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1 Abstract

This project aimed to improve the performance of Fluidity for both general computational fluid dynamics
and tidal modelling problems. A secondary objective was to add features to Fluidity to improve its ease of
use. Both of these were successful, with Fluidity running noticeably faster even at high core counts. This
changes the level of detail that fluids problems can be studied with Fluidity, and impacts upon research
that examines high Reynolds number, turbulent flows - particularly in areas such as engineering
aerodynamics, wind energy, marine energy, and environmental/pollution modelling.

2 Introduction

Energetic tidally-driven flow in coastal areas such as straits represents a challenge for high fidelity
simulation, as the turbulent flow processes to be modelled range from less than 1m to greater than 1km
(eg. tidal jets). More than that, such turbulence is highly anisotropic, in a domain that may be only 100-
200 metres vertically, but have a horizontal surface area (the sea surface) of 1000s of km2. Coastal
domains also have an irregular shape, with undulating bathymetry and complex coastlines; this makes
them well suited to the unstructured mesh approaches used in finite-element computational fluid
dynamics.

Fluidity is an open source finite-element computational fluid dynamics code that solves the non-
hydrostatic Navier-Stokes momentum equation and continuity equation, which is capable of modelling
free surfaces and is designed for irregularly shaped, unstructured grids. Fluidity is written in C++ and
Fortran, with the majority written in Fortran. It utilises both OpenMP and MPI for parallel computation,
and has been the subject of previous development for efficient scaling to thousands of cores on both
HECTOR and ARCHER. It also supports a stable velocity-pressure element pair, P1DG-P2, which is first-
order Discontinuous Galerkin velocity and second-order Continuous Galerkin pressure. This pair is LBB
stable and suitable for high Reynolds number flow.

That said, assembly of the momentum equations in DG is expensive, taking a substantial portion of each
timestep. Optimisation of this was required for a substantial performance improvements. Each timestep in
Fluidity consists of several non-linear Picard iterations, which are very similar in nature to the SIMPLE
family of algorithms of Patankar (Patankar 1980). These follow a sequence shown in Table 1.

Step # | Action

1 Calculate any fields dependent upon velocity

2 Assemble global momentum matrix from local element data

3 Solve the momentum equation for tentative velocity solution u*
4 Calculate the pressure correction Ap
5

6

Correct u* to un+! using Ap, and update pn+!

Either perform next Picard iteration (go to step 1), or finish timestep
Table 1. Outline of Picard iteration within Fluidity.

1 Principal Investigator and corresponding author. Email: a.creech@ed.ac.uk

Page 1 of 16



Technical report eCSE-0507

Typically Fluidity requires at least two Picard iterations per timestep to achieve satisfactory convergence
of the velocity and pressure fields. Substantial performance improvements were made to the DG
assembly routines, alone giving noticeable improvements in overall runtimes from low to 1000+ core
counts. Other miscellaneous optimisations and bug fixes were made, in particular: graph reordering of
mesh files to produce more coherent meshes; enabling the Fluidity to run with 32-bit floating point; load
balancing improvements for extruded meshes; faster sub-cycling routines; simplified checkpointing.

Secondly, two new Large Eddy Simulation (LES) turbulence models were developed, one for isotropic
grids (Deardroff 1970) and one for highly anisotropic grids (Roman, et al. 2010), which utilised the
naturally stable Compact DG method (Peraire and Persson 2008). The anisotropic method in particular is
necessary for coastal modelling, which typically feature grids with a horizontal/vertical element aspect
ratio of around (20:1). As part of this, an eddy-viscosity wall model implemented. This was verified with
against experimental data for a well-known test case.

The third part involved simplifying the configuration of new simulations, particularly those involving DG.
Originally in ‘stock’ Fluidity, fields and field options useful to DG simulations had to be all created and set
manually, which is a complex and time-consuming task; now, many options trigger default behaviour,
such as the creation of default options and required additional fields. In particular, creating a DG velocity
field now automatically creates projected CG velocity fields for results output, which leads an order of
magnitude reduction in file size.

Lastly, there were the creation of tools and utilities to simplify the process of tidal modelling within
Fluidity. These varied from additional Fortran routines and configuration scheme changes, to Python
utilities designed to be embedded within simulations via the configuration file.

3 Development setup

There were two test systems used in development, with different properties. Firstly, was an Opteron
server (herein called ‘rack server’) which represented the low-end of the computing scale. Much of the
rudimentary testing and development work was conducted there. The second system was ARCHER, which
has 100 000+ cores, ie. the high-end: the profiling and benchmarking was undertaken there. The
individual configurations of each are detailed below.

3.1 ARCHER

Hardware

The full specifications of ARCHER are detailed elsewhere; we will cover them briefly. The thousands of
compute nodes each consist of two 12-core Xeon E5-2650 v2 CPUs, giving a total of 24 cores per node.
Previous simulation work on ARCHER with Fluidity has shown that memory contention can be an issue, so
that, as with the rack server, optimum performance occurs when Fluidity is run in hybrid OpenMPI/MPI
mode as before. This means that there are 2 OpenMP threads for each MPI tasks, giving a total of 12 MPI
tasks per node.

Software

A new environment module file fluidity-gcc was created for Fluidity, which loaded the ARCHER module
PrgEnv-gnu whilst swapping out gcc for gcc/4.9.3. The full list of modules can be found in the appendix.
PETSc 3.5.4 was compiled for use. Profiling information was generated using Allinea MAP; binaries were
compiled with the additional -g flag for profiling. An automatic generator for PBS scripts was written,
which automatically sets up all the necessary environment flags and module files, copies across any
required Python files, parses the simulation for the latest checkpoint file, and submits the job to the
desired queue. This greatly eased the use of running Fluidity on ARCHER, and works on any general
Fluidity simulation.
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4 Discontinuous Galerkin matrix assembly optimisation

The P1DG-P2 velocity-pressure element pair used within Fluidity (first order Discontinuous velocity;
second order continuous pressure) is provably LBB stable (Ladyzhenskaya 1969) (Babuska 1973) (Brezzi
1974), meaning that it is suitable for simulation of high-Reynolds number, turbulent flow.

However, the Discontinuous Galerkin (DG) finite-element assembly routines in Fluidity are considerably
slower than the Continuous Galerkin ones, making them prohibitively expensive for large simulations:
increasing the number of cores to counteract the lack of performance, often leads to communication
overheads being significant. Thus the size of simulations are limited, even on supercomputers such as
ARCHER. Fortunately, most of the code related to DG assembly exists in one file, and so performance
enhancement efforts can be focused solely upon this one file.

4.1 Simple test case

This was based upon an idealised, rectilinear channel with a logarithmic velocity profile as a Dirichlet
condition at the inlet, an open boundary at the outlet, a free-slip boundary condition on the top and sides,
and a quadratic drag on the bottom. No normal flow was allowed on the top, bottom or sides. The channel
measured 1000m x 250m x 50m, as shown in Figure 1. The velocity solves used the GMRES solver with
SSOR preconditioning; the pressure solves used Conjugate Gradient with SSOR for preconditioning. The
simulation was set to run for 100 time-steps, with 2 Picard iterations per timestep. This meant the DG
assembly would be called 200 times, which was deemed sufficient for performance measurements.
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Figure 1. Channel test case for DG optimisation, here showing the mesh for 24 MPI tasks. The mesh was generated using
the GMSH meshing utility.

MPI tasks | Cores Nodes Max. Ax | Elements | Elements
(2xOpenMP) (m) / MPI task
96 192 8 4.05665 968 664 10 090
384 768 32 2.4730 4169 234 | 10857
768 1536 64 1.9309 8569453 | 11158

Table 2. Soft-scaling configurations for profiling on ARCHER.

For profiling on ARCHER, a weak-scaling approach was used, since partitioning the problem into ever-
smaller chunks results in tiny partitions and a problem dominated by communication overhead; this does
not represent a realistic use case. The complexity of the mesh was controlled through the maximum
allowable size of the elements (max. Ax), and whilst the number of MPI tasks scaled exponentially (see
Table 2), the number of elements was kept approximately constant. Allinea MAP was used for profiling,
with the —g option added to the compiler flags.

Upon running the simulations, it was clear from the time-series of CPU and memory usage (see Figure 2)
there was a spin-up period at the beginning of execution before the simulation would be running at full
tilt. It was not certain whether this would skew performance figures unduly, however, MAP does allow the
deselection of the start-up period when calculating performance figures.
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Figure 2. View of thread activity, CPU usage, and memory usage time-series in Allinea MAP, for test case using 192 cores.
Note the 'spin-up' period at the start (far left of graphs).

4.2 Unoptimised performance results

Weak scaling was calculated from the following equation, ie. s = t;/ty, where t; is the time taken to
completion on 1 processing unit, and ty the time taken on N processing units. However, due to memory
and processor limitations, it is difficult to run a meaningful problem small enough for 1 core in this
context, we shall use t;q4, instead as our base case. This gives us the scaling shown in Figure 3.
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Figure 3. Scaling and run times of unoptimised Fluidity code

This can be broken down into the most expensive high level routines, shown in Table 3. Note, that any
direct PETSC library calls or wrappers have been removed, and that these figures are inclusive (i.e.
routines times include the time of any routine called from with that routine. What should be clear is that
removing the spin-up phase of the simulation can change the performance figures by more than 1 %.
Therefore, only the % runtimes without spin-up shall be used hereon in. These are represented in Figure
4.

% runtime (with / without spin-up)
# cores 192 768 1536
Function name
solve_momentum 90.6 |92.20 |91.6 | 92.3 93.2 | 94.1
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correct_pressure 37.6 38.4 47.0 48.3 52.7 55.9
construct_momentum_dg 28.3 29.3 20.3 21.1 17.1 17.6
construct_momentum_element_dg | 27.8 28.7 19.9 20.8 16.8 17.3
advance_velocity 16.2 15.8 17.1 15.5 17.1 14.9
construct_momentum_interface_dg | 13.5 14.0 9.5 9.9 8.1 8.3
subcycle_momentum_dg 13.4 13.0 13.7 11.8 14.5 12.3
assemble_cmc_dg 6.3 6.6 5.0 5.2 4.2 4.2
local_assembly_cdg_face 6.6 6.9 4.6 4.8 3.9 4.0
calculate_courant_number 4.9 5.4 4.1 4.4 4.2 4.3

Table 3. % run times of unoptimised code
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Figure 4. Percentage runtimes for unoptimised code

As the main piece of code, solve. momentum dominates the calculations, representing over 90% of
execution time: it calls all of the proceeding functions. correct pressure is nearly 38-55% of execution
time, virtually all of which is spent inside PETSC solves; the same goes for advance_velocity. As
optimisation of PETSC use was beyond the scope of this project, the next largest valid target was
construct_momentum_dg. This is what assembles the global momentum matrix for solution. It does this
calling construct momentum_element_dg CME_DG for short) within a tight loop, where it spends about
98% of its time. It is interesting is that, aside from taking a substantial amount of execution time (17.6-
29.3%), two  functions called from CME_DG, construct. momentum_interface.dg  and
local_assembly_cdg_face, occupy 2/3 of that time. This was important in deciding on optimisation strategy
for the assembly code.
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4.3 Optimisation work

4.3.1 Rationale

The goal of construct. momentum_dg is to assembly a global momentum matrix for solving, which it does
by looping over each element in the local submesh, creating a local matrix which is then added the global
matrix as it progresses. Work in a previous dCSE project gave some speedup through splitting the loop
across OpenMP threads (Guo, et al. 2012), however there were strong suggestions that further
improvements could be made.

The basic outline of execution in construct. momentum_dg is:
construct momentum element dg:

Set relevant options from FLML tree
For each element e in submesh:
call construct momentum element dg:
For each face f in element e:
call construct momentum interface dg:
call local assembly cdg face

As previously mentioned, construct. momentum_dg spends approximately 98% of its time inside
construct_momentum_element_dg (CME_DG), so it ought to be the main target for optimisation. Inside
CME_DG, the code is quite complex: Fluidity is designed to support 1 to 3 dimensions, four different
viscosity schemes (Bassi-Rebay, Interior Penalty, Arbitrary Upwind, and Compact Discontinuous
Galerkin), along with many other options that affect element assembly. The original design of
construct_momentum_dg had each of these options being parsed at run-time within CME_DG, for each
element. Moreover, there are tens of smaller arrays that are defined and allocated/deallocated at run-
time, for each element, and for each face of each element. Lastly, there were many finite-element utility
functions such as shape_shape_vector(), ele_val_at_quad() and face_val_at_quad() from the files FETools.F90
and Fields_base.F90, that consist of little more than matrix multiplication, but each of which allocates and
deallocates small temporary work arrays upon being called and when being exited.

What is important to note here is that:
1) For each core, there are many hundreds of thousands of small allocs/deallocs per iteration for a

reasonable-sized problem. This could easily results in millions memory allocations for each NUMA
region on modern computer hardware.

2) The sizes of all of these small arrays do not change over the course of the simulation, as Fluidity
only supports one type of element per mesh.

3) None of the element discretisation options change over the mesh for a given simulation.

From this, it was clear that compile-time parsing of these options could provide an answer. This would
allow:
1) Compiling out of unnecessary option parsing using #ifdef pre-processor directives
2) Compile-time defining of common size parameters through #define directive, eg. number of
dimensions and number of element nodes, which would allow static allocation of all of the small
arrays
3) Compile-time vectorisation of small, tight loops (eg. looping over dimensions, nodes) by using
#define.
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Unfortunately, due to the extensive use of the FETo0ls.F90 and Fields_base.F90 within Fluidity, compile-
time optimisation of these was not possible.

4.3.2 Summary of completed tasks

The first task was the construction of construct_ momentum_elements_dg_opt, a per-element local matrix
assembly routine which relies on compile-time definitions for dimension, element quadrature, number of
element nodes, etc. Through this, many further optimisations were undertaken to improve the
performance over the original unoptimised subroutine, construct_ momentum_element_dg. These were,
namely:

* Conversion of all small dynamic array allocations to static allocations

* Optimisation of tight loops to use compile-time length definitions, to allow compile-time
vectorization of the loops

* Inlining of calls to finite-element utility subroutines (in FETools.F90 and Fields_base.F90), eg.
ele_val_at_quad, face_val_at_quad.

* Inlining of code element face assembly subroutines, such as construct_ momentum_interface_dg. All
code was moved inside construct. momentum_elements_dg_opt and all dependent arrays declared
statically there.

¢ Rearrangement of decision logic to minimise expensive recalculation of array values.

* Addition of logic in construct_ momentum_elements_dg to only call optimised code if run-time
element configuration for dimension, quadrature, etc. matches compile-time configuration;
otherwise, it runs non-optimised original construct. momentum_element_dg code.

The second task was the creation of command-line tools to parse the simulation options file (.flml) for
discretisation options, and generate an include file compile_opt_defs.h, which contained compile-time
definitions of element dimension, no. faces, no. element nodes, etc. This would then be used to compile the
optimised Fluidity routines. This consisted of two parts:

* The creation of a simple script called tools/generate optimised_defines.sh, which requires no
special tools or libraries to parse XML.

¢ Altering configure.in, configure to accept —-enable-cto=FLML_file option to call above script for the
simulation options file FLML_file.

Lastly, we created the idealised channel test case for P1DG-P2 formulation, and set up the soft-scaling
tests on ARCHER to investigate the performance benefits of these optimisations.

4.4 Optimised results
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Figure 5. Optimised versus unoptimised run times, and speed up. Note that, even at the highest core counts, just
optimising the DG assembly code has resulted in a 19-24% performance increase overall. This would be higher in longer
simulation runs.

Figure 5 shows the overall run times and speed up for the whole simulation, using the assembly-optimised
code. What is clear that, even though only the DG assembly subroutines have optimised, there has been a
substantial overall improvement in performance. From 192 cores (8 compute nodes), we see a 36% speed
up; when this is scaled up to 1536 cores (64 nodes), we still see a 19% speed up. This perhaps can be
expected, as DG assembly does not rely on any MPI communication, which can be expected to dominate
the rest of the program at very high core counts. It is also clear that the scalings of unoptimised and
optimised versions follow a similar progression.

More detail can be seen in Table 4, which shows the % run times of the most heavily used subroutines in
the optimised code. As before, all PETSc calls and direct wrappers have been removed. The subroutine for
construct_momentum_interface_dg was manually inlined, and so it no longer appears in the profiler log;
local_assembly_cdg_face is now so quick it barely registers in the profiler timings. As expected,
construct_momentum_dg now occupies substantially less of the execution time: for 192 cores, it is 2.69x
less of overall execution time; at 1536 cores, it is 3.03x less.

% runtime (without spin-up)
# cores 192 768 1536
Function name
solve_momentum 89.8 92.7 99.3
correct_pressure 54.0 64.6 69.7
advance_velocity 13.7 11.6 10.6
subcycle_momentum_dg 11.3 9.9 8.9
construct_momentum_dg 10.9 8.0 5.8
assemble_cmc_dg 8.9 6.8 5.2
construct_momentum_element_dg | 8.4 6.4 5.0
construct_momentum_interface_dg | - - -
local_assembly_cdg_face - - -
calculate_courant_number 3.7 3.0 2.5
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Table 4. % run times of optimised code. The blank indicate code that no longer exists or registers in the profiler output.

As Allinea MAP does not conveniently give the absolute run times of individual routines, to give better
idea of the impact on run times of the DG assembly optimisation on each of the major subroutines, Figure
4 was repeated but with the optimised % run times scaled by the relative change in the runtimes, ie. with
a scaling factor s = Ryt (N)/Rynopt (N) where Ry, (N) is the overall run time for N cores for case xxx (ie.
opt or unopt). This would give a scaled % run time of

R*(N) = s(N)R(N)

The scaled % run times of the optimised code can be thought of as the run time relative to that of the
unoptimised code.
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Figure 6. Comparison of % run times for unoptimised code, versus optimised code scaled by relative run time for each
case. The asterisk (*) indicates a scaled run time.

The graph of the scaled results are shown in Figure 6. As expected, DG assembly has a much shorter
absolute run time: at 96 cores, there is a 3.64x absolute speed up; at 1536 cores, the absolute speed up is
3.39x. This compares well with the 2-3x target speed up in the original proposal (Creech and Jackson
2015). Some subroutines independent of the assembly code (eg. correct_pressure and assembly_cmc_dg)
have almost the same execution time before and after the DG optimisation, but others (advance_velocity)
show a substantial improvement. Speculatively, it could be said that the static allocation of the small
arrays in the assembly routines has a relatively benign effect on memory allocation in other cores in the
same NUMA region, but this would require further investigation.
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5 Tidal modelling optimisations

5.1 Test configuration

A realistic test case was chosen, to be as close as possible as to the type of simulation the code has been
optimized for: ie. a tidal coastal model. This was developed from a pre-existing prototype of the Sound of
Islay, spanning 21.4 km east-west and 36.6km north-south as shown in Figure 7.

140+

Figure 7. Sound of Islay overview

The mesh in this simulation, as with all tidal simulations within Fluidity, is a semi-structured 3D mesh.
This means that an initial 2D mesh which matches the coastlines and open boundaries is extruded
downwards to a depth which matches the specified bathymetry. The mesh is still tetrahedral, but the
tetrahedral are arranged in vertical columns.

The simulation was set to run for 100 timesteps; there were two non-linear iterations for each timestep,
which meant the DG assembly code would be called 200 times. To track the improvements that each
section of optimisation work made to performance, the model was benchmarked at four stages of
development: i) the code with no optimisations, ii) with DG assembly optimisation, iii) using the 2D (pre-
extruded) mesh reordering tool, and iv) load balancing tweaks for extruded meshes. The technical details
of the last two are in Section 5.2.

The mesh configuration used for all tests is shown in Table 5.

MPI tasks Cores Nodes Min-Max. Elements | Elements
(2xOpenMP) Ax (m) / MPI task
384 768 32 8-80 3784390 | 9855

Table 5. Realistic test case configuration for profiling on ARCHER.
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5.2 Tidal model performance optimisations

5.2.1 Mesh reordering

The first performance improvement was made by tackling the relatively unordered nature of the
underlying 2D mesh that Fluidity extrudes into a 3D mesh, using a solution derived from code developed
by Dr. J. Maddison in the School of Mathematics. Typically, the finite element assembly code performs
calculations on an element-by-element basis. Each calculation uses data for the element considered, and
typically also uses data for neighbouring elements. However the meshes used by Fluidity (as created by
mesh generators prior to execution) typically do not order mesh data in an optimal way for such
calculations. For example, Figure 8a shows a mesh generated by Gmsh. The colour scale here indicates the
element number. In Fluidity calculations such as finite element assembly, the elements are processed in
order of their element number and, as neighbouring elements typically have very different element
numbers in this mesh, which could lead to a loss of performance. By comparison, Figure 8b shows the same
mesh with elements reordered using the Gibbs-Poole-Stockmeyer algorithm implemented in SCOTCH
(using code derived from DOLFIN 1.5.0). The ordering in this latter case means that elements that are
nearby (in the sense of the distance as defined by the element-element graph) are more likely to have
smaller differences in element number.
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Figure 8. a) A mesh generated using Gmsh. The elements are coloured according to their element number. b)
The same mesh, with elements reordered using the Gibbs-Poole-Stockmeyer algorithm.

5.2.2 Load balancing improvements

The second performance improvement was made by improving the load balancing algorithm for extruded
meshes. In the unoptimised code, Fluidity would decompose extruded meshes with considerable
imbalance in their relative size, even after running Fluidity’s redecomposition tool, flredecomp, on an
extruded mesh. Changes were made to Fluidity’s interface to the Zoltan redecomposition and load-
balancing routines, in particular zoltan_cb_get owned_nodes() in Zoltan_callbacks.F90, so that weighting of
each individual surface (pre-extruded mesh) node is weighted by the number of nodes below it, and that
this is contributes towards a global weighting for each mesh partition. This was arguably more of a bug-fix
that a strategic performance development, albeit one that took considerable time to diagnose and correct.

This improvement now meant that Fluidity more effectively balanced mesh sizes across subdomains, even
when there are spatially variable numbers of element layers. Subdomain mesh sizes from the tidal test
case before and after this improvement are shown in Table 6.

Case Min. Max. Imbalance | Mean Standard dev.
Pre-optimisation | 10088 | 64538 | 6.398 16058.979 | 7727.234
Load balancing 10930 | 25365 | 2.321 16369.620 | 2803.807
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Table 6. Statistics on elements for partitioned subdomains before and after load balancing enhancements.

It can be seen that before optimisation, the largest subdomain contained almost 6.4x the elements of the
smallest subdomain. This severe load imbalance resulted in smaller partitions waiting on blocked MPI
communications (ie. mpi_allreduce) until the larger partitions finish. The code with the enhanced load
balancing brought the imbalance down to 2.3x - approaching 1/3 of the pre-optimised imbalance - so
significant speedups were expected. The test case performance results bear this out, and these are
detailed in Section 5.3.

5.3 Results

Table 7 and Figure 9 show the effect of each successive optimisation on the performance of Fluidity on the
tidal case. Interestingly, the DG assembly optimisation has an even more dramatic effect on code
performance than the unstructured 3D case - 1.24x versus 1.74x for tidal. Running the 2D mesh
reordering increases the performance over the pre-optimised code to 1.95x, a further 11% increase,
which is impressive considering only the 2D mesh is being reordered, and no internal Fluidity code was

rewritten.

Case (n768) Run time (min) | Speed-up
Pre-optimisation 80 -

+DG assembly optimisation 46 1.74x
+2D mesh reordering 41 1.95x
+Load balancing optimisation 25 3.20x

Table 7. Values for speed-ups from successive optimisations for tidal modelling case with 768 cores.
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Figure 9. Graph of speed-ups for tidal case with 768 cores.

Finally, as expected, addressing the load balancing issues gives an additional 64% speedup, results in the
tidal test case running 3.2x faster with the optimised version of Fluidity, than it did with the original, pre-
optimised code. This is significant, as this changes the level of physical modelling that can be achieved
with Fluidity, putting it clearly in the ‘new science’ category.
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6 Further optimisations

Outside of the assembly code, several other optimisations were made to the Fluidity code.

6.1 Advection subcycling

Fluidity implements advection subcycling for stability at high Reynolds numbers, and for adaptive
timestepping under DG velocity elements. It does this by splitting the global simulation timestep into
smaller timesteps to satisfy a specified CFL number for the sub-timesteps (Zheng, et al. 2015). However,
Fluidity’s original implementation of subcycling in the routine subcycle.momentum_dg inside
Momentum_DG.F90 used a vertex-base slope limiter, limit_vb inside Slope_limiters.F90, which treats each of
the velocity field dimensions as a scalar, and applies the limiter to them separately. This meant that for
each dimension, expensive memory allocation/deallocation and value initialisation took place, ie. from the
top of limit_vb:

! Allocate copy of field
call allocate(T_limit, T%mesh, trim(T%name)//"Limited")
call set(T limit, T)

! returns linear version of T%mesh (if T%mesh is periodic, so is vertex mesh)
call find linear parent mesh(state, T%mesh, vertex mesh)

call allocate (T _max, vertex mesh, trim(T%name)//"LimitMax")
call allocate (T _min, vertex mesh, trim(T%name)//"LimitMin")

call set(T max, -—-huge(0.0))
call set(T _min, huge(0.0))

This meant that subcycling could be quite expensive: in tests using the channel case from Section 4.1 and
the unoptimised code, over 100 timesteps it occupied 11.3% of execution time. This was completely
rewritten as a new routine limit_vb_opt within Momentum_DG.F90 so that limiting the vector field (always
velocity in this case) so was done by limiting it as a vector rather than individual scalar components: this
meant that expensive initialisation was only done once per field; secondly, compile-time optimisations
(CTO) were used so that small, tight loops, such as those over local element nodes or dimensions were
known at compile time, and so the compiler could take advantage of vectorisation. Eg. The calculation of
the alpha variable in the slope limiter, per element:

!loop over nodes, adjust alpha
do node = 1, opNloc
do concurrent (i=1:opDim)
'check whether to use max or min, and avoid floating point algebra
errors due to round-off and underflow

if (T _val(i,node)>Tbar (i) *(1.0+sign(1.0e-12,Tbar(i))) .and.
T val minus bar(i,node) > tiny(0.0)*1el0) then
alpha (i) = min(alpha(i), (T_val max(i,node)-
Tbar(i))/T_val minus bar (i,node) )
else if (T _val(i,node)<Tbar(i)*(1.0-sign(l.0e-12,Tbar(i))) .and.
T val minus bar (i, node) < -tiny(0.0)*1el0) then
alpha (i) = min(alpha(i), (T_val min(i,node)-
Tbar(i))/T_val minus bar(i,node) )
end if
end do

end do
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Test case % run time | Subcycling Program
speed-up speed-up

Pre-optimised 11.3 - -

After optimisation | 8.0 1.412 1.065

Table 8. Performance figures for unoptimised and optimised DG subcycling, for channel test case (1 compute node).

Note that, should dimensions not match those used in the CTO, the subcycling code defaults to using
limit_vb as before. The performance improvement can be seen here in Table 8 using a single compue node
version of the DG assembly channel flow test case detailed in Section 4.1. There was a 6.5% increase in
overall performance of the code, which when coupled with the assembly optimisations, is significant, as
subcycling adds stability when solving for high Reynolds number, turbulent flows.

7 Feature additions

Several sets of features were added to Fluidity to better facilitate general fluid dynamics modelling, with
some emphasis on tidal modelling. These will be described in detail in the updated Fluidity manual.
Briefly, these are:

Default options generation. Configuring Fluidity through the Diamond GUI can be a lengthy, complex
process, as there are no default options and few default behaviours. This is particularly the case for the
P1DG-P2 velocity-pressure element pair. A new set of preprocessing routines were added in DG_prep.F90,
which parse the FLML options tree prior to simulation initialisation and all other parsing routines. These
include setting up the projection of the discontinuous velocity to continuous velocity field, which is then
written to the parallel VTU results files. The CG velocity can be used for a variety of purposes (see DG LES
paper below), however one of its main benefits is that if it is written out to the results files, and all DG
fields output is suppressed, then file size drops by an order of magnitude. Other options include: setting
out a DG Courant number field for adaptive time-stepping with the output suppressed, and DG LES
defaults, which will be detailed below. Note, all default behaviours can be overridden: if the automatic
fields already exist, then they will not be overwritten.

Discontinuous Galerkin Large Eddy Simulation (DG LES) was implemented, from scratch. In particular,
this was targetted for the Compact Discontinuous Galerkin (CDG) formulation. A partial-stress
implementation of CDG was developed, as was a unique, never before used LES turbulence model, in
which CG velocity and eddy viscosity fields were used rather than DG, before being applied to the
momentum equation. This mixed-mode implementation gave a much more efficient and simple
formulation than would have been possible by solely using DG spaces. This approach was validated using
the well-known backward-facing step problem, and gave excellent agreement with publish experimental
results. This hybrid DG LES technique has now been submitted as paper entitled ‘Efficient Large Eddy
Simulation for the Discontinuous Galerkin Method’ to the journal Computers & Fluids (Creech, Jackson and
Maddison, et al. submitted). A preprint is available on arxiv.org for reference.

Tidal boundary conditions have been implemented for Fluidity using Python. Strictly speaking, Fluidity
already supports tidal forcing on open boundaries through the use of a NetCDF file containing a
longitudinal/latitudinal map for each tidal constituent’s amplitude and phase. However, this is extremely
hard to work with, since the format of the NetCDF is not specified in the manual, and moreover, it does not
support the ‘ramping up’ of tidal constituent amplitudes from 0 over a specified period of time. Ramping
up boundary conditions is often necessary at the start of a tidal simulation, as applying an elevated free-
surface height at the boundaries of a tidal domain, where the interior free surface is initially at rest, can
cause instabilities in the free surface moving mesh, if one is being used, or pressure wave reflection off
coastlines. Instead, a Python utility called tidal bcs.py was developed, which reads in tidal constituent data
from a CSV file and then derives into the required hydrostatic pressure boundary conditions. This also
supports the necessary ramping time condition, which experimental has been shown to be around 48
hours. This forms part of a growing set of Python utilities called Tidetools which are designed to assist in
coastal modelling in Fluidity.
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8 Summary

The main goal of this eCSE project was increase the performance on ARCHER of Fluidity for high Reynolds
numbers, turbulent flow simulations, including tidal models. This goal achieved: general CFD problems
achieved approximately a 1.2-1.4x speed-up on ARCHER, even for +1500 core counts. This was primarily
achieved by optimising the DG assembly code, which itself runs 3.4-3.6x faster than the original
subroutines. A new, unique LES turbulence model was developed, again with efficiency in mind. This was
successfully validated against published experimental data, and has been submitted as a journal paper.

Further optimisations were made specifically for tidal models, achieving a 3.2x speedup for coastal
simulations over the original version of Fluidity. This changes the level of scientific investigation possibly
with Fluidity - putting it in the ‘new science’ bracket. The changes and additions were made to make
Fluidity easier to use with for general CFD simulations, as well as for coastal modelling.

All the changes to Fluidity done in this project have been provided back to the code developers at
Imperial, and we are working with them on integrating them back into the main Fluidity releases. At the
same time, we will separately document and release as open source the modifications to GitHub in the
coming months, so that the fluid dynamics modelling community may immediately benefit from this
optimised version of Fluidity.

Appendix

List of modules used

1) modules/3.2.10.2

2) eswrap/1.3.3-1.020200.1278.0

3) switch/1.0-1.0502.57058.1.58.ari
4) craype-network-aries

5) craype/2.4.2

6) pbs/12.2.401.141761

7) craype-ivybridge

8) cray-mpich/7.2.6

9) packages-archer

10) bolt/0.6

11) nano/2.2.6

12) leave_time/1.0.0

13) quickstart/1.0

14) ack/2.14

15) xalt/0.6.0

16) epcc-tools/6.0

17) gcc/4.9.3

18) cray-libsci/13.2.0

19) udreg/2.3.2-1.0502.9889.2.20.ari
20) ugni/6.0-1.0502.10245.9.9.ari

21) pmi/5.0.7-1.0000.10678.155.25.ari
22) dmapp/7.0.1-1.0502.10246.8.47 .ari
23) gni-headers/4.0-1.0502.10317.9.2.ari
24) xpmem/0.1-2.0502.57015.1.15.ari
25) dvs/2.5_0.9.0-1.0502.1958.2.55.ari
26) alps/5.2.3-2.0502.9295.14.14.ari
27) rca/1.0.0-2.0502.57212.2.56.ari
28) atp/1.8.3
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29) PrgEnv-gnu/5.2.56
30) perftools-base/6.3.0
31) perftools

32) cray-tpsl/1.5.2

33) cray-netcdf/4.3.3.1
34) cray-hdf5/1.8.14

35) cmake/2.8.12

36) zlib/1.2.8

37) vtk/5.10.1

38) zoltan/3.8

39) python-compute/2.7.6
40) pc-numpy/1.9.2-libsci
41) pc-scipy/0.15.1-libsci
42) fluidity-gcc
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