match CASTEP’s non-contiguous distribution of the real-space charge density.

In the current implementation, the real-space charge density is simultaneously gathered from MPI
ranks in the G-vector communicator and reordered (to a contiguous distribution). The result is held on
the single MPI rank in the multigrid communicator, which performs the calculation of Dirichlet BCs and
solves the NPE using DL_MG. The resulting electrostatic potential is then simultaneously scattered back
to the G-vector communicator and reordered (back to the original non-contiguous distribution). This
reordering is not necessary in ONETEP because real-space quantities are always contiguous along each
simulation cell dimension.

A more complex scheme for gathering, reordering and scattering could have been implemented to
allow the calculation of Dirichlet BCs and multigrid operations using multiple MPI ranks. Given the
additional communication overhead this would engender, it is unclear whether this would yield a practical
performance benefit. The decision to use the simpler single MPI rank implementation was taken because
it is likely that it will be possible to have CASTEP use contiguous real-space data natively in the near
future—this is being investigated as part of a PhD project supervised by P. J. Hasnip.

The representation of real-space quantities used by DL_MG in CASTEP differs from the repre-
sentation in ONETEP in another significant way. As mentioned in section 4.3, in open BCs the fine
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grid on which ONETEP represents the real-space charge density is truncated to satisfy DL_MG’s grid
constraints. This poses no difficulties in open BCs—provided that the system is positioned to avoid
the NGWF localization regions from extending beyond the truncated grid, the strict localization of the
NGWFs (see section 2.5) ensures that no charge is removed from the cell during truncation. In CASTEP,
the one-electron wavefunctions (Eq. 23) extend over the entire simulation cell and the corresponding
real-space charge density (Eq. 22) is not guaranteed to exist within the truncated grid. This is a particular
issue at the start of the SCF procedure, where the wavefunctions used to construct the charge density are
generally initialized with random coefficients. This also causes a problem when calculating Dirichlet
BCs as the potential at the cell boundaries can become very large when |r − Ri | → 0 in Eq. 9.

To ensure that all the real-space charge density is included in the grid passed to the multigrid solver
and avoid numerical issues when computing Dirichlet BCs, CASTEP uses a padded grid for multigrid
operations. The size of this grid along each dimension is given by

n
pad
i
= round_up(ni + 2p,m) + 1, (39)

where the round_up(a, b) function rounds a up to the nearest multiple of b, ni is the number of grid points
along direction i, p is an integer determining the degree of padding and m is an even integer (which
has the default value m = 2n with n = 3, as described in section 4.3). CASTEP’s real-space charge
density is copied from the original nx × ny × nz grid to the n

pad
x × n

pad
y × n

pad
z padded grid such that it

is always separated from the padded cell boundaries by a padding region. The non-uniform dielectric
permittivity is also placed on this padded grid, with ε(r) = ε∞ in the padding regions. DL_MG’s solver
routines are passed these padded input quantities and return an electrostatic potential on the padded grid.
The potential in the region corresponding to CASTEP’s unpadded real-space grid is then extracted and
scattered to the G-vector group, as described earlier.

A further complication associated with the implementation of the MPSM in CASTEP is the use of
two different total energy expressions: Eqs. 24 and 25. Particular care must be taken when applying the
smeared ion energy corrections. In Eq. 24, the modified electrostatic energy expression of Eq. 12 can
simply be substituted for the electrostatic terms in curly braces, i.e.¶

Etot[nelec] = Ekin[{ψm,k}] + Enl[{ψm,k}] + Exc[nelec]

+

{
E tot

NPE[nelec] + Ecorr
locps[nelec] + (Eion-ion − Esi-si)

}
,

(40)

where Ecorr
locps[nelec] is the smeared-ion-corrected local pseudopotential (as in Eq. 36), and

E tot
NPE[nelec] = Eelec

NPE[nelec] + Esi
NPE[nelec]

=

1
2

∫
dr nelec(r)φNPE(r) +

1
2

∫
dr nsi(r)φNPE(r).

(41)

In Eq. 25, the smeared ion corrections must be applied differently, since φNPE(r) appears in the one-
electron Hamiltonian which is used to evaluate the band structure energy, EBS[{ψm,k}]. Consequently,
the interaction of the electronic density with the electrostatic potential due to the total charge density
(smeared ion and electronic), φNPE, is included in EBS[{ψm,k}], but is double-counted. To obtain a total
energy expression with the correct overall electrostatic energy, we must correct for the double-counting
of the electron-φNPE interaction energy in EBS[{ψm,k}] while adding the missing smeared ion-φNPE

interaction energy, i.e.

Etot[nelec] = EBS[{ψm,k}] + Ecorr
xc [nelec]

+ Esi
NPE[nelec] − Eelec

NPE[nelec] + (Eion-ion − Esi-si) ,
(42)

where Esi
NPE[nelec] and Esi

NPE[nelec] are as defined in Eq. 41.

¶Note that the total energy in Eq. 40 is given as a functional of only the electronic density, nelec, despite the formal
dependence of the expression on the total (electronic and smeared ion) charge density—this is to emphasise that the smeared
ion charge density, nsi, is constant during the SCF procedure, while nelec is varied.
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Table 3: Free energies of solvation in kcal mol−1 for toluene (C6H5CH3), de-
protonated benzoic acid (C6H5COO– ) and protonated aniline (C6H5NH3

+) in
H2O, computed using the MPSM in open BCs using ONETEP and CASTEP.
The CASTEP calculations were performed with three different energy min-
imization schemes: density mixing (DM), conjugate gradient energy mini-
mization with fixed occupancies (ALLBANDS) and ensemble DFT (EDFT).
The computational details of these calculations are described in section 5.4.

CASTEP

Molecule Charge ALLBANDS DM EDFT ONETEP

Toluene 0 1.695 1.696 1.695 1.666
Benzoic acid −1 −56.401 −56.401 −56.401 −56.556

Aniline 1 −72.666 −72.664 −72.666 −72.386

The electronic module was modified to use Eqs. 40 and 42 for calculations using the smeared ion
representation in vacuum or solvent. In the presence of solvent, the non-electrostatic solvation energy
(Eq. 8) is also added to the expression—for the fixed cavity model, this is the same for both total
energy expressions. If the self-consistent cavity model is implemented in future, the appearance of a
non-electrostatic solvation contribution in the band structure energy will need to be accounted for.

5.4 Results

To validate the accuracy of the implementation of the MPSM in CASTEP, free energies of solvation
computed in CASTEP were compared to energies obtained using the existing implementation of the
MPSM in ONETEP. The results of these calculations are summarized in Table 3. These were computed
in open BCs, using the solvent model parameters described in appendix A.1 and a fixed dielectric cavity,
constructed using the converged ground state electronic density of each solute in vacuum. The three
molecules studied were: toluene (C6H5CH3), deprotonated benzoic acid (C6H5COO– ) and protonated
aniline (C6H5NH3

+), as in section 4.4. The geometries used in the calculations were gas-phase optimized
geometries from the Minnesota solvation database (2009 version).37, 38

For all calculations presented in Table 3, a 20 Å × 20 Å × 20 Å simulation cell and norm-conserving
pseudopotentials (see appendix A.2) were used. The number of NGWFs and size of the localization
region for each atom type in the ONETEP calculations was as described in appendix A.3. The ONETEP
calculations were performed using a kinetic energy cutoff of 800 eV, producing a 150 × 150 × 150
fine grid, which was truncated to 145 × 145 × 145 grid points for use in DL_MG. A kinetic energy
cutoff of 528.792 eV was used in CASTEP (with a fine grid scale of 2.0) in order to obtain an identical
150 × 150 × 150 fine grid‖—this was then padded to 161 × 161 × 161 grid points for use in DL_MG.

The results presented in the Table 3 demonstrate excellent agreement between the implementations
of the MPSM in ONETEP and CASTEP. For toluene, the free energies of solvation computed using
ONETEP and CASTEP differ by only ∼ 10−2 kcal mol−1, while for the two charged solutes the difference
is ∼ 10−1 kcal mol−1. This difference is an order of magnitude smaller than the ∼ 1 kcal mol−1 target
originally proposed as a success metric for WP3. The results also demonstrate that the MPSM has been
implemented consistently for CASTEP’s three energy minimization schemes, with maximum absolute
differences between the solvation energies computed using the three methods of ∼ 10−3 kcal mol−1 or
less for each solute.

‖The relationship between energy cutoff and grid point spacing is different in CASTEP and ONETEP, so different cutoff
energies are required to obtain identical grid sizes.
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6 Concluding remarks

This project has delivered significant new functionality for each of the software packages involved.The
key goals of adding an implicit solvent model to CASTEP, generalizing the BCs available in ONETEP’s
implicit solvent model and implementing the high-order defect correction in DL_MG have all been
achieved, with some limitations, as outlined in sections 3 to 5.

It is anticipated that this new functionality will be of great utility to the users of each software
package. The work done for WP3 (section 5) will enable users to perform calculations in the presence
of implicit solvent using CASTEP for the first time, while the work done for WP2 (section 4) will enable
ONETEP users to treat the solvation of periodic materials. The improvements to DL_MG described in
section 3 make the solver capable of producing solutions to the NPE which are sufficiently accurate to
be used directly in electronic structure calculations. This should reduce the development work required
to use DL_MG in electronic structure contexts by removing the need to implement the high-order defect
correction or a similar correction scheme.

This project has also engendered a number of additional benefits, beyond the originally proposed
objectives. For example, the open BC electrostatic energy and potential terms implemented in CASTEP
as part of the MPSM (section 5) give CASTEP the capability to perform open BC calculations both with
and without implicit solvent. The ability to perform open BC calculations in vacuum is valuable in itself,
and was not previously available in CASTEP. Another additional benefit arising from this work was the
simplification and extension of DL_MG’s API (section 3), which removed some of the complexity of
initializing the library, while allowing for more flexible specification of convergence criteria.

While the original objectives of this project have been broadly achieved, the outcomes are subject to
some limitations and caveats. Additional work will be necessary to fully realise all the goals outlined in
the project proposal. In particular:

Extension of the implementation of the MPSM in ONETEP to support mixed open/periodic BCs

During this project, support for fully periodic BCs was added to the MPSM in ONETEP, but mixed
BCs were not. It emerged during the project that treatment of mixed BCs for all the electrostatic terms
involved in the model requires careful theoretical consideration. While DL_MG is able to produce
an electrostatic potential in mixed BCs, consistent application of mixed BCs requires that these BCs
are also reflected in the ion-ion interaction, smeared ion correction and local pseudopotential terms.
The implementation of a mixed BC version of the MPSM in ONETEP will require the derivation of
mixed BC expressions for these terms.

Implementation of MPI parallelism for multigrid operations in CASTEP

The current implementation of the MPSM in CASTEP performs multigrid operations and the calcu-
lation of Dirichlet BCs on a single MPI rank. As described in section 5.3, this was a consequence of
the non-contiguous distribution of real-space data among MPI ranks in CASTEP. To take advantage
of MPI parallelization in DL_MG while avoiding the overhead of reordering the real-space data,
CASTEP will need to provide real-space quantities in a contiguous form suitable for use by DL_MG.
Work towards this goal is currently underway, as part of a PhD project supervised by P. J. Hasnip.

Saline solvent implementation and extension

It was originally envisaged that the extensions to the solvent modelling capabilities in ONETEP and
implementation of the model in CASTEP would include support for saline solvents (using DL_MG
to solve the Poisson-Boltzmann equation, Eq. 3). This was not possible within the timescale of the
project, since support for the simpler non-saline case, where the NPE must be solved (Eq. 1), was
prioritized. To add support for saline solutions in CASTEP will require the implementation of suitable
steric potentials and additional energy components arising from the presence of ions in solution, as
described in Ref. 13. Extending the saline solvent model in ONETEP to support periodic and mixed
BCs will require that the types of steric potential currently implemented are generated subject to these
BCs.
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Atomic forces implementation and extension

In order to perform geometry optimizations and ab initio molecular dynamics calculations in the
presence of solvent, the forces acting on atoms must be computed. At the start of this project,
ONETEP was able to compute forces in open BC MPSM calculations using non-saline solvent, but
not saline solutions. It was envisaged that support for forces in saline solutions would be added to
ONETEP and that the new implementation of the MPSM in CASTEP would include support for
atomic forces calculation. In the event, computation of accurate solvation energies was prioritized
over forces, meaning that these tasks still remain to be tackled. In both cases, appropriate expressions
for atomic forces in the presence of solvent will need to be implemented. In particular, care must
be taken to ensure that the forces account for the dependence of smeared ionic core charges and (for
saline solutions) steric potentials on atomic positions.

Throughout the project, care was taken to ensure that features were implemented in a way which sup-
ports future extensions, such as those outlined above. For example, although the current implementation
of the MPSM in CASTEP only uses a single MPI process in DL_MG and to evaluate Dirichlet BCs, a
flexible framework for defining the parallel strategy to be used in these operations was implemented, in
anticipation of future work to support multiple MPI processes (see section 5.3). Similarly, the new input
keywords added to ONETEP to allow specification of boundary conditions were developed specifically
to allow specification of open, periodic and mixed BCs, despite the current implementation of the MPSM
in ONETEP supporting only fully open and fully periodic BCs (see section 4.3).

As indicated in section 1.1, accurately modelling solvent effects is essential if electronic structure
simulations are to be a useful tool in the design and development of new technologies. Towards this aim,
this eCSE project has seen the implementation of a powerful implicit solvent model in CASTEP and
the extension of the model in ONETEP. In addition, the underlying multigrid solver used in both codes
has been made significantly more capable. It is hoped that these developments will support researchers
currently studying electronic structure in solution and facilitate the application of electronic structure
methods to new technologically relevant problems.
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A Calculation details

A.1 Implicit solvent model settings

A common set of parameters were used for implicit solvent calculations using the MPSM presented in
this report.

Physical parameters describing the solvent were set to values suitable for H2O (these are the default
values used when performing solvation calculations in ONETEP):

• Solvent bulk permittivity, ε∞ = 78.54

• Solvent surface tension, γ = 4.7624 × 10−5 Eha0
−2

The non-electrostatic component of the solvation energy (Eq. 8) was computed using an effective surface
tension, γeff, scaled by a constant to account for dispersion-repulsion (γeff = 0.281075γ, as recommended
in Ref. 6).

The “low-beta” parameter set recommended in the ONETEP documentation (available at the ONETEP
website32) was used to construct the dielectric function (Eq. 6):

• Solvent-solute interface width parameter, β = 1.3
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• Density at centre of solvent-solute interface, n0 = 3.5 × 10−4 a0
−3

Some other significant parameters controlling the behaviour of the model were based on recommen-
dations in Ref. 7:

• Charge coarse-graining block size for BC calculation (Eq. 9), 5 × 5 × 5 grid points

• Smeared ion width parameter (Eq. 11), σ = 0.8 a0

A.2 Pseudopotentials

All calculations presented in this report used norm-conserving pseudopotentials from the Rappe-Bennett
pseudopotential library42 (GGA-optimized). The calculations on the T4 lysozyme complex presented
in section 3.4 also made use of a sulfur pseudopotential from a suite of pseudopotentials generated by
K. Refson to supplement the Rappe-Bennett library. ONETEP- and CASTEP-compatible versions of the
Rappe-Bennett library and K. Refson’s supplementary set of pseudopotentials are available to download
from the CASTEP project page on CCPForge.43

A.3 NGWFs

The ONETEP calculations presented in this report used 7.0 a0 (WP1, section 3) or 8.0 a0 (WP2 and
WP3, sections 4 and 5) localization sphere radii for all atom types. The number of NGWFs used to
represent the valence electrons for each atom type was as follows: H, 1; C, 4; N, 4; O, 4; S, 4.

A.4 Exchange-correlation functional

All ONETEP and CASTEP calculations presented in this report were performed using the PBE exchange-
correlation functional.44, 45

B ARCHER development environment

For calculations measuring the performance of ONETEP / DL_MG on ARCHER (section 3.4), the
ONETEP executable was compiled using gfortran 5.1 with the “-Ofast” optimization flag, and linked
to FFTW.46, 47 The binary was compiled based on development versions of the ONETEP and DL_MG
sources. The following key modules were loaded during compilation:

• PrgEnv-gnu/5.2.82

• fftw/3.3.4.10

• cray-mpich/7.2.6
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