
1

Open source exascale multi-scale framework for the
UK solid mechanics community

ARCHER eCSE05-05 Report
Luis Cebamanos�, Anton Shterenlikhty, Lee Margettsz and Jose D. Arregui-Menaz

�Edinburgh Parallel Computing Centre (EPCC), The University of Edinburgh, King’s Buildings, Edinburgh EH9
3FD, UK, l.cebamanos@epcc.ed.ac.uk

yDepartment of Mechanical Engineering, The University of Bristol, Bristol BS8 1TR, UK, mexas@bris.ac.uk
zSchool of Mechanical, Aero and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK,

Lee.Margetts@manchester.ac.uk

28-FEB-2017

Abstract—We have developed miniapps from MPI finite el-
ement library ParaFEM and Fortran 2008 coarray cellular
automata library CGPACK. The miniapps represent multi-scale
fracture models of polycrystalline solids. The software from
which these miniapps have been derived will improve predic-
tive modelling in the automotive, aerospace, power generation,
defence and manufacturing sectors. The libraries and miniapps
are distributed under BSD license, so these can be used by
computer scientists and hardware vendors to test various tools
including compilers and performance monitoring applications.
CrayPAT and TAU tools have been used for sampling and
tracing analysis of the miniapps. Two routines with all-to-
all communication structures have been identified as primary
candidates for optimisation. New routines have been written
implementing the nearest neighbour algorithm and using coarray
collectives. Scaling limit for miniapps has been increased by a
factor of 3, from about 2k to over 7k cores. In addition the
code has been ported to Intel and GCC/OpenCoarrays platforms,
which dramatically increased the number of users.

Keywords-miniapps; Fortran; coarrays; MPI; cellular au-
tomata; CGPACK; finite elements; ParaFEM; CrayPAT; TAU;
ARCHER;

I. INTRODUCTION

Solid mechanics community is very poorly represented on
ARCHER. This is partly due to lack of scalable codes suitable
for complex solid mechanics problems: large scale geometrical
or material non-linearity, extensive plastic flow, residual stress
analysis or fracture. Many researchers are locked into using
proprietary FE software limited to workstations, e.g. large
shared memory 16-core computers. Some commercial FE
codes scale to 64 or even to 1024 cores, according to the
vendor literature. However, the vendors typically insist on
charging a licence fee for each core. This makes analysis at
scale prohibitively expensive, even with academic licences.
Hence there is a big appetite for scalable, flexible, verified
and feature reach simulation codes among the solid mechanics
researchers.

This project has delivered a scalable tool that can satisfy
this need, initially for fracture problems. A multi-scale en-
gineering modelling framework for deformation and fracture

in heterogeneous materials, e.g. polycrystals, porous graphite,
concrete, metal matrix or carbon fibre composites has been
demonstrated to have a good potential for HPC systems, such
Tier-1 ARCHER, Tier-2 Hartree centre systems and smaller
University and departmental systems.

This work delivered specific benefits to ARCHER users.
The majority of the ARCHER community choose Fortran
for their projects, due to many factors, some of which are
performance, availability of optimising compilers and of in-
ternational standards, and vast codebase including very high
quality libraries. Coarrays are a standard Fortran 2008 feature.
However, their uptake has been limited so far due to poor
compiler support and lack of successful examples of coarray
programs at scale. This project has delivered a scalable coar-
ray/MPI modelling framework, which will serve as one such
example. This, together with dissemination via Cray 2016 user
group meeting [1], Supercomputing 2016 [2] and PARENG
2017 [3] conferences, might attract existing ARCHER users
to try coarrays in their programs to improve scaling.

In addition to ARCHER, the multi-scale framework has
been ported to Intel and GCC/OpenCoarray platforms which
dramatically increased the number of potential users. The
added portability opened many new optimisation possibilities
because coarray implementations differ substantially across
vendors. This also increases vendor competition which is
always good news for users, including the ARCHER users.

Multiple bugs in Cray software were uncovered and fixed
during this project, which resulted in much improved software
environment for all ARCHER users.

Extensive profiling work with the TAU toolkit resulted in
substantial improvement of TAU support for coarrays. As a
result of this work, at present TAU is the most powerful tool
for coarray/MPI hybrid programs on non-Cray systems. As a
side benefit, a new collaboration between our team and the
TAU team has been established.

II. PARAFEM/CGPACK (MPI/COARRAY) MINIAPPS

We have developed a two-way hierarchical concurrent
multi-scale cellular automata (CA) finite element (FE) fracture

2

framework (CAFE). FE represent the structural level using the
ParaFEM MPI library. CA represent the microstructure using
the using CGPACK Fortran coarray library. Both ParaFEM
and CGPACK are being actively developed, including contri-
butions from the UK Software Sustainability Institute (SSI)
http://software.ac.uk [4]. Both ParaFEM and CG-
PACK libraries are distributed under BSD license.

ParaFEM is a highly scalable and portable MPI FE library
written in Fortran 2003, http://parafem.org.uk [5]. It
is the latest extension of the sequential FE libraries originally
written by Professor Ian Smith and first published in the 1980s
[6]. Interestingly, at that time, they were distributed as open
source on tape by NAG Ltd. The software comprises modules,
subroutines, functions and around 70 example mini-apps [7].
The mini-apps are typically 2-4 pages long and are used to
solve a variety of common engineering problems. The mini-
app philosophy enables customisation by engineers, a feature
that has enabled the work presented herein to be carried out
with a reasonable amount of software development effort.

The parallelisation strategy adopted in ParaFEM involves
working element-by-element at each stage of the finite element
process, including building element stiffness matrices, solving
the system of equations and recovering stress values (post-
processing). No global matrix is ever assembled and so domain
decomposition is avoided. Each MPI process is allocated an
equal number of finite elements, balancing both computational
load and memory usage. Parallel element-by-element versions
of different iterative solvers are used for different problem
types. These work in essentially the same way as their se-
quential counterparts [8], with the only difference being the
need to pass messages between MPI processes when operating
on distributed data structures.

The approach has been successful in solving a variety
of problem types, from nonlinear material behaviour [9] to
coupled systems involving multiphysics, such as Biot con-
solidation and magneto-hydrodynamics [10]. The software
has led to scientific advances in a range of disciplines such
as Nuclear Engineering [11], [12], Biomechanics [13], [14],
Geomechanics [15] and Palaeontology [16].

CGPACK is a scalable cellular automata library written
in Fortran 2008 with extensive use of coarrays http://
cgpack.sf.net. Work on CGPACK started in 2013 [17] on
HECToR. The CA space is implemented as a 4D allocatable
array coarray, with a 3D coindex set:

integer, allocatable :: &
space(:,:,:,:) [:,:,:]

The first 3 array dimensions are used to store each cell’s
Cartesian coordinates. The fourth array dimension allows for
multiple types (layers) of microstructural information to be
stored and processed simultaneously. At present two layers
are used - grains and fracture surfaces.

Although the idea of a multi-scale CAFE model is not new,
[18], [19], [20], the current CAFE framework was designed
specifically for HPC systems [21], [22]. Coarrays exploit the
power and simple syntax of multi-dimensional Fortran arrays,
while MPI allows for very fine tuning of parallelisation, thus

MPI 1

MPI 4

MPI 2

multi−scale model

MPI 3

image 2

image 4

image 3

image 1

Fig. 1. Possible partition of the multi-scale model on 4 PEs.

hybrid MPI/coarray algorithms can deliver highly optimised
parallel code.

In contrast to the ”box-shaped” CA space, the FE model can
be of arbitrary shape. In other words CA uses a structured grid,
whereas FE uses an unstructured grid. In addition, partition
of the FE model into MPI chunks is totally independent of
coarray images. This presents severe problems for linking
coarray CA part of the model with the MPI FE part as
described below.

It is assumed in the following that in a hybrid coarray/MPI
program there is always identical number of MPI processes
and coarray images, which on Cray is just a number of
processing elements, PEs.

A schematic partition of the CAFE model on 4 PEs is shown
in Fig. 1. The labels denote on which PE the corresponding
parts of the model are stored. For example, ”image 1” and
”MPI 1” parts of the model are stored on PE 1. However,
these FEs do not share physical space with these CA cells.
Instead cells on image 1 share physical space with FEs on PE
3, labelled ”MPI 3”. This is important because information
transfer is required only between CA and FE which occupy
the same physical space. So in this example MPI part of the
model stored on PE 3 will have to communicate with coarray
part of the model stored on PEs 1 and 3.

The mapping of FE to CA is established via a private
allocatable array of derived type lcentr:

type mcen
integer :: image
integer :: elnum
real :: centr(3)

end type mcen
type(mcen), allocatable :: lcentr(:)

based on coordinates of FE centroids calculated by each MPI
process and stored in a coarray of derived type with allocatable
array component:

type rca
real, allocatable :: r(:,:)

end type rca
type(rca) :: centroid_tmp[*]

which is allocated as

allocate(centroid_tmp%r(3, nels_pp))

http://software.ac.uk
http://parafem.org.uk
http://cgpack.sf.net
http://cgpack.sf.net

3

Fig. 2. CAFE modelling of a steel cylinder under tension showing the CA
microstructure. The FE cylinder mesh is semi-transparent for clarity.

Fig. 3. CA microstructure grain boundaries, with inactive cells removed.

where nels_pp is the number of FE stored on this PE.
There are two different routines which establish

lcentr on each image from centroid_tmp. Subroutine

Fig. 4. Micro-cracks merging into a macro-crack.

Fig. 5. The distorted FE mesh at the end of the CAFE simulation, with the
axial displacement contours.

cgca_pfem_cenc implements an all-to-all communication
pattern, i.e. each images reads centroid_tmp from every
image. Subroutine cgca_pfem_map uses temporary arrays

4

and coarray collectives co_sum and co_max, which are
described in TS18508 [23] and will be included in the next
revision of the Fortran standard, Fortran 2015. At the time
of writing coarray collectives are available on Cray systems
and on GCC/OpenCoarray platform as extension to the
standard [24]. The two routines differ in their use of remote
communications. However, both routines implement the same
algorithm for establishing lcentr - if the centroid of an FE
on any image is within the coarray CA array of this image,
then this FE is added to lcentr on this image.

Several driver programs (miniapps) [25] were constructed
using both ParaFEM and CGPACK libraries. CAFE cleavage
simulation in a rod under tension is shown in Figs. 2 to 5.
The FE model is a 140mm long mild steel cylinder of 10mm
diameter and 100mm gauge length. One end of the cylinder
is constrained and an axial force is applied to the other end.
The FE elastic properties are the Young’s modulus of 200GPa
and the Poisson’s ratio of 0.3. The CA block is positioned
centrally on the cylinder, see Fig. 2.

Fig. 2 shows the polycrystalline microstructure layer of
the space coarray. The colour of each grain (single crystal)
encodes its rotation tensor. Fig. 3 shows the grain boundaries
in the fracture layer of the space coarray.

Fig. 4 shows the macro-crack emerging from linking cracks
on preferential cleavage planes in individual crystals. There
are 4 cell fracture states in this model: -1, -2, -3 and -4. -
1 (yellow) denotes crack flanks on 100 planes. -3 (light blue)
denotes crack flanks on 110 planes. Both yellow and light blue
regions are clearly visible in Fig. 4. -2 (dark blue) denotes
crack edges on 100 planes. -4 (cyan) denotes crack edges on
110 planes.

Fig. 5 shows the FE mesh at the end of the simulation,
when the macroscopic cleavage crack has propagated across
nearly the whole of the cross section. The contour plot of the
axial displacement is superimposed over the mesh. Note a high
displacement gradient across the crack.

When a crystal boundary is crossed by a crack in the CA
coarray on any image, it is important that all other images
are notified as soon as possible [26]. If the crack propagation
speed is relatively low, and the model resolution is high
enough, then it is sufficient to inform the nearest neighbouring
images. Subroutine cgca_gcupdn implements the nearest
neighbour algorithm. In cases when crack propagation speed
can be so high that the CA changes can propagate more than
the length of the CA coarray in one model iteration an all-to-
all algorithm has to be used. It is implemented in subroutine
cgca_gcupda.

III. PROFILING AND OPTIMISATION (WP1 AND WP2)
CrayPat on ARCHER (Cray XC30 system) was used for

profiling work. The model with 1M FE and 800M CA cells
was used.

Although both ParaFEM and CGPACK independently can
scale well to tens of thousands of cores (see Figs. 6 and 7), the
initial profiling study showed limited scalability mainly due
to an all-to-all remote read routine cgca_gcupda. Strong
scaling of one of our miniapps which simulates a 3D trans-
granular cleavage in polycrystalline iron is shown in Fig. 8. It

1

10

100

1000

10000

10 100 1000 10000 100000

Ti
m

e
 in

 s
ec

o
n

d
s

Number of MPI processes

Actual

Ideal

Fig. 6. ParaFEM scaling for a 3D transient flow explicit analysis. Reproduced
from [7].

 0.1

 1

 10

 100

 1000

 8 64 512 4096 32768

sp
e
e
d

-u
p

Number of cores, Cray XE6

Fig. 7. CGPACK 3D solidification scaling with different synchronisation
methods.

 100

 1000

 10000

 100 1000 10000 100000

 1

 10

ti
m

e
,
s

sc
a
lin

g

Number of cores. ARCHER, Cray XC30

runtime
scaling

Fig. 8. ParaFEM/CGPACK MPI/coarray miniapp scaling on ARCHER XC30
for a 3D problem with 1M FE and 800M CA cells.

is clear that this miniapp scales well up to 2000 cores from
where the scalability drops dramatically.

As shown in Figs. 9 and 10, a large portion of the total
time (over 38%) is spent on cgca_gcupda subroutine which
indicates it is a clear candidate for further optimization.

The key fragment from this all-to-all routine is shown below.
In this routine each coarray image reads a coarray value
from all the other images which becomes a communication
problem at large number of images. The outer loop starting
counter (remote image number) is chosen at random to even
out communication load.

integer :: gcupd(100,3)[*], rndint, j,&
img, gcupd_local(100,3)

real :: rnd
:
call random_number(rnd)

5

Fig. 9. Profiling function distribution for ParaFEM/CGPACK MPI/coarray
miniapp with all-to-all routine cgca_gcupda at 7200 cores.

Fig. 10. Raw profiling data for ParaFEM/CGPACK MPI/coarray miniapp
with all-to-all routine cgca_gcupda at 7200 cores.

rndint = int(rnd*num_images())+1
do j=rndint, rndint+num_images()-1
img = j
if (img .gt. num_images()) &

img = img - num_images()
if (img .eq. this_image()) cycle
:
gcupd_local(:,:) = gcupd(:,:)[img]
:

end do

An alternative to an all-to-all algorithm is the nearest
neighbour algorithm. As mentioned before, this has been
implemented in subroutine cgca_gcupdn. The key fragment
is shown below.

do i = -1 , 1
do j = -1 , 1

Fig. 11. Raw profiling data for ParaFEM/CGPACK MPI/coarray miniapp
with the neareast neighbour routine cgca_gcupdn at 7200 cores.

Fig. 12. Profiling function distribution for ParaFEM/CGPACK MPI/coarray
miniapp with the neareast neighbour routine cgca_gcupdn at 7200 cores.

do k = -1 , 1
! Get the coindex set of the neighbour
ncod = mycod + (/ i, j, k /)
:
gcupd_local(:,:) = &
gcupd(:,:)[ncod(1),ncod(2),ncod(3)]
:

end do
end do
end do

It must be emphasised that the nearest neighbour and all-
to-all are not identical. In the nearest neighbour case the
information is propagated only one image away from the
current image. Multiple invocations of the nearest neighbour

6

 10

 100

 1000

 10000

 100 1000 10000 100000

 1

 10

 100
ti

m
e
,

s

sc
a
lin

g

Number of cores, ARCHER, Cray XC30

cgca_gcupda runtime
cgca_gcupdn runtime
cgca_gcupdn scaling

Fig. 13. Runtimes and scaling for ParaFEM/CGPACK MPI/coarray miniapp
with the nearest neighbour, cgca_gcupdn, and all-to-all, cgca_gcupda,
algorithms.

algorithm are required for changes on any image to reach all
images. However, because the nearest neighbour algorithm is
known to scale well, it might still outperform all-to-all at high
core counts, even if multiple invocations are used. Moreover,
for some fracture propagation problems a single invocation of
the nearest neighbour will suffice, if crack propagation rates
are such that no crack is likely to cross the whole of CA array
on an image in one CA iteration.

The execution of the mentioned miniapp execising the near-
est neighbourgh algorithm clearly demonstrates a considerable
reduction in the number of remote reads. This can be seen on
Figs. 11 and 12 where the user time is no longer dominated by
remote reads between images with the exception of subroutine
cgca_pfem_cenc.

This optimisation should also be reflected in the miniapp
performance since now it will be able to scale to much larger
of core counts. Fig. 13 shows that the scaling limit has been
increased from 2k, when using all-to-all cgca_gcupda, to
7k cores, when cgca_gcupdn is used.

As previously mentioned, subroutine cgca_pfem_cenc
also implements an all-to-all communication pattern which
could be replaced with subroutine cgca_pfem_map. Sub-
routine cgca_pfem_map relies on the use of temporary
arrays and coarray collectives co_sum and co_max.

At present Cray collectives specification differs slightly
from TS 18508 [23]. However, the differences are immaterial
for this work, so in the following we just use ”collectives” to
mean the features of both Cray implementation and TS 18508.

The key fragment of cgca_pfem_map is shown below.

integer :: maxfe, pos_start, pos_end, &
ctmpsize
real, allocatable :: tmp(:,:)
! Calculate the max number of FE
! stored on this image
maxfe = size(centroid_tmp%r, dim=2)
ctmpsize = maxfe
call co_max(source = maxfe)
allocate(tmp(maxfe*num_images(), 5), &
source=0.0)
! Each image writes its data in a unique
! portion of tmp.
pos_start = (this_image() - 1)*maxfe + 1

Fig. 14. Profiling function distribution with cgca_gcupdn and
cgca_pfem_map at 7200 cores.

pos_end = pos_start + ctmpsize - 1
tmp(pos_start : pos_end, 1) = &
real(this_image(), kind=4)

! Write element number *as real*
tmp(pos_start : pos_end, 2) = &
real((/ (j, j = 1, ctmpsize) /), kind=4)

! Write centroid coord
tmp(pos_start : pos_end, 3:5) = &
transpose(centroid_tmp%r(:,:))

call co_sum(source = tmp)

A large temporary array, of length in the order of the
maximum number of FE on any image times the number of
images, is required. This approach might prove problematic at
very high core counts due to memory limitations.

In addition, all variables have to be recast in the same real
kind before writing to tmp array. This is because co_sum
and co_max work only with numeric types.

Figs. 14 and 15 show that although the total percentage of
time spent on cgca_clvgp has slightly increased, the time
corresponding to the user group functions has been reduced.
As a result, this miniapp manages to improve the performance
achieved by miniapps running cgca_pfem_cenc.

Since cgca_pfem_map or cgca_pfem_cenc are called
only once during the execution of the miniapp, only a minor
overall performance improvement is expected. This is shown
in Fig. 16. The miniapp implementing cgca_pfem_map
shows some performance improvement only from around 1000
cores, where the overhead of remote read statements becomes
noticeable.

A. CrayPat issues

During the course of this investigation, a small number
of issues have been identified with CrayPat. Theses issues
have been already submitted to Cray developers for further
investigation.

7

Fig. 15. Raw profiling data for ParaFEM/CGPACK MPI/coarray miniapp
cgca_gcupdn and cgca_pfem_map at 7200 cores.

 10

 100

 1000

 10000

 100 1000 10000 100000

 1

 10

 100

ti
m

e
,

s

sc
a
lin

g

_map runtime
_cenc runtime
_map scaling

Fig. 16. Runtimes and scaling for ParaFEM/CGPACK MPI/coarray miniapp
with cgca_pfem_map and cgca_pfem_cenc.

Tracing ParaFEM/CGPACK MPI/coarray has been reporting
an inconsistent percentage of time for some user routines
which were highlighted in sampling experiments. Figs. 17
and 18 illustrate this effect on subroutine cgca_gcupda. Al-
though the sampling report indicates that this subroutine is the
most time consuming user function, this routine is not present
at all in the tracing report, even when cgca_gcupda was
specifically traced. However, it the miniapp, cgca_gcupda
and cgca_hxi are called exactly the same number of times.
Indeed a call to cgca_gcupd is immediately followed by
a call to cgca_hxi in cgca_clvgp. The key fragment is
shown below.

module subroutine cgca_clvgp(coarray, &
... gcus, ...)

integer, allocatable, intent(inout) :: &
coarray(:,:,:,:)[:,:,:]

procedure(gcupd_abstract) :: gcus

Fig. 17. Sampling ParaFEM/CGPACK MPI/coarray miniapp with
cgca_gcupda on 7200 cores.

Fig. 18. Tracing ParaFEM/CGPACK MPI/coarray miniapp with
cgca_gcupda on 7200 cores.

Fig. 19. Incorrect number of threads indentified by CrayPAT in a tracing ex-
periment of ParaFEM/CGPACK MPI/coarray miniapp with cgca_gcupda.

:
end subroutine cgca_clvgp

module procedure cgca_clvgp
:

! update all local GC arrays using
! the given subroutine
call gcus(periodicbc)

! halo exchange after a cleavage
! propagation step
call cgca_hxi(coarray)
:

end procedure cgca_clvgp

where cgca_gcupda is passed for dummy gcus.
Another issue is the number of threads reported by CrayPat

when profiling our different ParaFEM/CGPACK MPI/coarray
miniapps. Although profiling has always been carried out using
a single thread, CrayPat indicates otherwise. An example is
shown in Fig. 19 where in this case CrayPat reports that the
miniapp has been run with 3 threads.

B. Cray Reveal

Fortran 2008 standard says that allocatable coarrays must
be allocated with the same dimensions and codimensions on
all images. Moreover this allocation must be done at the
same time on all images, because coarray allocation involves
synchronisation between all images. When more flexible data

8

structures are desired, e.g. coarray arrays of different length,
as in this work, the only solution currently is to use coar-
ray variables of derived type with allocatable components.
Such variables provide excellent flexibility and potential for
extension. However, the price for such flexibility is poor
optimisation of remote operations with such variables. This
problem was highlighted with Cray Reveal.

The following fragment is from the CGPACK/ParaFEM
interface module cgca_m3pfem, subroutine
cgca_pfem_yum, which updates the FE Young’s modulus
based on the accummulated fracture.

! how many elements
ndims=size(&
centroid_tmp[img_curr] % r, dim=1)
nelements=size(&
centroid_tmp[img_curr] % r, dim=2)

! use a temp array to pull
! all centroids data in one call
allocate(tmp(ndims, nelements))
tmp = centroid_tmp[img_curr] % r

where img_curr is the neighbouring image number.
Here an attempt is made to minimise the number of remote

operations by reading the whole array from another image into
a local array tmp. However, the size of the array on the remote
image is not known. Hence the first two remote operations are
reading just the two dimensions of the array. Then the local
array is allocated accordingly. Finally the remote array can be
read into the local array.

The last statement in the above fragment is at line 571. It
attracted five separate messages from Cray Reveal, which are
reproduced below.

� ”A loop starting at line 571 is flat (contains no external
calls).”

� ”A loop starting at line 571 was not vectorized because
it contains a definition of reference to a coarray variable
on line 571.”

� ”A loop starting at line 571 was unrolled 8 times.”
� ”An implicit non-blocking operation was used for this

statement.”
� ”The coarray assignment in the loop starting at line

571 was not replaced by a block remote data transfer
operation because it is not recognizable as a supported
pattern.”

More information is obtained about the last message with
explain ftn-6239: ”The list of patterns recognizable by
the compiler is as follows: memory copy, get, or put with loop
invariant strides.” This indicates that coarray support in CCE
is still maturing and there is scope for further optimisation.

C. Profiling and tracing with TAU

TAU (Tuning and Analysis Utilities) https://www.cs.
uoregon.edu/research/tau [27], is a popular open
source set of tools for performance analysis, particularly on
HPC systems. Recently TAU was shown to support coarray
programs [28], [29]. We used TAU 2.25.2 to profile and trace

Fig. 20. Profile of CGPACK program testABW, showing only functions
accounting for more than 1% of total exclusive time.

Fig. 21. 3D profiling bar chart of coarray/MPI miniapp xx14std.

coarray/MPI miniapps on non-Cray linux HPC platform using
the Intel Fortran compiler and the Intel MPI library.

TAU is often used together with the Program Database
Toolkit (PDT), https://www.cs.uoregon.edu/
research/pdt, which is a framework for analysing source
code. However, PDT 3.22 does not yet support coarrays.
Hence compiler based instrumentation was used in this work,
which is enabled with TAU flag -optCompInst.

The University of Bristol BlueCrystal phase 3 system
was used for this work http://www.acrc.bris.ac.uk.
Each node had a single 16-core 2.6 GHz SandyBridge CPU
and 64GB RAM. Intel Cluster Studio XE, version 16.0.2,
was used which uses the Intel MPI library 4.1.0. TAU was
configured with

-mpi -c++=mpiicpc -cc=mpiicc \

https://www.cs.uoregon.edu/research/tau
https://www.cs.uoregon.edu/research/tau
https://www.cs.uoregon.edu/research/pdt
https://www.cs.uoregon.edu/research/pdt
http://www.acrc.bris.ac.uk

9

-fortran=mpiifort

Exclusive TAU times were measured and reported in all
cases.

Jumpshot-4, developed by the Argonne National Lab (ANL)
http://www.mcs.anl.gov/research/projects/
perfvis/software/viewers/index.htm, was used
to view TAU traces.

Figs. 20 and 21 show profiling data of 2 CGPACK/ParaFEM
coarray/MPI miniapps on 2 16-core nodes with -O2 optimi-
sation flag. The Intel implementation of coarrays uses MPI-
2 RMA, with MPI_Win_unlock heavily dominating run
times. Although MPI-2 RMA is supposed to be an optimal
mapping of PGAS coarray communications, these results
show that performance critically depends on the quality of
optimisation, thus indicating a potential for optimisation of
(MPI based) coarray remote operations, such as that from
Intel.

D. Opportunities for thread parallelisation

Many CA routines contain triple nested loops over all cells
on an image. An example below is taken from cgca_clvgp,
the cleavage propagation routine. Each iteration of the main
loop all cells in the CA on an image are processed.

main: do iter = 1,N
do x3 = lbr(3), ubr(3)
do x2 = lbr(2), ubr(2)
do x1 = lbr(1), ubr(1)
live: if ...
! scan only through undamaged cells
call cgca_clvgn(clvgflag)
if (clvgflag) call sub(space)
end if live

end do
end do
end do
call co_sum(clvgglob)
sync all
call cgca_hxi(space)
sync all
call cgca_dacf(space)

end do main

Such nested loops might present good opportunities for
thread parallelisation with either OpenMP or OpenACC (e.g.
on GPUs or Xeon Phi), although the use of underpopu-
lated nodes might be required. Fortran 2008 new intrin-
sic DO CONCURRENT should also be explored, although at
present its performance portability is inferior to OpenMP.
Recently, ParaFEM has been ported to Xeon Phi [30]. In order
to make best use of the Xeon Phi architecture, the code needed
some rewriting to use a mixed OpenMP/MPI parallelisation
strategy. On standard x86 multicore processors, the addition
of OpenMP provides no benefit. However, on the Xeon Phi,
OpenMP using 4 threads per core provides an additional 4-
fold speed-up in run times. Porting of CGPACK to Xeon Phi
is planned for the future.

IV. STANDARD COMPLIANCE AND FAULT TOLERANCE
(WP3 AND WP4)

The standard compliance (WP3) has been fully achieved.
The framework has been ported to GCC/OpenCoarrays and
Intel compilers with the use of only Fortran 2008 standard
features. As these platforms are widely accessible, this work
dramatically increased the number of users of the code, as
measured by the number of downloads of CGPACK and by
the number of registered ParaFEM users.

A separate grant from the Software Sustainability Insti-
tute (SSI, http://software.ac.uk [4]) funded ongoing
work to implement an autotools build procedure, which will
further improve portability and usability.

The fault tolerance objective was not achieved due to poor
compiler support. Only a single feature, FAILED_IMAGES,
has become available towards the end of this project, and
is currently supported only by GCC/OpenCoarrays. Fortran
2015 text describing facilities for dealing with failed images
have been finalised in JUN-2016 and it is expected that the
fault tolerant features will gradually become available over
the next 1-2 years in at least 3 compilers: Cray, Intel and
GCC/OpenCoarrays. We will continue monitoring compiler
support for these features and implement them in the multi-
scale framework as they become available.

V. MPI/IO (WP5)

NetCDF and HDF5 filters have been written for cellular au-
tomata data structures. However, the performance of NetCDF
and HDF5 writers has been disappointing compared with
direct use of MPI/IO. This issue is currently being investigated.

Both NetCDF and HDF5 have been implemented in CG-
PACK. However, as Fig. 22 shows, at present maximum
NetCDF IO rates are only about 1.2 GB/s [2], which is
significantly lower than direct use of MPI/IO that gives rates
of about 8 GB/s.

The xdmf wrapper scripts for CGPACK have been updated
to support HDF5 data format.

With ParaFEM, a decision was made to implement a stan-
dard engineering binary format supported by the visualisation
tool Paraview instead of NetCDF and HDF5 and use MPI/IO
directly. There were two main reasons for this decision: (i)
uptake is hindered by usability and our end users will be more
comfortable using a standard engineering format rather than
having the additional barrier of learning about NetCDF and
HDF5 and (ii) the performance improvement using MPI/IO
looks more promising than these libraries. We had an issue
getting Paraview to read binary files written by ParaFEM.
After significant debugging effort, we found that Paraview
would not read binary files written by Fortran, only by C or
C++. Our workaround was to use C data types in ParaFEM
(provided by the ISO C Binding in Fortran 2003 and later)
and write out C binary files from the Fortran program. So for
ParaFEM, the eCSE has provided us with a big push in the
right direction, but we ran out of resource before completion.
We will complete this objective ourselves.

http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
http://software.ac.uk

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 16 32 64

IO
 r

a
te

,
G

B
/s

lfs stripe size, MB

Cray XC30, 20 nodes, lfs, NetCDF IO rates

count 1
count 4
count 8
count 16
count 20
count 32
count 40
count 56

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

IO
 r

a
te

,
G

B
/s

lfs stripe size, MB

Cray XC30, 8 nodes, lfs, NetCDF IO rates

count 1
count 4
count 8
count 16
count 20
count 32
count 40
count 56

Fig. 22. CGPACK IO rates showing the influence of the Lustre file system
stripe size and stripe count settings

VI. CONCLUSION

The technical objectives of this project have been achieved.
The scaling limit for hybrid coarray/MPI miniapps has been
increased by over 3 times, from 2k to 7k cores. This en-
abled new high resolution deformation and fracture results
to be achieved. TAU profiling and tracing tools were proven
useful on Intel platforms in exposing poor optimisation of
coarray operations in Intel 16 Fortran compiler. The addition
of NetCDF and HDF5 routines improved the usability of
CGPACK. Together with successful porting of the multi-scale
framework to GCC/OpenCoarrays platform, this dramatically
increased the usage of the model. The hybrid MPI/coarray
miniapps stress tested CrayPAT tools and identified several
issues in these tools.

ACKNOWLEDGEMENT

This work was funded under the embedded CSE pro-
gramme of the ARCHER UK National Supercomputing Ser-
vice (http://www.archer.ac.uk). This work was car-
ried out using the computational facilities of the Advanced
Computing Research Centre, The University of Bristol, UK
(http://www.bris.ac.uk/acrc). We would like to
acknowledge the assistance of the Software Sustainability
Institute, UK (https://www.software.ac.uk).

REFERENCES

[1] L. Cebamanos, A. Shterenlikht, D. Arregui-Mena, and L. Margetts,
“Scaling hybid coarray/mpi miniapps on archer,” in Cray User
Group 2016 meeting (CUG2016), London, 8-12-MAY-2016, 2016.
[Online]. Available: https://cug.org/proceedings/cug2016 proceedings/
includes/files/pap120.pdf

[2] A. Shterenlikht, L. Margetts, L. Cebamanos, and J. D. Arregui-Mena,
“Multi-scale CAFE framework for simulating fracture in heterogeneous
materials implemented in Fortran coarrays and MPI ,” in PGAS
Application Workshop (PAW), Supercomputing 2016, USA , 2016.
[Online]. Available: http://conferences.computer.org/paw/2016/papers/
5214a001.pdf

[3] A. Shterenlikht, L. Margetts, and L. Cebamanos, “Fortran coar-
ray/MPI multi-scale CAFE for fracture in heterogeneous materials,”
in PARENG2017, Int. Conf. Parallel, Distributed, Grid and Cloud
Computing for Engineering, Pécs, Hungary, 2017.

[4] S. Crouch, N. C. Hong, S. Hettrick, M. Jackson, A. Pawlik, S. Sufi,
L. Carr, D. D. Roure, C. Goble, and M. Parsons, “The Software
Sustainability Institute: Changing Research Software Attitudes and
Practices,” Computing in Science & Engineering, vol. 15, pp. 74–80,
2013. [Online]. Available: http://dx.doi.org/10.1109/MCSE.2013.133

[5] L. Margetts, “Parallel finite element analysis,” Ph.D. dissertation, Uni-
versity of Manchester, 2002.

[6] I. M. Smith, Programming the Finite Element Method. Wiley, 1982.
[7] I. M. Smith, D. V. Griffiths, and L. Margetts, Programming the Finite

Element Method, 5th ed. Wiley, 2014.
[8] I. M. Smith and L. Margetts, “The convergence variability of parallel

iterative solvers,” Eng. Computations, vol. 23, pp. 154–165, 2006.
[Online]. Available: http://dx.doi.org/10.1108/02644400610644522

[9] ——, “Portable parallel processing for nonlinear problems,” in Proc. VII
Int. Conf. Computational Plasticity, Barcelona, Spain, 2003.

[10] L. Margetts, I. M. Smith, and J. M. Leng, “Parallel 3d finite element
analysis of coupled problems,” in Proc. III European Conf. Comp.
Mechanics in Solids, Structures and Coupled Problems in Engineering,
Lisbon, Portugal, 2006.

[11] L. M. Evans, L. Margetts, V. Casalegno, L. M. Lever, J. Bushell,
T. Lowe, A. Wallwork, P. Young, A. Lindemann, M. Schmidt,
and P. M. Mummery, “Transient thermal finite element analysis of
CFC-Cu ITER monoblock using X-ray tomography data,” Fusion
Eng. Des., vol. 100, pp. 100–111, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.fusengdes.2015.04.048

[12] J. D. Arregui-Mena, L. Margetts, D. V. Griffiths, L. Lever, G. Hall,
and P. M. Mummery, “Spatial variability in the coefficient of thermal
expansion induces pre-service stresses in computer models of virgin
gilsocarbon bricks,” J. Nuclear Materials, vol. 465, pp. 793–804, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.jnucmat.2015.05.058

[13] F. Levrero-Florencio, L. Margetts, E. Sales, S. Xie, K. Manda, and
P. Pankaj, “Evaluating the macroscopic yield behaviour of trabecular
bone using a nonlinear homogenisation approach,” J. Mech. Behavior
Biomed. Mater., vol. 61, pp. 384–96, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.jmbbm.2016.04.008

[14] S. D. Rawson, L. Margetts, J. K. F. Wong, and S. H. Cartmell, “Sutured
tendon repair; a multi-scale finite element model,” Biomechanics
Modelling Mechanobiology, vol. 14, pp. 123–133, 2015. [Online].
Available: http://dx.doi.org/10.1007/s10237-014-0593-5

[15] L. Margetts, I. M. Smith, L. M. Lever, and D. V. Griffiths, “Parallel
processing of excavation in soils with randomly generated material prop-
erties,” in Proc. 8th European Conf. Numer. Methods in Geotechnical
Engineering, Delft, Netherlands, 2014, pp. 265–270.

[16] L. Margetts, J. M. Leng, I. M. Smith, and P. L. Manning, “Parallel
three dimensional analysis of dinosaur trackway formation,” in Proc.
6th European Conf. Numer. Methods in Geotechnical Engineering, Graz,
Austria, 2006, pp. 743–749.

[17] A. Shterenlikht, “Fortran coarray library for 3D cellular automata
microstructure simulation,” in Proc. 7th PGAS Conf., 3-4 October 2013,
Edinburgh, Scotland, UK, M. Weiland, A. Jackson, and N. Johnson, Eds.
The University of Edinburgh, 2014, pp. 16–24. [Online]. Available:
http://www.pgas2013.org.uk/sites/default/files/pgas2013proceedings.pdf

[18] A. Shterenlikht and I. C. Howard, “The CAFE model of fracture
– application to a TMCR steel,” Fatigue Fract. Eng. Mater.
Struct., vol. 29, pp. 770–787, 2006. [Online]. Available: http:
//dx.doi.org/10.1111/j.1460-2695.2006.01031.x

[19] S. Das, A. Shterenlikht, I. C. Howard, and E. J. Palmiere, “A
general method for coupling microstructural response with structural
performance,” Proc. Roy. Soc. A, vol. 462, pp. 2085–2096, 2006.
[Online]. Available: http://dx.doi.org/10.1098/rspa.2006.1681

http://www.archer.ac.uk
http://www.bris.ac.uk/acrc
https://www.software.ac.uk
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap120.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap120.pdf
http://conferences.computer.org/paw/2016/papers/5214a001.pdf
http://conferences.computer.org/paw/2016/papers/5214a001.pdf
http://dx.doi.org/10.1109/MCSE.2013.133
http://dx.doi.org/10.1108/02644400610644522
http://dx.doi.org/10.1016/j.fusengdes.2015.04.048
http://dx.doi.org/10.1016/j.jnucmat.2015.05.058
http://dx.doi.org/10.1016/j.jmbbm.2016.04.008
http://dx.doi.org/10.1007/s10237-014-0593-5
http://www.pgas2013.org.uk/sites/default/files/pgas2013proceedings.pdf
http://dx.doi.org/10.1111/j.1460-2695.2006.01031.x
http://dx.doi.org/10.1111/j.1460-2695.2006.01031.x
http://dx.doi.org/10.1098/rspa.2006.1681

11

[20] S. J. Wu, C. L. Davis, A. Shterenlikht, and I. C. Howard, “Modeling
the ductile-brittle transition behavior in thermomechanically contolled
rolled steels,” Met. Mater. Trans. A, vol. 36, pp. 989–997, 2005.
[Online]. Available: http://dx.doi.org/10.1007/s11661-005-0292-z

[21] A. Shterenlikht, L. Margetts, S. A. McDonald, and N. K. Bourne,
“Towards mechanism-based simulation of impact damage using exascale
computing,” AIP Conf. Proc., vol. 1793, p. 080009, 2017. [Online].
Available: http://dx.doi.org/10.1063/1.4971615

[22] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty, “Fortran
2008 coarrays,” ACM Fortran Forum, vol. 34, pp. 10–30, 2015.
[Online]. Available: http://dx.doi.org/10.1145/2754942.2754944

[23] ISO/IEC JTC1/SC22/WG5 N2074, TS 18508 Additional Parallel Fea-
tures in Fortran, 2015.

[24] ISO/IEC 1539-1:2010, Fortran – Part 1: Base language, International
Standard, 2010.

[25] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, “Improving performance via mini-applications,”
Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Tech. Rep. SAND2009-5574, 2009.
[Online]. Available: https://mantevo.org/MantevoOverview.pdf

[26] A. Shterenlikht and L. Margetts, “Three-dimensional cellular automata
modelling of cleavage propagation across crystal boundaries in
polycrystalline microstructures,” Proc. Roy. Soc. A, vol. 471, p.
20150039, 2015. [Online]. Available: http://dx.doi.org/10.1098/rspa.
2015.0039

[27] S. Shende and A. D. Malony, “The TAU parallel performance system,”
Int. J. High Perf. Comp. Appl., vol. 20, pp. 287–311, 2006. [Online].
Available: http://dx.doi.org/10.1177/1094342006064482

[28] H. Radhakrishnan, D. W. I. Rouson, K. Morris, S. Shende, and S. C.
Kassinos, “Using coarrays to parallelize legacy Fortran applications:
Strategy and case study,” Sci. Prog., vol. 2015, p. 904983, 2015.
[Online]. Available: http://dx.doi.org/10.1155/2015/904983

[29] M. Haveraaen, K. Morris, D. Rouson, H. Radhakrishnan, and
C. Carson, “High-performance design patterns for modern Fortran,”
Sci. Prog., vol. 2015, p. 942059, 2015. [Online]. Available:
http://dx.doi.org/10.1155/2015/942059

[30] L. Margetts, J. D. Arregui Mena, T. Hewitt, and L. Mason, “Parallel
finite element analysis using the Intel Xeon Phi,” in Proc. Emerging
Technology Conf. (EMiT 2016), ISBN 978-0-9933426-3-9, 2016.

http://dx.doi.org/10.1007/s11661-005-0292-z
http://dx.doi.org/10.1063/1.4971615
http://dx.doi.org/10.1145/2754942.2754944
https://mantevo.org/MantevoOverview.pdf
http://dx.doi.org/10.1098/rspa.2015.0039
http://dx.doi.org/10.1098/rspa.2015.0039
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1155/2015/904983
http://dx.doi.org/10.1155/2015/942059

	Introduction
	ParaFEM/CGPACK (MPI/coarray) miniapps
	Profiling and optimisation (WP1 and WP2)
	CrayPat issues
	Cray Reveal
	Profiling and tracing with TAU
	Opportunities for thread parallelisation

	Standard compliance and fault tolerance (WP3 and WP4)
	MPI/IO (WP5)
	Conclusion
	References

