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Abstract

In order to develop the 3-D incompressible smoothed particle hydrodynamics (ISPH) software into an attractive
engineering tool for complex full-scale engineering problems, particularly in 3-D simulations, this project is to add
new functionalities to deal with arbitrary complex geometries which will enable a wide range of applications with
fluid-structure interaction. This requires multiple developments before such functionality can be fully and rigorously
implemented. The aim of this project has therefore been to develop unique ISPH functionality for real applications
that is scalable over many thousands of processing cores.

The following list highlights the major developments:

• Particle preconditioning kernel: divide different type of particles into cells, comparing with dynamic vector
approach, we have added one additional array to record their starting address for each type of particles.

• Improvement of nearest neighbour list searching kernel by looping through each cells neighbour cells instead
of saving the particles neighbour list, which reduces the memory footprint.

• Update and optimised the halo exchange kernel due to rearranged the data layout the carried out the above.

• Parallel implementation of the multiple boundary tangent method (MBT), this requires parallel implementation
the kernels of testing particle in the body of complex geometries and solving the issue of mirror particles over
generation.

• Parallel implementation of local uniform stencil method with solid object surface triangulation kernel

• Updated the moment equation solver and removed any unnecessary IF branches for the special treatment of
boundary particles, velocity updates for only special types of particles and verified with dam break and still
water cases with up to 100 million particles using up to 12,000 MPI partitions for Work Package 1.
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1. The ISPH eCSE project

The stability, accuracy, energy conservation, boundary conditions of the projection based particle method such
as incompressible smoothed particle hydrodynamics ISPH [1] have been greatly improved [2, 3, 4]. However, to
make the code feasible for real practical problems requires that the code can solve the flow with arbitrary geometry
structures.

Building on the successful work of previous eCSE-funded project (eCSE01-003), the ISPH eCSE06-09 project
mainly comprised of four work packages (referred to as WP1, WP2, WP3, WP4). WP1 Implementing the precondi-
tioning particles data offers the ISPH code flexibility and capability to implement the new boundary methods and the
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new flow control equations. WP2 is to implement multiple tangent boundary method (MBT). WP3 is to implement
local uniform stencil boundary method (LUST). WP4 is application verification and report.

The remaining part of this report is organised as follows: In the next section we describe using data preconditioning
techniques to explore data locality and manage particle indices with various types of particles. Section 3 describes
the parallel implementation of multiple tangent boundary method, and the Section 4 explains how the local uniform
stencil boundary method is implemented. Finally, Section 6 are conclusions and the future work.

2. WP1: Preconditioning the particles data to explore the data locality and improve ISPH software extensibility

The previous project, eCSE01-003, had delivered a massively parallel ISPH code but without being able to repre-
sent complex geometries. For simulations with real flow applications often involve different types of the particles. For
example, in Fig. 1a, there are fluid particles which can have different sub-types of particles if simulating multi-phase
flow, the particles representing the floating rigid body, and the domain boundary particles. The particles representing
the domain boundaries and the floating rigid body particles can be further divided according to different SPH bound-
ary techniques (each of which employs different methodologies). When solving these applications at large scales,
managing data locality is particularly challenging due to particles moving over time. In this WP we have introduced
data preconditioning techniques for the first time to ISPH to explore data locality and manage particle indices with
various types of particles.

ISPH is an interpolation technique where the value of a property (position, velocity, acceleration, pressure) is
computed by summing the contributions from neighbouring particles (see [1] for full details). In order to localise the
neighbour search, particles are stored in cells. These cells are square in 2-D or cubes in 3-D whose dimension is on
the order of the radius of the interpolation region around each particle. Fig. 1a shows a schematic representation of
cells containing particles for a highly simplified 2-D case.

Each particle is assigned a unique identification (ID) number. The list of particles is stored in an array cell vec
where the particles are stored in sequence according to type, that is particles representing fluid, boundaries and rigid
bodies.

Considering extensibility, the ISPH3D code provides a choice of either a linked list or newly implemented pre-
conditioned dynamic vector (PDV) [5] is enabled for the nearest neighbour searching operation. Fig. 1b shows how
we use PDV with consideration of different types of particles. Similar to PDV [5], an array offset contains the values
pointing to the index of the first particle in each cell, cell vec contains the particle indices where each cell has fluid,
boundary and rigid body particles arranged in sequence. Array count is used to count the number of fluid, boundary
and rigid body particles in each cell. This new structure-of-array-of-structures(SOAOS) showed in Fig. 1b requires
new implementations of both the nearest neighbour list searching kernel and the MPI halo exchange kernels for send
buffer packing and receive buffer unpacking with consideration of different types of particles comparing with our
previous approach[6]. Internally, the data layout/arrangement of types of particles are fixed for PDV data structures,
but the sequence of generating the different types of particles in the prepossessing stage and then in input file can be
any order according to the users’ request.

3. WP2: Parallel implementation of the multiple boundary tangent method (MBT) for complex boundary
geometries

Accurate boundary method are one of the major challenges for SPH based methods. Indeed boundary conditions
have been identified as a Grand Challenge by the international SPH community (http://spheric-sph.org). Large errors
may caused by inaccurate approximation of complex physical boundary of object. Based on previous successful work
[7], we have proposed to implement multiple boundary tangent method(MBT)[8] in this work package to facilitate
the difficulties to approximate certain complex geometries.

3.1. Basic MBT algorithm analysis

To use MBT method, we need to know the normal of each solid surface particles. As most of the CAD software
tools provide the normal direction for the surface mesh of the solid object or the normal direction can be easily
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(a) particle types

(b) PDV data structure

Figure 1: Diagram (a) is to show the different types of particles interaction in the same cell, in this case, fluid particles, boundary particles and rigid
body particles, (b) is to show using PDV with consideration of different types of particles
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calculated from CAD input, therefore we only allocate a vector (xnb, ynb, znb) to save the normal of the solid object
surface particles.

The basic algorithm of MBT can be summarised in the Algorithm 1:

Algorithm 1: MBT Basic Algorithm Description
Step 1: Read in the solid object boundary particles normal vector into xnb, ynb, znb.
Distributed together with the particles into each MPI partition.
Step 2:in each partition
j=mbt index
for k = 1→ total local S olid particles do

Step 2a: Find all the neighbour fluid particles Pi

while fluid particle Pi is solid surface particle Pk’s nearest neighbour particle do
Step 2b: generate the mirror particle P

′

for particle Pi

Step 2c: check the mirror particle P
′

inside solid
if P

′

inside solid then
assign P

′

index j
set coordinate of MBT particle: x(j), y(j), z(j)
set velocity of MBT particle: u(j), v(j), w(j)
save MBT particle j’s parent fluid particle: irelation(j)=i
j=j+1

end if
end while

end for

In the Step 2c, we have implemented a boolean function called pointInObject to decide if a particle is located in
the body of solid object. A limitation of the current project is that as we have only tested this function for a cylinder,
further tasks need to be done for general complex geometries.

During the creation of MBT particles, there is an over-creation of MBT particles due to the fact that the fictitious
image particles generated by neighbouring boundary tangents overlap. The overlapping contributions of mirrored
MBT particles can be eliminated by determining the number of times a given fluid particle is mirrored into the
influence domain of the associated fluid particle with respect to a boundary particles tangent line [8]. The contribution
of each fictitious image particle to SPH summations is then weighted using mbtweight.

Algorithm 2 gives the details of counting the over generation of MBT particles.

Algorithm 2: Counting MBT particles over generation
Step 3: counting mirror particle over generation for fluid particle Pi mbtweight=1
for k = 1→ total local f luid particles do

for j1 = 1→ total neighbour particleso f particlePi do
for j2 = 1→ total neighbour particleso f particlePi do

if j1 and J2 are mbt particles then
if irelation( j1)= irelation( j2) then

mbtweight(j)=mbtweight(j)+1
end if

end if
end for

end for
end for

However, the over generation also causes the issue of preallocation the memory for the fictitious image particles.
Presently, the memory requirement for the generation of fictitious image particles is estimated prior to simulation.
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There are advantages and disadvantages for MBT boundary methods:

• For complex boundaries, we only need boundary surface particle normal, and it does not require initial particle
generation outside of boundary. This makes less requirement of prepossessing tools.

• Due to MBT particles over generation, the memory requirement cannot be precisely controlled. This is not ideal
for large-scale implementation.

4. WP3: Parallel implementation of local uniform stencil method (LUST)

With consensus in the ISPH community yet to emerge on the optimal boundary condition, the performance of
different boundary conditions is still being assessed. The LUST wall boundary scheme [9] is based on a uniform
stencil of particles that move with fluid particles and the stencil is only activated when the fictitious particles overlap
with the boundary (example 2-D definition see Fig 2) is used to discrete the wall in respect to the fluid particle. We
use a pre-defined lattice of particles as a template and superimpose the uniform lattice on the fluid particle whose
support is truncated, filtering out all the fictitious particles inside the fluid domain. The procedure completes the wall
truncated support and recovers approximate first and second-order consistency near the wall boundary. The advantage
of LUST comes from the local point of symmetry generation and its local uniformed stencil methodology that can be
applied to any complex arbitrary geometry.

Figure 2: LUST boundary 2D diagram, [9]

4.1. LUST particles generation
We assume each fluid particle has uniform support of fictitious particles. When the support of a fluid particle

is truncated from the solid wall represented by triangles, the latter arbitrary uniform stencil is applied to the fluid
particle. By using the triangulated surfaces particles that are located within the fluid domain are discarded. The result
is a uniform boundary stencil with regularly distributed fictitious particles.

The solid boundary in this work is represented by triangulated surfaces. When the support of a fluid particle is
truncated, thus reducing the consistency of the local approximation, a pre-computed full support is imposed on the
fluid particle. Fictitious particles within the domain are discarded and the remaining fictitious particles are used in
the fluid interpolation by applying a local hydrostatic correction to the density and pressure. If the interior domain
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particles are uniform then the approximation is first order consistent. Otherwise the interpolation consistency is
reduced due to the interior domain disorder. Overall, the fictitious particle uniform stencil is said to be approximately
first order consistent.

The Algorithm 3 gives the details of LUST boundary implementation.

Algorithm 3: LUST Basic Algorithm Description
Step 1: Precalculate the complete uniform support for arbitrary fluid particles within 2h support.
Step 2: Triangulation the solid object surface. calculate each surface triangle’s centroid coordinates.
Distributed together with the particles into each MPI partition.
halo update Solid boundary triangles.
Step 3:in each partition
j=lust index0
for k = 1→ total local S olid particles do

Find all the neighbour fluid particles Pi for each Pk

while fluid particle Pi is solid surface particle Pk’s nearest neighbour particle do
generate the fictitious particles of the truncated area of the solid object for particle Pi

if P
′

inside solid then
save P

′

index j
set velocity of fictitious particle: u(j), v(j), w(j)
save fictitious particle j’s parent fluid particle: irelation(j)=i
j=j+1

end if
end while

end for

There are some key challenges that need to be solved in our implementation:

• Although the stencil for each near fluid object are the same, an if statement is required to identify when stencil
particles are boundary particles or fluid particles, which is expensive for 3D simulations where the average
stencil can contain up to 250 particles.

• Due to requirement of triangulation, we have to share all solid object particles.

• Triangles representing a 3-D surface will be distributed according to their centroid coordinates, but because
we shared all solid particles objects, all triangles are also shared globally which will cause memory issues for
large-scale simulations.

5. WP5: Results and Performance Analysis

5.1. Test cases

Three test cases have been used in this project. The 3-D dam break with a dry bed has been used in this paper
as the benchmark test case for work package 1 and the second is dam break cylinder post test case. Fig. 3 shows the
advantage of using an SFC-based method to perform domain decomposition for 3-D complex fluid, the method we
use here does not require extra effort to deal with trade-off between dynamic load balancing and data locality.

The third test case is flow over cylinder. Figure 4 shows the 3-D flow field around a confined circular cylinder in a
channel with a cylinder of radius of R = 0.5m located in the centre of the horizontal channel with a blockage ratio of
β = 0.5 and a Reynolds number of Re = 120.
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Figure 3: Example 3-D domain decomposition with HSFC with 4 MPI partitions for dam break impacting a cylinder post test case, different
colours represent different partitions. There are no need special treatment for rigid cylinder and fluid during domain decomposition and dynamic
load balancing

Figure 4: The Snapshot for Flow around cylinder test case which shows the velocity magnitude field, pressure, the velocity vector field, and the
vorticity
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5.2. Performance analysis

The total number of particles used for the benchmark is up to 100 million. The sparse linear solver is using multi-
grid preconditioner HYPRE BoomerAMG[10] and Krylov subspace method GMRES. The multigrid preconditioner
HYPRE BoomerAMG has two phases, the first phase is setup phase including selection of coarse grids, creation for
the interpolation operators, and the representation of the fine grid matrix operator on each coarse grid. The second
phase is the solving phase containing matrix-vector multiply and the smoothing operators.

We are using the UK National HPC platform ARCHER, which is Cray XC30 system. ARCHER compute nodes
contain two 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors. Each of the cores in these processors can
support 2 hardware threads (Hyper-threads). Within the node, the two processors are connected by two QuickPath
Interconnect (QPI) links. Standard compute nodes on ARCHER have 64 GB of memory shared between the two
processors. The memory is arranged in a non-uniform access (NUMA) form: each 12-core processor is a single
NUMA region with local memory of 32 GB. Access to the local memory by cores within a NUMA region has a lower
latency than accessing memory on the other NUMA region. There are 4544 standard memory nodes (12 groups,
109,056 cores) and 376 high memory nodes (1 group, 9,024 cores) on ARCHER giving a total of 4920 compute nodes
(13 groups, 118,080 cores), providing a total of 2.55 Petaflops of theoretical peak performance.

The efficiency is obtained with the following formula:

S p =
T1

Tp ∗ p
∗ 100.00% (1)

where T1 is the wall time with 1 node, each node comprises 24 Intel E5-2697 cores, Tp is the wall time with p nodes
(p ≥ 1). S p is the statistic generally used to show the code scalability.

Figure 5: The improvement in time without the solver when reordering owned particles without saving the neighbour list compared with the original
linked list in serial

In Section 2, the implementation of the nearest neighbour list searching data structure was described, this results
in a new implementation particles ordering. As it is not necessary to save the neighbour list, this has not only reduced
the memory footprint, but also results in a better performance improvement for particles ordering. The resulting
improvement in performance when not saving the neighbour list calculation for different ordering methods is shown
in Fig. 5. Not saving the neighbour list implementation has resulted in improvements up to 16%. This is largely due
to the reduction of redundant calculations of smoothing gradients and other floating point operations, and providing a
more favourable pattern of data accesses by looping over cells.

Fig. 6 shows the overall performance of the ISPH3D running 10 time steps, Fig. 6a gives the wall time of each
components/kernels in the ISPH3D. Fig. 6b gives the efficiency of each components/kernels. The efficiency defined in
Equation 1. The PPE gives overall performance of pressure Poisson solver using GMRES and HYPRE BoomerAMG
as preconditioner. Zoltan Part gives the costs of domain decomposition and dynamic load balancing using zoltan.
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MBT is the cost of newly implemented multiple boundary tangent method. SPH KERS are those SPH method related
kernels.

In the Fig. 6a, we can see the majority of the walltime is spent in solving the pressure Poisson equation which is
one of the aims of an efficient parallelisation of ISPH. The MBT and other SPH related kernels account very small
percentage compared with pressure solver. The partition and repartition using zoltan(see Zoltan Part) are also not
negligible.

In the Fig. 6b shows the scalability of each kernel. Firstly, we can see the ISPH kernels and MBT are able to scale
linearly. With up to 12288 cores, it can still achieve 99.04% and 97.5% efficiency respectively. The MBT’s good
scalability is due to mirror particles generation is local operation and there are no MPI communications are involved
at this stage. Although zoltan partition and repartition costs are not negligible, but their scalibility are also very good.
In the PPE solver part, With 12288 cores, The overall pressure Poisson solver can still reach more than 40% efficiency.
However, the scalability of those relatively low cost parts, like PCSETUP, MatAssemble becomes worse (only 20%
efficiency with 12,000 cores) when using a large number of cores. They now become the bottleneck that needs to be
addressed for the complete scalability of ISPH3D. These issues need to be further investigated.

(a) ISPH3D Walltime Analysis

(b) ISPH3D Parallel Efficiency Analysis

Figure 6: Strong scaling results for the whole ISPH3D using up to 512 XC30 nodes (12288 cores).

6. Conclusions and Identification of Future Work

New developments to enable incompressible smoothed particle hydrodynamics (ISPH) for complex geometries
for massive simulations have been presented. For the purpose of software scalability and extensibility, a data pre-
conditioning technique has been implemented to redesign the nearest neighbour searching data structure to easily
accommodate multiple types of particles (fluid, domain boundary, floating object). The capability to deal with irregu-
lar distributed particles in parallel has been demonstrated with HSFC partition method.
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A point-in-object kernel has been implemented for mirror particle generation with curved solid boundaries and
solved the issue of mirror particles over generation for MBT method. Due to complexity of testing objects with
complex geometries, the methods have been tested using a 3-D cylinder. This has allowed the further task to be
identified to extend the point-in-polyhedron algorithm for more general complex geometries.

The novel local uniform stencil (LUST) boundary method has been implemented. In 3-D,this methods involves
triangulation of solid surface. Due to the triangulation it has been identified that the entire solid object must be shared
across partitions which is not efficient in terms of memory use.

Comparing the boundary techniques of MBT and LUST, both have requirements of using point-in- polyhedron
algorithm, which needs further development for more general complex geometries. In addition, they both have issues
to predict the memory usage prior to simulation which may hinder the usage for larger-scale problems.

Flow around the cylinder has been used to benchmark the code and the dam break with cylinder obstacle test case
on ARCHER. Both showed the promising efficiency with 12,000 cores using up to 100 million particles. This remains
to be further developed.
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