
Moving mesh methods in Fluidity and Firedrake

T. M. McManus1,2, J. R. Percival1, B. A. Yeager1, N. Barral1, G. J. Gorman1, and M. D. Piggott∗1

1Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
2Current address: Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA

(This work was performed while TMM was under the auspices of Imperial College London)

April 3, 2017

Abstract

This report summarises the work conducted under the eCSE (embedded Computational Science &
Engineering) project ‘Integrating mesh movement (r -adaptive) technology within Fluidity and the
PRAgMaTIc parallel anisotropic (h) adaptive mesh toolkit’. The overall objective was to integrate
new mesh movement (or r -adaptive) methods within two existing PDE solver frameworks (Fluidity
& Firedrake) which, to differing degrees, already possess h-adaptive capabilities.

Contents
1 Introduction 2

1.1 Background . 2
1.2 Aims . 3

2 Underlying methods and libraries 3
2.1 Fluidity . 3
2.2 Firedrake . 4
2.3 PRAgMaTIc . 4

3 Existing hr-adaptivity framework 4
3.1 Coupling mesh movement with governing model equations . 5

4 Mesh movement methods overview 5
5 Examples of target applications 6

5.1 Advection problem (evolving internal solution field – shear & rotation) 6
5.2 Oscillating cylinder (evolving internal structure – translation) 8
5.3 Turbines and pumps (evolving internal boundary – rotation) . 8
5.4 Seabed scour (evolving external boundary – translation & deformation) 9

6 Benchmarking & profiling 9
7 Achievements 11
8 Conclusions & future work 11
9 Acknowledgements 12
A Appendix: r-adaptive mesh movement methods 13

A.1 Laplacian smoothing . 13
A.2 Winslow smoothing . 13
A.3 The method of Ceniceros & Hou . 13
A.4 Winslow’s variable diffusion method . 14
A.5 Linear elastic analogy . 15
A.6 Lineal spring analogy . 15
A.7 Viscous drag analogy . 15
A.8 Lineal-torsional smoothing . 16

∗Corresponding author: m.d.piggott@imperial.ac.uk

1

1 Introduction

The numerical solution of large-scale, time-dependent, three-dimensional partial differential equations
(PDEs) is inherently computationally expensive. Even with access to large high-performance comput-
ing (HPC) systems, efforts to improve computational efficiency are still required in order to solve ever
and ever larger problems, and/or to provide faster run-times for use within iterative design [12] or
uncertainty quantification studies. Adaptive mesh methods represent one category of approaches to
achieve this, and indeed have been used extensively within the open source Fluidity code for the study
of industrial and geophysical flow problems, e.g. [18, 20, 22, 19, 24, 21, 1].

Broadly speaking, adaptive methods update the computational mesh in some manner in response
to error indicators/measures which are based upon known or computed solution characteristics. For
the purposes of this work we characterise these methods in one of two ways:

1. h-adaptive methods which locally alter the mesh spacing via structural changes to the mesh,
e.g. dividing/collapsing edges/elements or completely regenerating the mesh, and consequently
change the degree of freedom count for the problem;

2. r -adaptive (as in relocation/redistribution), or mesh movement, methods which maintain the
mesh and its structure (i.e. its connectivity and degree of freedom count) but redistribute the
vertices of the mesh in order to increase or decrease mesh resolution locally.

Note also that these techniques can be used in combination, such as in hr -adaptive methods which both
move the mesh as well as have the option for making structural changes to it where and when necessary,
e.g. to avoid mesh tangling, which imparts significantly more power, flexibility and robustness to the
overall adaptive mesh functionality.

Note that the terms adaptive mesh refinement (AMR), adaptive remeshing, mesh optimisation, etc
are used by some as synonyms for h-adaptivity, while for others these each have clear distinctions.
Here we take the latter view, making use of mesh optimisation methods as a class of h-adaptivity.

Finally note that we are excluding consideration of p-adaptivity based methods which do not alter
the underlying mesh, but vary the degree of approximation over the cells making up the mesh.

This project started from a strong base of h-adaptive (mesh optimisation) functionality, with the
overall objective of the work being to increase our ability to make use of r -adaptive methods in
challenging real-world problems, and hence also deliver combined hr -adaptive capabilities.

1.1 Background

This work built upon a long track record in the development and application of mesh adaptivity
technology at Imperial College London [23, 26, 27, 25, 11, 13, 4]. To date this has revolved almost
entirely around so-called mesh optimisation, an example of an h-adaptive method, where the shape
and size of the elements making up an unstructured mesh are periodically updated in response to
an evolving numerical solution. The aim being to only use high mesh resolution where and when it
is needed to optimise the accuracy and efficiency of a calculation. Significant effort has gone into
associated parallel performance, dynamic load balancing [14] and accurate mesh to mesh interpolation
[11], including a previous dCSE project which integrated the Zoltan data management library with
our existing mesh adaptivity library [30].

Mesh movement, or r -adaptive, methods take a different approach where the number of elements
in a mesh, and their connectivity, remains constant while the locations of the nodes of the mesh
evolve [6]. Through this evolution mesh resolution can again simply be focused on particular spa-
tial locations. However, major benefit result for problems with evolving solution features (such as
shocks/fronts/interfaces or boundaries) which can be continuously tracked by higher resolution com-
ponents of the mesh. If these evolving features are particularly important to a problem, or hard to
solve, then mesh movement methods can provide a very powerful addition to an underlying PDE solver.

However, since the total degree of freedom count remains fixed, and there is the potential (and for
some methods/applications an inevitability) for elements to become badly skewed or even inverted,
mesh movement methods benefit greatly from the additional robustness afforded by combining with

2

some form of h-adaptivity (leading to a so-called hr -adaptive method). In particular, the ability of
mesh optimisation techniques to only make local updates to the mesh, including simply ‘flipping’ edges
and faces, makes this a particularly attractive approach for ensuring mesh quality and robustness. We
note that r -adaptive methods can be made to be robust and avoid tangling when adapting to solution
features within the domain. However, a major target application for this work include problems where
internal or external boundaries move, pinch or rotate, and here it is inevitable even with the most
sophisticated r -adaptive approach that problems with mesh quality will result.

1.2 Aims

The overall aim of this work was therefore to integrate new mesh movement (r -adaptive) functionality
with our existing Fluidity model and mesh optimisation (h-adaptive) capabilities/libraries. The latter
also includes the PRAgMaTIc parallel anisotropic adaptive mesh toolkit which has recently been
integrated with the Firedrake PDE solver framework [4].

The principle objectives of this project were therefore to:

1. Parallelise a pre-existing prototype mesh movement algorithm – this took the form of an imple-
mentation of one approach to mesh movement, namely the solution of a PDE describing a map-
ping from a fixed, uniform computational domain/mesh into an adapted physical domain/mesh,
e.g. as has emanated from so-called elliptic or Poisson mesh generation in the 1960s/70/80s. Our
existing approach solved these PDEs in serial using FEniCS/Dolfin infrastructure.

2. Expand available mesh movement algorithms – our existing algorithms included simple Lagrangian-
based mesh movement and approaches based on the solution of an elliptic PDE (namely Laplacian
smoothing and the so-called Winslow method). We planned to use the flexibility afforded by code
generation approaches (Dolfin/Firedrake) to include more sophisticated “PDE-based” methods.
In addition, we planned to implement some examples of an alternative approach to mesh move-
ment, namely so-called “spring-based analogy” iterative methods which may well be appropriate
for certain applications.

3. Integrate mesh movement with the Fluidity CFD & marine modelling code – Fluidity is used
across a very wide range of application areas, many of which currently make successful use of mesh
optimisation, but which would benefit significantly from mesh movement. Here we planned to
implement the ability to invoke mesh movement from within Fluidity and explore its value across
several application areas. We also planned to consider the combined use of mesh optimisation
with mesh movement (i.e. hr -adaptivity), largely to mitigate issues with mesh tangling as would
be expected with sustained use of mesh movement alone.

4. Integrate mesh movement capabilities with Firedrake and its initial coupling to PRAgMaTIc – To
allow for the further uptake of the developed r -based methods by wider applications codes we
will integrate them with the PRAgMaTIc mesh optimisation library through the utilisation of
PETSc’s DMPlex unstructured mesh management library, with a demonstration using a Fire-
drake based PDE solver.

2 Underlying methods and libraries

2.1 Fluidity

Fluidity is a general purpose finite element problem solving environment, with the majority of its
applications in industrial and geophysical fluid dynamics. It is being used across a wide range of funded
projects, primarily in the areas of energy generation, pollution dispersal, and Earth system science.
Performance analysis of Fluidity has been addressed in previous dCSE and eCSE projects12. More
recent performance results are described in [16, 17]. In particular, a previous project demonstrated

1http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-zoltan/fluidity-zoltan.pdf
2http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom01/fluidity-icom01.pdf

3

http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-zoltan/fluidity-zoltan.pdf
http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom01/fluidity-icom01.pdf

scalability on up to 16,384 cores using hybrid MPI/OpenMP parallelism3. Scaling on ARCHER in the
context of parallel I/O and the integration of PETSc’s DMPLex mesh management library has been
addressed as part of eCSE project ‘Scalable and interoperable I/O for Fluidity’ (eCSE01-009)4, and
also in the context of Firedrake5.

2.2 Firedrake

While Fluidity is a very flexible and robust finite element based PDE solver framework which has been
developed and re-coded in modern Fortran over the past decade it does have limitations. Firedrake on
the other hand takes a far more modern approach to the finite element solution of PDEs where the weak
form of the discretised PDE is defined in a high-level domain-specific language, and automatic code
generation techniques are used to generate low level code which is robust and optimised for a target
platform. Additional benefits of the code generation approach are that powerful adjoint models are
far more easily generated [10], leading to the ability to perform parameter optimisation and sensitivity
studies far more readily [12].

In addition to targeting Firedrake as the basis for application codes which will make use of mesh
movemement, Firedrake also offers a solution for the implementation of r -adaptivity via the approach
that requires the solution of a PDE. These PDEs can be complex, nonlinear and hard to solve, and the
ease with which methods for this can be implemented using Firedrake will be exploited in this project.

Firedrake is also actively being run on ARCHER to perform a range of benchmarking problems6,
with preliminary results showing good strong and weak scaling of up to several hundred cores.

2.3 PRAgMaTIc

PRAgMaTIc is a standalone anisotropic mesh optimisation library, improving the mesh adaptation
tool from Fluidity with recent software development concepts and advances in meshing. From an
original mesh and a prescribed metric field on that mesh (a size map, generated from a solution
field), it generates a new unstructured adapted mesh, i.e. a mesh whose elements respect the sizes and
orientations prescribed by the metric field. If the metric field is chosen wisely, the underlying equations
are resolved with a greater accuracy on the resulting adapted mesh

PRAgMaTIc handles meshes with complex geometries in both 2D and 3D, and is able to generate
meshes with very high aspect ratio (>10,000) elements, thus taking advantage of the anisotropy of the
solutions to reduce the number of degrees of freedom.

As opposed to the algorithm within Fluidity, PRAgMaTIc was devised from the beginning as a par-
allel library, and combines shared- and distributed-memory parallelism. The adapted mesh is obtained
through a series of advanced local mesh operations: refinement, coarsening and edge/face swapping
optimise the resolution and the quality of the mesh, and quality-constrained Laplacian smoothing
fine-tunes the mesh quality. Advanced algorithms are used to perform mesh optimisation operations
concurrently on a partition, while remeshing the halos coherently without repartitioning. Information
on the integration of PRAgMaTIc with PETSc and Firedrake may be found in [4].

3 Existing hr-adaptivity framework

The parallel, load balanced, anistropic hr-mesh adaptivity algorithm used in Fluidity is described in
[23, 25, 14]. The algorithm uses a series of mesh operations to minimize a mesh quality functional which
locally evaluates element size and shape with respect to a metric tensor. At a particular time level,
this tensor thus encodes the ideal (anisotropic) size of elements. In 3D a bespoke method implmented
for Fluidity is used [23], while in 2D Fluidity iterfaces with the ani2d library7.

3http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom02/fluidity-icom02.pdf
4http://prism.ac.uk/wp-content/uploads/2014/05/mlange_dmplex-io.pdf
5http://www.mcs.anl.gov/petsc/petsc-20/conference/Lange_M.pdf
6https://github.com/firedrakeproject/firedrake-bench/wiki/Archer
7http://ani2d.sourceforge.net/

4

http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom02/fluidity-icom02.pdf
http://prism.ac.uk/wp-content/uploads/2014/05/mlange_dmplex-io.pdf
http://www.mcs.anl.gov/petsc/petsc-20/conference/Lange_M.pdf
https://github.com/firedrakeproject/firedrake-bench/wiki/Archer
http://ani2d.sourceforge.net/

Prior to this project the pre-existing framework was already termed as being hr , since it did
allow the user to specify grid velocities analytically, and hence to solve the physical PDEs in moving
reference frames. It also allowed for restricted mesh movement in response to an evolving free surface
field deforming the whole solution domain. But it must be made clear that this was by no means
a ‘fully functioning hr -adaptive capability’. We also note that very limited ‘mesh movement’, via
discrete Laplacian smoothing, is often utilised as a step within mesh optimisation to improve overall
mesh quality.

3.1 Coupling mesh movement with governing model equations

Fluidity implements a finite element solver for the Navier-Stokes equations, including a linear ALE
(arbitrary Lagrangian-Eulerian) framework as described in [8], in which for each timestep the equations
take the form

∂u

∂t

∣∣∣∣
ξ

+ (u− v) · ∇xu = −∇xp+
1

Re
∇2
xu, (momentum)

∇x · u = 0. (continuity)

Here we have chosen to give the incompressible, constant density form, with u(x, t) and p(x, t) the
Eulerian fluid velocity and pressure. The mesh coordinate, ξ, is the assumed to satisfy an implicit
auxiliary equation,

dx

dt

∣∣∣∣
ξ

= v (ξ, t) ,

in terms of the mapping between the mesh and the physical Eulerian spatial coordinate, x(ξ, t). In
particular, if we choose to apply the fluid velocity in the flow equation for the mesh coordinate, so that
we may identify it with the Lagrangian coordinates for the flow, then the advection term vanishes as
expected.

We discretize this equation set using a P1DGP2 element pair for velocity and pressure, and a P1

discretization for x and v over a simplicial partition of the domain, Ω. Closure demands that we
describe the mesh velocity v in terms of the other quantities,

v := v (ξ;x (t0) ,u,Ω) .

Mesh movement algorithms differ in how they perform this closure. The methods implemented as part
of this project are summarised in the next section, with mathematical details given for completeness
in the appendix.

4 Mesh movement methods overview

The mesh movement algorithms considered in this project can be split into three families:

1. “Prescribed” mesh velocity methods – where a subset of the nodes of the mesh move in a pre-
scribed manner defined either by the underlying fluid motion (e.g. as in Lagrangian-like mesh
movement methods), or through a pre-defined or diagnostically-computed movement of a struc-
ture or boundary within the domain. With such a simple approach, issues can arise rapidly with
mesh tangling although this can be addressed through periodic use of mesh optimisation where
edge/face swapping can mitigate poor element quality.

2. “Spring”–based methods – where a subset of the nodes are computed as per approach 1 above (to
track an evolving boundary), and the rest of the mesh is then evolved based on an assumption
that element edges are a network of springs. While this can help with the issue of mesh quality,
mesh optimisation still needs to be used periodically.

3. “PDE”–based methods – here a PDE is solved to yield a mapping from a fixed “computational”
domain to an adapted mesh in the “physical” domain upon which the underlying problem of
interest is discretised. The nature of the precise “moving mesh PDE” solved imparts different

5

mesh quality properties on the resulting mesh. While poor quality meshes can thus be avoided,
the approach still generally needs to be combined with mesh optimisation, e.g. to allow for the
number of degrees of freedom in the discretisation to change – e.g. to grow as a dynamic problem
spins-up.

The current state-of-the-art in combined mesh optimisation & mesh movement can be found in [2]
which follows approach 3 (with the PDE motivated by a linear-elasticity analogy, and hence is also
related physically to approach 2). The state-of-the-art in PDE-based mesh movement involves the
solution of the nonlinear Monge-Ampere equation [5].

We have been tackling the latter PDE-based approach through a novel approach which uses code
generation technology (such as is implemented within the Firedrake project) in order to prescribe the
PDE (and hence the precise mesh movement method) in a high-level domain-specific language (UFL),
and to automate the generation of appropriate and optimal finite element code. This provides a solu-
tion to the mesh movement PDE and thus the transformation from computational to physical space
yielding the adapted mesh. As the underlying solution evolves, and updated error metrics/indicators
are available at every time step, the mesh movement PDE is solved repeatedly providing a new transfor-
mation and hence a “moving mesh”. The use of a single Firedrake-based approach means that different
mesh movement strategies can be used within the same framework, and that parallelisation and code
optimisation strategies carry across rather than having to be done on a case by case basis.

5 Examples of target applications

The application areas for which mesh movement technology is required (or highly desirable), in isolation
or combined with mesh optimisation, can be split into two categories within computational fluid
dynamics (CFD), namely those with:

1. Evolving internal structures (with two-way coupling between the structures driving, or being
driven by, fluid dynamics), e.g.

(a) Turbines – for the highly accurate simulation of wind/tidal turbines and their turbulent
wakes for the purpose of optimising the designs of turbines, and understanding interactions
between devices and subsequent impacts on optimal array designs.

(b) Centrifugal pumps – to model pump performance, optimise designs, and further to predict
and minimise component wear as per area 1a above.

2. Evolving external boundaries (where two-way dynamic coupling between domain geometry and
resulting fluid dynamics, which drives boundary evolution, needs to be modelled), e.g.

(a) Wear in industrial fluid dynamics – to track the dynamic evolution of pipe/ pump walls in
response to the motion of abrasive slurry in mineral processing.

(b) Scour in geophysical fluid dynamics – as above but in response to sediment transport on
the seabed around structures in the coastal ocean.

(c) Ice melting/freezing – to better represent and hence understand processes by which ice
shelves in Antarctica/Greenland evolve, thin, and lead to sea level rise.

5.1 Advection problem (evolving internal solution field – shear & rotation)

This is a simple example where r -adaptivity is used to track an internal solution feature – here the
advection of a top hat function in a velocity field with shear and rotation. We use this opportu-
nity to present a result calculated entirely within Firedrake. A PDE-based r -adaptive method was
implemented with Firedrake, and coupled to an advection solver also implemented with Firedrake.
This particular example used the method of Cenicerous & Hou described in section A.3 The monitor
function is given by M = mI, where m is defined by

m =
√

1 + (∇u)2 , (1)

6

Figure 1: Meshes at a series of time levels computed using r -adaptivity only for the advection problem.

Figure 2: Solution fields at a series of time levels computed using r -adaptivity only for the advection
problem.

where u is the field to which we want to adapt the mesh.
We consider the scalar advection equation for a quantity u on domain Ω:

∂u

∂t
+∇ · (cu) = 0 , (2)

where c is a prescribed velocity field defined on Ω. Cases in both 2D and 3D domains Ω were considered.
For completeness we present the details for the 3D case, while only showing results for 2D. In 3D the
computational domain is a [0, 1] × [0, 1] × [0, 1] cube. At t = 0, u = 0 everywhere except in a ball
of radius 0.35 centered in (0.35, 0.35, 0.35), which models a bubble and where u = 1. The following
velocity field is considered, so the bubble quickly becomes distorted:

c(x, y, z, t) =


2 sin2(πx) sin(2πy) sin(2πz) cos(2πt/T)

− sin(2πx) sin2(πy) sin(2πz) cos(2πt/T)

− sin(2πx) sin(2πy) sin2(πz) cos(2πt/T)

, (3)

where T is the period. Here T = 6, and the simulation is run until t = 1.5.
The moving mesh equation is solved at each advection solver time-step, to ensure that the mesh

is always adapted to the advected quantity. Both moving mesh and advection equations are solved
using a Lagrange P1 finite element method with SUPG stabilisation. This is easily achieved thanks
to Firedrake: one just has to write the variational formulations in its high-level language, and the
corresponding low-level (parallel) solver is automatically generated.

For the 2D case snapshots of the adapted meshes and solutions are shown in figs 1 and 2. The effect
of the adaptation is clearly visible: the mesh vertices are moved from the regions far from the advected
bubble to the vicinity of the interface of the bubble, and track it as it advects and deforms, so that the
accuracy of the solution is improved. Note that as a relatively simple method for the solution of the
advection problem is used here (i.e. SUPG), the lack of resolution leads to strong spurious smearing
of the solution field which is not seen in the results from fig.2 which use r -adaptivity.

The simulation was run in serial on a 150×150 2D mesh (22,500 vertices and 45,000 triangles), and
on 16 cores on a 125×125×125 mesh in 3D (2,500,000 vertices and 12,000,000 tetrahedra).

7

Figure 3: Two snapshots of the oscillating cylinder problem for different mesh movement methods.
The left image shows the result with prescribed mesh movement, without hr -adaptivity, the right uses
viscous drag mesh movement with an hr -adaptive mesh. The number of degrees of freedom in each
is approximately equal. Here a case for a oscillation amplitude of 0.15 cylinder diameters (a small
displacement case) and f = 0.22 is shown.

5.2 Oscillating cylinder (evolving internal structure – translation)

Here we visit the problem of the oscillating cylinder in a cross flow. While this is is close to a standard
test case for CFD methods with deforming internal boundaries, there does also exist considerable
experimental data. This problem was solved using Fluidity, with various choices of mesh movement
method examined for their effect on computational accuracy and run-time.

We solve the non-dimensional incompressible constant density Navier-Stokes equations in a 2D
domain of size 38.4×25.2, based upon [15]. The inflow condition is u(0, y, t) = 1, with free slip
conditions on the side walls and do-nothing conditions on the outflow. The domain contains a cylinder
of unit diameter, with its centre 8 units from the inlet, at the origin of the local coordinate system. The
viscosity value is chosen to give a cylinder Reynolds number of 200. The cylinder is forced to oscillate
such that the y-coordinate of the centre of the cylinder satisfies sinusoidal harmonic motion. The use
of mesh movement here within an ALE framework allows for an explicit boundary representation for
the cylinder, in contrast to the immersed boundary method employed in the earlier paper.

Since the problem involves a moving boundary, there is no constant mesh against which the various
mesh movement and adaptivity methods can be compared. Instead we introduce the concept of a
prescribed mesh movement (as example of the “Lagrangian” like family described above), in which a
user-specified grid velocity is applied to move the entire mesh. Since the motion of the cylinder is
specified analytically a-priori, this global velocity field can also be specified analytically. Here we take
a piecewise linear, continuous field, which represents a continuation, through linear interpolation in
the y variable, of the boundary motion into the interior of the domain.

For small displacements of the cylinder, all of the implemented mesh movement methods were found
to be able to generate valid meshes for multiple oscillation cycles (refer to benchmarking section).
However, for large displacements with amplitudes greater than the cylinder size, the Laplacian and
lineal-spring methods were found to give grid velocity fields which lead to tangling and invalid meshes,
regardless of the simulation timestep. The viscous drag and lineal-torsional methods were found to be
the most robust, with the latter particularly resistant to tangling.

5.3 Turbines and pumps (evolving internal boundary – rotation)

These are examples where structures internal to the fluid domain evolve, either driving or being driven
by the underlying fluid dynamics. Of course if these internal structures are also wearing (as in the case
of pumps) then this case overlaps with the boundary evolution case described next. Here we have two
application areas in mind: (i) pumps & engines, in which an interior component rotates relative to a
static exterior, generating unsteady turbulent flows; and (ii) Rotating tidal & wind turbines where we
are interested in the accurate simulation of forces on the turbine as well as turbulent turbine wakes for

8

Figure 4: Images showing physical applications of the new functionality in Fluidity, from left to right:
vorticity and velocity fields for an idealised 2D centrifugal blower; mesh size from an hr -adaptivity
simulation of a 2D slice through a rotating Darrieus style vertical axis turbine; and a 3D simulation of
mesh quality and flow past a horizontal axis wind turbine.

the purposes of optimising individual turbine designs, and in understanding the interactions between
multiple devices for the purposes of optimal array designs and accurate energy resource predictions.
The developments made under this project mean that problems previously intractable to us are now
possible to consider – some examples are given in fig. 4.

5.4 Seabed scour (evolving external boundary – translation & deformation)

This is an example of a problem where two-way dynamic coupling between an evolving domain/geometry
and the resulting fluid dynamics (which in turn drives the boundary evolution) needs to be modelled.
The feedback makes this a complicated problem to solve numerically, but is needed for predictive ac-
curacy and to fully understand the underlying processes at play. We have considered test cases of flow
past horizontal (infinite) cylinders in 2D and vertical piles in 3D. For the 2D case we have built on the
example presented in [28] which made use of an existing serial Laplacian smoothing implementation
via Dolfin. As part of this work we are now making use of the lineal-torsional mesh movement method,
fully functioning in combination with mesh optimisation. For this test case the latter is particularly
needed as large deformation of the boundary close to the pipe leads to pinching as well as significant
stretching of the mesh which r -adaptivity in isolation cannot deal with robustly.

6 Benchmarking & profiling

As part of the embedded CSE project, the various mesh movement methods were compared for their
parallel scaling efficiency within Fluidity on ARCHER. Weak and strong scaling results in the case of
the oscillating cylinder application (with the same parameters as given for fig. 3 – although scaling
results were found to be fairly insensitive to these choices, assuming the method did not tangle) are
shown in fig. 5, with run times normalized by those achieved by the simulation with prescribed grid
velocity (as described in section 5.2).

As predicted, the Laplacian smoother scales particularly robustly, increasing runtime by less than
20% across 96 cores. However, since the method has been shown to be unstable with large displace-
ments, the linear elasticity analogy, which has a slightly larger overhead, but similarly good scaling
behaviour, is recommended. By comparison, running the code applying full hr -adaptivity on every
simulation timestep produced a roughly 300% slow down, compared to a run with the same target
resolution on a fixed topology mesh,

Profiling the individual runs (fig. 6) showed a similar pattern across all mesh movement algorithms,
with the largest additional cost coming from generating the solution of the elliptic problem, rather
than assembly of the discretized operators. Indeed even the most complex method, the lineal-torsional
approach, had assembly costs which were a fraction of those involved in calculating the fluid pressure.

9

1 3 6 12 24 48
Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

tim
e

theoretical linear scaling
prescribed
Laplacian
lineal
lineal-torsional
elastic/viscous

Figure 5: Weak (left) and strong (right) scaling results for the various r -adaptivity methods performed
using Fluidity on the ARCHER HPC system. ‘Prescribed’ refers to the analytical method of defining
the mesh velocity as described in section 5.2, while the other methods are as described in the appendix.

total(prescribed)
pressure velocity Laplacian elastic lineal lineal-torsional

0

100

200

300

400

500

600

700

tim
e

(s
)

Figure 6: Breakdown of profiling data for the Fluidity implementation of the mesh movement methods
for the oscillating cylinder problem on 24 cores of the ARCHER HPC system. The black bar shows
the total runtime for the fluid solver, using prescribed mesh movement, with further splits for the
pressure and velocity solves, coloured by matrix assembly (blue) and linear solve time (yellow). This
is compared against the assembly (red) and solve time for four mesh movement algorithms.

10

7 Achievements

The main achievements of this project may be summarised as follows:

1. We have implemented, validated and benchmarked three families of highly parallelised mesh
movement methods; this delivers on our aim of parallelising a pre-existing prototype method as
well as significantly expanding on both the number as well as types of methods available to us.

2. These have been integrated with Fluidity, as well as its internal mesh optimisation library, to
deliver fully-functional r - as well as hr -adaptivity capabilities to users; associated supporting
manual material and test cases having been written.

3. The methods have been demonstrated on all the target applications discussed in the proposal.
For cases with strong external boundary deformation, or internal boundary/structure rotation,
we are now in a position to tackle, in parallel, problems which were not previously tractable with
our existing h-adaptive methods alone.

4. Based upon associated testing and benchmarking the following initial observations can be made:
Laplacian smoothing (available in 1D, 2D, and 3D) provides a simple and straightforward way
to smooth a mesh that has undergone a small (relative to the domain size) internal/external
boundary deformation. The lineal-spring method provides a more robust (less likely to tangle)
smoother, primarily because it couples mesh movement in the x̂- and ŷ-directions, whilst not
adding too much in terms of computational cost. Important to keep in mind for this method,
however, is that it only prevents inter-nodal collisions and does not ensure that the mesh will
not tangle. For that, the lineal-torsional spring method was implemented which effectively guar-
anteed a mesh would not tangle (owing to the method accounting for elemental area, and not
just edge-length), but at the expense of element quality, and overall computational cost. The
linear elastic and viscous drag methods have proven to be a good compromise in terms of parallel
efficiency and robustness. For rotational problems the viscous drag method appears more robust
than the elastic method, but is less robust than the more costly lineal-torsional method.

Worth noting are the following caveats: (i) The one-parameter elliptic method is currently lim-
ited to Laplacian (i.e. not Winslow smoothing) in Fluidity; and (ii) The current implementation
of the lineal-torsional method is limited to 2D problems, since the complex spring terms needed
to control a tetrahedron volume in 3D are not currently implemented (although this is a straight-
forward extension).

5. Examples of PDE-based mesh movement methods (namely Cenicerous & Hou) have also been
demonstrated as functioning in combination with Firedrake-based application codes. An ap-
proach to allow a full hr -capability through the additional use of PRAgMaTIc is currently being
tested. Implementation of the wider range of mesh movement algorithms as discussed above and
in the appendix with Firedrake will be the subject of future work.

8 Conclusions & future work

This project has achieved its primary goal of making a range of r -adaptive, as well as combined
hr -adaptive, methods available to users of Fluidity. These have been parallelised, benchmarked on
ARCHER, and tested across a range of applications which form representative examples for all of
the diverse real-world use-cases which motivated this work. For Firedrake-based models, a subset
of these r -adaptive methods have also been demonstrated, while full hr -adaptivity, applications and
benchmarking against similar capabilities now available in Fluidity are the subject of ongoing work.
In addition, through further method benchmarking and real-world applications, future work will seek
to identify the most appropriate r - and/or hr -strategy to employ for a given problem type.

11

9 Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK National Supercom-
puting Service (http://www.archer.ac.uk). The authors would also like to thank the complementary
support provided by the EPSRC projects EP/L000407/1 and EP/M011054/1, and industrial research
funding from the Weir Group.

References
[1] M. Abolghasemi, M. Piggott, J. Spinneken, A. Vire, C. Cotter, and S. Crammond. Simulating tidal turbines with

multi-scale mesh optimisation techniques. Journal of Fluids and Structures, 66:69–90, 2016.

[2] F. Alauzet. A changing-topology moving mesh technique for large displacements. Engineering with Computers,
30(2):175–200, 2014.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in
Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[4] N. Barral, M. G. Knepley, M. Lange, M. D. Piggott, and G. J. Gorman. Anisotropic mesh adaptation in Firedrake
with PETSc DMPlex. In International Meshing Roundtable, 2016.

[5] C. Budd, R. Russell, and E. Walsh. The geometry of r-adaptive meshes generated using optimal transport methods.
Journal of Computational Physics, 282:113 – 137, 2015.

[6] C. J. Budd, W. Huang, and R. D. Russell. Adaptivity with moving grids. Acta Numer., 18:111–241, 2009.

[7] H. D. Ceniceros and T. Y. Hou. An efficient dynamically adaptive mesh for potentially singular solutions. Journal
of Computational Physics, 172(2):609 – 639, 2001.

[8] J. Donea, A. Huerta, J. Ponthot, and A. Rodrïguez-Ferran. Arbitrary Lagrangian-Eulerian Methods. In Encyclopedia
of Computational Mechanics, pages 1–25. John Wiley & Sons, Ltd, Chichester, UK, nov 2004.

[9] C. Farhat, B. Degand, B. Koobus, and M. Lesoinne. Torsional springs for two-dimensional dynamic unstructured
fluid meshes. Computer Methods in Applied Mechanics and Engineering, 163:231–245, 1998.

[10] P. Farrell, D. Ham, S. Funke, and M. Rognes. Automated Derivation of the Adjoint of High-Level Transient Finite
Element Programs. SIAM J. Sci. Comput., 35(4):C369–C393, 2013.

[11] P. E. Farrell, M. D. Piggott, C. C. Pain, G. J. Gorman, and C. R. Wilson. Conservative interpolation between
unstructured meshes via supermesh construction. Comput. Methods Appl. Mech. Eng., 198(33–36):2632–2642, 1 July
2009.

[12] S. Funke, P. Farell, and M. Piggott. Tidal turbine array optimisation using the adjoint approach. Renewable Energy,
63, 2014.

[13] G. Gorman, J. Southern, P. Farrell, M. Piggott, G. Rokos, and P. Kelly. Hybrid openmp/mpi anisotropic mesh
smoothing. Procedia Computer Science, 9:1513 – 1522, 2012.

[14] G. J. Gorman, C. C. Pain, M. D. Piggott, A. P. Umpleby, P. E. Farrell, and J. R. Maddison. Interleaved parallel
tetrahedral mesh optimisation and load-balancing. In P. Bouillard and P. Diez, editors, Adaptive Modeling and
Simulation (ADMOS) 2009, pages 101–104, 2009.

[15] E. Guilmineau and P. Queutey. a Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder.
Journal of Fluids and Structures, 16(6):773–794, aug 2002.

[16] X. Guo, G. Gorman, M. Lange, L. Mitchell, and M. Weiland. Exploring the thread-level parallelisms for the next
generation geophysical fluid modelling framework fluidity-icom. Procedia Engineering, 61:251 – 257, 2013.

[17] X. Guo, M. Lange, G. Gorman, L. Mitchell, and M. Weiland. Developing a scalable hybrid mpi/openmp unstructured
finite element model. Computers & Fluids, 110:227 – 234, 2015. ParCFD 2013.

[18] H. R. Hiester, M. D. Piggott, and P. A. Allison. The impact of mesh adaptivity on the gravity current front speed
in a two-dimensional lock-exchange. Ocean Model., 38(1–2):1–21, 2011.

[19] H. R. Hiester, M. D. Piggott, P. E. Farrell, and P. A. Allison. Assessment of spurious mixing in adaptive mesh
simulations of the two-dimensional lock-exchange. Ocean Model., 73(0):30–44, Jan. 2014.

[20] J. Hill, M. D. Piggott, D. A. Ham, E. E. Popova, and M. A. Srokosz. On the performance of a generic length scale
turbulence model within an adaptive finite element ocean model. Ocean Model., 56(0):1–15, Oct. 2012.

[21] J. Hill, E. E. Popova, D. A. Ham, M. D. Piggott, and M. Srokosz. Adapting to life: ocean biogeochemical modelling
and adaptive remeshing. Ocean Sci., 10(3):323–343, 9 May 2014.

[22] C. T. Jacobs, G. S. Collins, M. D. Piggott, S. C. Kramer, and C. R. G. Wilson. Multiphase flow modelling of
volcanic ash particle settling in water using adaptive unstructured meshes. Geophys. J. Int., 192(2):647–665, 1 Feb.
2013.

12

[23] C. Pain, A. Umpleby, C. De Oliveira, and A. Goddard. Tetrahedral mesh optimisation and adaptivity for steady-state
and transient finite element calculations. Computer Methods in Applied Mechanics and Engineering, 190(29):3771–
3796, 2001.

[24] S. D. Parkinson, J. Hill, M. D. Piggott, and P. A. Allison. Direct numerical simulations of particle-laden density
currents with adaptive, discontinuous finite elements. Geoscientific Model Development, 7(5):1945–1960, 2014.

[25] M. D. Piggott, P. E. Farrell, C. R. Wilson, G. J. Gorman, and C. C. Pain. Anisotropic mesh adaptivity for multi-scale
ocean modelling. Philos. Trans. A Math. Phys. Eng. Sci., 367(1907):4591–4611, 28 Nov. 2009.

[26] M. D. Piggott, G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Martin, and M. R. Wells. A new
computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer.
Methods Fluids, 56(8):1003–1015, 2008.

[27] M. D. Piggott, C. C. Pain, G. J. Gorman, D. P. Marshall, and P. D. Killworth. Unstructured adaptive meshes for
ocean modeling. In H. Hasumi and M. W. Hecht, editors, Ocean Modeling in an Eddying Regime, pages 383–408.
AGU, 2008.

[28] J. M. N. Rattia, J. R. Percival, B. Y. B, S. Neethling, and M. D. Piggott. Numerical Simulation of Scour below
Pipelines using Flexible Mesh Methods. In 8th International Conference on Scour and Erosion, 2016.

[29] A. M. Winslow. Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. Journal of
Computational Physics, 1(2):149 – 172, 1967.

[30] P. Woodhams, J. Hill, and P. Farrell. Improving Load Balancing and Parallel Partitioning in Fluidity. HECToR
dCSE technical report„ 2012.

A Appendix: r-adaptive mesh movement methods

A.1 Laplacian smoothing

Here the mesh velocity, v, is assumed to satisfy a PDE,

∇2
ξv = 0, ξ ∈ Ω, v = vD, ξ ∈ ∂Ω,

where the computational mesh coordinate ξ := x(t0) is the initial physical coordinate at the beginning
of the simulation. Since the individual components of v are not coupled, this equation can be solved
using standard numerical methods quickly and compactly.

The Fluidity implementation builds and solves a parallel finite element discretisation of the PDE
using C code based on the data structures and linear solvers of the PETSc software suite [3], coupled
to the preexisting mesh decompositions used within the Fluidity fluids solver. In Firedrake the PDE
based nature of this simple method makes this trivial to implement (cf. the example in the case of the
more complex methods presented in section 5.1).

A.2 Winslow smoothing

In [29], Winslow introduces a mesh smoothing technique similar to Laplacian smoothing, but instead
based upon the mapping ξ ≡ ξ(x). Following this through gives an implicit elliptic equation

∇2
xξ = 0, ξ ∈ Ω.

This may be rewritten in terms of the dependent variable x as[
G−1

]
ij

∂2x

∂ξi∂ξj
= 0, where G = ∇ξx · (∇ξx)T .

Note that these equations are nonlinear, making them more difficult to solve than the equations for
Laplacian smoothing.

A.3 The method of Ceniceros & Hou

The method of Ceniceros & Hou [7] is motivated by the desire to minimize a measure of the gradient
of some PDE solution u in the computational domain; i.e., in one-dimension

min
x(ξ)

∫
ΩC

√
1 + u2

ξ(x(ξ)) dξ = min
x(ξ)

∫
ΩC

√
1 + u2

x(x(ξ))x2
ξ dξ.

13

The Euler–Lagrange form of this equation is u2
x√

1 + u2
xx

2
ξ

xξ


ξ

=
uxuxxx

2
ξ√

1 + u2
xu

2
ξ

. (4)

Through numerical experiments, Ceniceros & Hou determined that (4) still produces satisfactory
spreading of the mesh, and is much easier to solve, when the RHS is set to zero. Setting the RHS to
zero and modifying the LHS to avoid degeneracy, they obtain 1 + u2

x√
1 + u2

xx
2
ξ

xξ


ξ

= 0.

Replacing ux in the numerator with uξ = uxxξ for smoother solutions gives

(Mxξ)ξ = 0, where M =
√

1 + u2
xx

2
ξ .

Ceniceros & Hou note that this equation resembles the 1D Winslow equation with derivatives in
computational, rather than physical, space. As with all methods based upon the mapping x = x(ξ),
the mesh generation equations are relatively simple but also more likely to result in mesh folding than
equations based upon the reverse mapping.

In 2D, the equations become

∇ξ · (M∇ξx) = 0, ∇ξ · (M∇ξy) = 0. (5)

These are the Euler–Lagrange equations for the functional

I(x, y) =
1

2

∫
ΩC

[∇xTM∇x+∇yTM∇y] dξ, (6)

with M = mI. Ceniceros & Hou give a general monitor function for the 2D equations of the form
M = mI, with

m =
√

1 + β2 |∇ξu2|+ g2(u),

where β is a scaling factor and g(u) is chosen based upon the properties of the time-dependent physical
problem being solved; see [7]. Ceniceros & Hou suggest solving (5) by setting the left-hand side equal
to the derivative of the independent variable in pseudotime τ ; i.e.

∇ξ · (M∇ξx) = xτ , ∇ξ · (M∇ξy) = yτ .

The solution can then be marched forward in time to steady state (within some tolerance).

A.4 Winslow’s variable diffusion method

In [29], Winslow generalized the method presented in section A.2 to

∇x · (w∇xξ) = 0, (7)

where w(x) > 0 is chosen to control the distribution of mesh resolution in the interior of Ω. Solving
(7) is equivalent to minimizing the Winslow functional with M = (1

w)I. Inverting (7), we obtain

αxξξ − 2βxξη + γxηη = − (wξyη − wηyξ)
J

w
,

αyξξ − 2βyξη + γyηη = − (wξxη − wηxξ)
J

w
,

where the Jacobian of the forward mapping, J := xξyη − xηyξ and α, β, and γ are defined as above.

14

A.5 Linear elastic analogy

Here we solve an equation modelled on the stress term for linear elastic solid,

∇X · σ (x) = 0, x = xD, ξ ∈ δΩ,

and σ is a symmetric displacement -based “mesh stress” tensor

σ = λ∇X · xI + µ
(
∇Xx+∇XxT

)
,

with two user specified Lamé parameters, λ and µ, expressing the mesh’s resistance to compression
and shearing respectively. Since X is fixed in time, this is implemented detail, in the form

∇X · σ̇ (v) = 0, σ̇ = λ∇X · vI + µ
(
∇Xv +∇XvT

)
,

for the grid velocity directly. This coupled vector PDE is discretized and assembled using standard
P1 finite element methods already coded in Fortran 2003, with the resulting linear equation solved in
parallel using the solvers from PETSc.

A.6 Lineal spring analogy

The linear elastic model above solves a continuum force balance equation on a discrete finite element
mesh. However, the equations themselves can also be generated discretely [9]. The lineal spring analogy
approach models fictitious springs along each mesh edge, with spring constant inversely proportional
to the edge length. Taking the finite dimensional vectors of original and solution simplex vertex
coordinates, X and x, this gives a matrix stiffness problem

K(x−X) = 0,

with the boundary displacements known. The lineal spring stiffness, Kij
lineal between nodes i and j is

defined as

Kij
lineal =

1

lij


cosα2 sinα cosα − cosα2 − sinα cosα

sinα cosα sinα2 − sinα cosα − sinα2

− cosα2 − sinα cosα cosα2 sinα cosα
− sinα cosα − sinα2 sinα cosα sinα2


ij

,

where lij is the length between nodes i and j, and α the angle formed between the x̂-axis and the
vector connecting nodes i and j. The Fluidity implementation calls C code to assemble and solve
(using PETSc) the matrix problem in parallel for the graph given by the mesh decomposition.

A.7 Viscous drag analogy

Here we solve a similar “force-balance” equation

∇x · σ (v) + β(u− v) = 0, v = vD, ξ ∈ δΩ

with σ the symmetric “mesh stress” tensor

σ = λ∇x · vI + µ
(
∇xv +∇xvT

)
.

Whereas the previous method applies the analogy of the mesh as an elastic medium, here we treat it
as an massless, inertia-free viscous inter-penetrating fluid. The solution method is identical to that
used for a linear elastic mesh.

15

A.8 Lineal-torsional smoothing

This approach [9] is a direct extension of the lineal spring analogy. What sets the two methods apart is
that K is no longer solely a function of elemental edge length, but also elemental area. Conceptually
this means K = Kij

lineal +Kijk
torsional. Elemental (triangle Tijk in this case) area contributes to torsional

spring stiffness at vertex i via

Cijki =
l2ijl

2
ik

4A2
ijk

, (8)

where lij is the distance between vertices i and j, lik is the distance between vertices i and k, and Aijk
is the area of the triangle Tijk. After taking into account the remaining vertices,

Cijk =

C
ijk
i 0 0

0 Cijkj 0

0 0 Cijkk

 , (9)

and constructing with the rotation matrix

Rijk =

bik − bij aij − aik bij −aij −bik aik
−bji aji bji − bjk ajk − aji bjk −ajk
bki −aki −bkj akj bkj − bki aki − akj

 , (10)

where aij =
xij
l2ij

and bij =
yij
l2ij

, the torsional stiffness is defined as

Kijk
torsional = RijkTCijkRijk. (11)

Here it is important to keep in mind that Kijk
toriosnal does not entirely safeguard against mesh tangling,

and a further step must be taken to limit the rotation, Rijk, of each triangle within the mesh as well.
The Fluidity implementation calls C code to assemble and solve (using PETSc) the matrix problem in
parallel for the given mesh decomposition.

16

	Introduction
	Background
	Aims

	Underlying methods and libraries
	Fluidity
	Firedrake
	PRAgMaTIc

	Existing hr-adaptivity framework
	Coupling mesh movement with governing model equations

	Mesh movement methods overview
	Examples of target applications
	Advection problem (evolving internal solution field – shear & rotation)
	Oscillating cylinder (evolving internal structure – translation)
	Turbines and pumps (evolving internal boundary – rotation)
	Seabed scour (evolving external boundary – translation & deformation)

	Benchmarking & profiling
	Achievements
	Conclusions & future work
	Acknowledgements
	Appendix: r-adaptive mesh movement methods
	Laplacian smoothing
	Winslow smoothing
	The method of Ceniceros & Hou
	Winslow's variable diffusion method
	Linear elastic analogy
	Lineal spring analogy
	Viscous drag analogy
	Lineal-torsional smoothing

