EMPIRE optimization and interfacing

Peter Jan van Leeuwen, Phil Browne, and David Scott

Data assimilation can be defined as Bayesian Inference for the geosciences. It is an
essential part of any prediction system as it is a mechanism to generate the best
starting point of the forecast based on both the numerical model and all
observations available. As such it is used in all branches of the geosciences, with
varying sophistication. Most advanced are weather prediction applications, where
the system dimension is very high, currently over 10° dimensional state vectors and
very short run times (a new 5 day forecast has to be ready every 6 hours) so
extremely efficient algorithms are needed. These codes grow over time and are very
hard for academics to use. To this end we developed the extremely efficient and
easy to use EMPIRE software system for academic use. Interestingly, the weather
forecast centres like Met Office and the European Centre for Medium Range
Weather Forecasting ECMWF have shown considerable interest in this
development. This project is about making EMPIRE more efficient in terms of
random number generation and linear solves, which are the current performance
bottlenecks.

Introduction

Data assimilation is the science of combining observations of a system with a
numerical model of that system in order to improve the model forecast, to obtain
a better description of the system, or to directly improve the model. It has a firm
mathematical basis in Bayes theorem, and explores methods like the Kalman
filter and particle filters, and methods from optimal control, inverse problems,
and machine learning. Quite often the applications are very high dimensional, up
to 10° at present for numerical weather prediction, asking for very efficient
methods and codes. The most efficient methods that provide best estimates
including uncertainty are based on Monte-Carlo integrations. It turns out that the
data-assimilation algorithms can be coded almost as black boxes for the different
models, from weather forecasting and other geophysical applications to biology
and neuroscience. This motivated the formulation of the data-assimilation
software package EMPIRE that encodes several state-of-the-art data-assimilation
algorithms in a very efficient way. This development allows researchers in all
the application fields to concentrate on their science without having to reinvent
the wheel. Through the National Centre for Earth Observation the EMPIRE
system is maintained and developed further into a national tool for the
geosciences and beyond.

This project consists of two parts, the first on more efficient normal random
number generation, and the second on coupling EMPIRE to PETSc for more
efficient linear solves.

Efficient random number generation

As part of it's sequential methods for DA, a huge amount of stochastic
perturbations are required. As an example, running a 32 member ensemble of
climate models required the generation of around 1trillion normally distributed
random numbers. [32*2314430*180*72=959840409600]

The system used to rely on a random number generator that was downloaded
from the internet without regard for it's efficiency. Until now, other operations
were substantially more costly than the random number generations. Following
on from other algorithmic developments, the optimization of the generation of
random numbers is now a priority for large-scale use on ARCHER.

The first part of the project was tasked with ensuring the optimality of the
random number generation that is used. Specifically, vectorisation of these
would like to be achieved as they are currently sequentially generated (within an
MPI thread). There are complications with the parallelisation inherited by the
code structure as the code is a hybrid MPI/OpenMP implementation. Hence,
ensuring independence across MPI threads was crucial.

An existing implementation of the Ziggurat pseudo random number generator
was modified to exploit the vector registers present in modern chips such as the
Intel Sandy Bridge processor. As the length of a vector register varies between
processor types the code has to compile time parameters that may be used to
tune the code for different register lengths.

Speedup of ziggurat over randon_d

12 T T
—t Cray speedup
Gnu speedup

18 b

Speedup
-
T
1

1680 16800 18060 180808 1e+086 1e+87 1e+88 1e+89
Nunber of randon nornals

Figure 1: Speed up in normal random number generation compared to the old
algorithm for the Cray and the Gnu compiler as function of the number of random
numbers generated.

The scaling of the random-number generation with the number of processors
was also tested, and perfect scaling has been achieved, as depicted in figure 2

Scaling of randon nornal generators

180 T T T T T T
—+— Cray randon_d "_’._)»,
—»— Cray ziggurat
—— Gnu randon_d e
18 | —&— Gnu ziggurat { /iq
+ /
1r f' i
.,'+-.-
o 8.1 - 4
5 -l -
-
S e.e1f - 1
? e
=
8.801 s e i
.-"".I -~ & ~
8.8001 | P i
1e-85 F |
4=
1e-86 . 1 L I I L
1080 1000 10600 100000 1e+06 1e+07 1e+68 1e+69

Nunber of randon nornals
Figure 2: Scaling of random number generation algorithms.

Each MPI process requiring random numbers has its own copy of the random
number generator which is seeded with a number derived from the process’s ID.
The code as used in EMPIRE generates four 32bit pseudo random integers at a
time. This is possible as the Sandy Bridge processors which make up ARCHER’s
compute nodes have 128bit registers. The random numbers are stored in an
array and supplied to the calling MPI process as required. When all four integers
have been used the next request for a random number triggers the generation of
four more.

The new algorithm was found to achieve significant speedup compared to the
existing algorithm within the EMPIRE software framework, as demonstrated in
figure 1. This shows that a huge speed up has been achieved, as much as 11x
faster when using the GNU compiler, and a factor of 2.5 using the Gray compiler.

This algorithm and hence speedup will be adopted by many users of ARCHER
and other HPC systems in areas including meteorology, climate science, space
weather, oceanography and neuroscience.

We also investigated the quality of the normal random numbers. Figures 3 and 4
show that the random numbers follow the Gaussian distribution which we
require, the classic “bell-shaped” curve. Figure 5 shows the difference in the

Density

distributions with different compilers and algorithms. These are precisely within
the bounds we would expect with the finite sample size we have used to generate
the distributions.

PDF

produced by ziggurat using cray conpiler

-4

-3 -2 -1 [1 2 3 a

Density

POF produced by randon_d using cray conpiler

-4

-3 -2 -1] 1 2 3 4

Figure 3: Gaussian distributions generated by the ziggurat and random_d
algorithms using the cray compiler.

PDF produced by ziggurat using gnu conpiler

Density
®
Y

-4 -3 -2 -1] 1 2 3

Density

PDF produced by randon_d using gnu conpiler

Figure 4: Gaussian distributions generated by the ziggurat and random_d
algorithms using the gnu compiler.

Differences in densities

0.8012

8.861

)
=
8
3
X

0.0002

Density differences

-6.0002

-8.0084

-0.0006

Gnu randon._d - Cray randon.d
Gnu randon_d - Gnu ziggurat
Gpu randon_d - Cray ziggurat

-0.0008
-4

Figure 5: Differences in the randomly generated distributions with the ziggurat
algorithm and the cray compiler, compared with the original random_d algorithm

using th

e gnu compiler.

Efficient linear solves

EMPIRE is designed as a general-purpose data assimilation software package.
Many of these data-assimilation algorithms are dependant on linear solves, and
the efficiency of these can be the bottleneck in the code.

Therefore, part 2 of the project investigated a usable way to interface with
numerical linear algebra software such as PETSc. Linking EMPIRE to PETSc to
leverage the highly optimized numerical linear algebra such as Krylov methods
and algebraic multigrid methods will allow new data assimilation algorithms to
be implemented.

For example, EMPIRE has included within it an Ensemble Transform Kalman
Filter (ETKF) which calls LAPACK to perform an SVD to do a linear solve. The
more ubiquitous Ensemble Kalman Filter (EnKF) has an update step of the form:

Xn+1 :Xn + Kb
where K=PfHT (HPfHT + R)!

and hence could be implemented should an efficient method for the linear
algebra be found.

This structure of this problem is pervasive in data assimilation, and hence such
linear algebra could be used for implementing Kalman filters, Ensemble Kalman
smoothers, optimal interpolation etc., including fully nonlinear methods, and
thus giving the whole user community access to new methods which have the
potential to improve their science.

Here, the data structure of EMPIRE has proved to be a challenge to the
integration of the PETSc library. PETSc defines the manner in which it expects its
matrices (or matrix operators) to be stored in distributed memory. EMPIRE by
necessity has partial information (either matrix entries or vectors in a low rank
decomposition) on each MPI process. Further, each MPI process may be required
to do the linear algebra operation with its own right hand side data.

PETSc (the Portable, Extensible Toolkit forScientific Computation) facilitates the
solution of sets of linear (and non-linear) equations. Usually the linear operators
are represented by matrices but it is possible to represent them by functions
which operate on vectors. This is referred to as a matrix free formulation.

If matrices are used then PETSc can construct various preconditioners from the
matrices. Using the matrix free approach this is not possible and the user has to
supply the preconditioner. Before the work being described here was carried out
EMPIRE already used its own matrix free approach. The user was required to
supply a number of operators represented as functions on vectors. Amongst
these were an operator called R and its inverse InvR. Fortunately InvR is usually
a good preconditioner for the problem to be solved so it is possible to use PETSc
to carry out the linear solves. This involves writing versions of the operators that
act on PETSc data structures (Vecs) and wrapping them up so that they can be
used by PETSc pretty much as matrices would be. Finally these wrapped

operators are registered with the linear solver in place of the usual matrix
representations.

Specifically, the linear algebra equation
(HQH*T+R)x=b

was solved to test the PETSc integration. To this end we use R = 0.1], with I the
identity matrix, H is a projection operator into the first half of the state and
matrix Q = 0.21. PETSc was employed in matrix-free mode. The solver was
GMRES, preconditioned by R-1.

With random right-hand sides, out of 10 tests, only a single test had a residual >
10-15, Preconditioning by R is typically what we will use in most applications as,
in the case of uncorrelated observation errors, R is diagonal hence very easily
inverted. These results show that the coupling has been very successful and
future EMPIRE users will be able to exploit this efficiency in full.

Conclusions

This project has been highly successful and all its objectives have been achieved
within the allocated time. Specifically, the new normal random number
generation has been sped up by a factor 2.5-11, resulting in a total speed-up of
the code for high-dimensional applications by a factor 2-9. Furthermore, the
coupling of PETSc to EMPIRE will allow for much more efficient linear solves. No
benchmark figures are available for the latter as this will be highly problem
dependent, but it is allowing us to encode a much larger class of data-
assimilation methods efficiently within the EMPIRE software system. Both
improvements will be felt immediately by the fastly growing user group of the
system.

Acknowledgements
This work was funded under the embedded CSE programme of the ARCHER UK
National Supercomputing Service (http://www.archer.ac.uk)

