
VOX-FE: New functionality for new communities

Neelofer Banglawala1, Iain Bethune1, Michael Fagan2 and Richard Holbrey2

1EPCC, The University of Edinburgh, 2The University of Hull

Version 0.1, May 23, 2016

2 VOX-FE: New functionality

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK Na-

tional Supercomputing Service (http://www.archer.ac.uk)

1 Introduction

This report documents the work of ARCHER eCSE project 04-11 to improve and extend

the VOX-FE finite element bone modelling suite. VOX-FE has been developed as in

collaboration between EPCC and the University of Hull. VOX-FE consists of three parts:

• The graphical user interface - a ParaView plugin, which supports model construc-

tion from volumetric data (e.g. micro-CT image stacks), boundary condition defi-

nition (forces and constraints), and visualisation of strains and other derived prop-

erties computed by the solver. New functionality added to the GUI is outlined in

Section 2.

• The solver - a parallel MPI application which given a model definition, constructs

and solves the linear elasticity problem to compute the displacements of each node.

A new model loading and load-balancing algorithm is described in Section 3.

• The remodeller - a scripting harness to couple together multiple executions of the

solver to examine how bone adapts its structure under load. This process is now

largely automatic, and is discussed in Section 4.

VOX-FE is freely available from https://sourceforge.net/projects/vox-fe/ under a BSD

license. The current released version is 2.0.1, and the next releas 3.0 is planned pending

the implementation of a parallel I/O method to enable the solver to produce correctly

ordered output displacements (currently implemented as a post-processing script).

https://sourceforge.net/projects/vox-fe/

VOX-FE: New functionality 3

2 New Functionality in the VOX-FE GUI

2.1 Intensity Mapping

The VOX-FE plugin can read image data in several di↵erent forms (2D formats: jpeg,

bmp, ti↵, png and the 3D ITK mhd format). For later processing the image data are

converted into script and model files, which can also be read directly by the plugin, to save

re-importing later. Since version 2.0, the VOX-FE solver supports an arbitrary number of

di↵erent ‘materials’ to be defined, enabling each imported voxel to have its own elastic

moduli, rather than assuming it is uniform across all bone voxels.

Figure 1: Example greyscale calibration samples

Raw intensity values (luminescence in grey-scale images) can be mapped to elastic

moduli via an assessment of sample density, if phantom samples of known density are

available to calibrate the CT machine (see Figure 1). A simple linear mapping between

intensity and density can usually be assumed, but to compute elastic moduli from densi-

ties, the VOX-FE2 plugin implements a power mapping of the form presented by Carter

and Hayes in 1977 [1] (quoted here from [2]), e.g.

Elastic Modulus, E = 3.79✏0.06⇢3

where ✏ is the strain rate and ⇢ the apparent density.

4 VOX-FE: New functionality

In VOX-FE, we adopt the form:

E = A⇢B +C

where A, B, C can be set in the filter dialog as the ‘Equation coe�cients’.

2.2 Muscle-wrapping boundary conditions

Simple point boundary conditions are easy to apply within the GUI plugin: points are se-

lected and the VOX-FE2 interface allows that data describing the load or axial constraint

can be attached. Points within the same selection share the condition, so that separate

BCs require di↵erent node selections. However, users would often like to model more

realistic conditions such as the force applied by a muscle which is attached at specific

points and wraps the bone structure, applying compressive forces on the surface. We

have implemented the model of Grosse et al [3] which sets out a methodology to permit

the modelling of muscle forces in terms of both tangential and compressive (normally-

oriented) forces distributed over the area which the muscle is thought to be attached. In

essence, this wrapping model views the compression of the bone as dependent upon 2

factors:

• the path length over which the muscle fibres are seen to be attached (the fibres

become thicker and/or more numerous, so the load increases over the length of the

path); and

• the curvature of the bone around which the muscle passes.

In short, the traction, ⌧(~r)N , which compresses the surface can be described by the

relation:

⌧(~r)N = s(~r).(~r).⌧(~r)T

where: ⌧(~r)N is the compressive load, ⌧(~r)T is the traction due to the intended action

of the muscle (e.g. in biting), s(~r) is the length of the path of attached muscle and (~r) is

the curvature of the bone attachment area.

VOX-FE: New functionality 5

Note that the authors have released a utility (BoneLoad) which can compute tangent

and normal forces on tetrahedral meshes, but which requires a number of di↵erent utilities

to run, including the commercial packages MatLab and Strand7.

Liu et al [4] have adapted this method for use with voxel data, using 2D splines placed

by an alternate utility, which is interpolated across the mesh via a graph-based algorithm.

A key di�culty is the mapping of the voxel surface to an approximation of the mesh

surface: our approach is described below.

2.2.1 Surface Fitting

The muscle-wrapping algorithm of Grosse et al essentially requires that good estimates

for curvature and the shortest geodesic path can be obtained on a given mesh surface.

Unfortunately, for our voxel models, the surface is usually very coarse and assessments

for these properties cannot be performed directly.

The first step is therefore to obtain a reasonable approximation of the voxel surface,

for which we make use of ParaView to visualize the surface fit. As with the definition of

point-based BCs, we rely upon the user to define the area of muscle attachment, which is

then extracted.

2.2.2 Minimising Fitting Error

In order to minimise the error in fitting, these data are then transformed by principal

components analysis (PCA), so that the axis of least variation is aligned with the z-axis

of the PCA transformation, and becomes the axis over which the fit is performed.

One possibility is to use splines to perform this fit, but after experimentation with

various open-source libraries (e.g. Netlibs surfit, and alglib), it was realized that the

mesh approximation was still far too coarse. Another problem with these spline-fitting

algorithms is that the fit must be retrieved on a regular grid, which would require further

sampling to relate properties (curvature etc) back to the original grid.

An alternative approach, initially tested using the fields package in R, was to use

kriging. This method has been developed by geologists using irregularly spaced sam-

ples to interpolate across any given region, and is therefore well suited to the problem of

6 VOX-FE: New functionality

irregular input samples. After further work, the gstat package in R was tried and it was

found that on older C-version of the library also performed well for this purpose. This

library has now been integrated into the VOX-FE plugin. (Eigen is used to obtain the

PCA transform.)

2.2.3 Estimates for Normals and Curvature

ParaView (and the underlying VTK library) has several routines to assist with mesh con-

struction and curvature estimation. It was found, however, that whilst VTK’s Delaunay2D

filter provides a visually acceptable surface mesh approximation, used as an input to

VTK’s curvature estimator, the mesh gives poor results.

To improve the curvature estimation, several smoothing operators were tried (such

VTK’s vtkSmoothPolyDataFilter) but with little success. A serious drawback to

these methods is that they arbitrarily refine the mesh removing near coincident points.

Whilst this presumably has great merit in terms of smoothing it also makes mapping

back to the original points much more di�cult.

Instead, a point-based method was slightly adapted from the code given in Dorias

submission to the VTK Journal [5]. Since this method does not require an input mesh

topology, and allows the radius of operation to be easily changed (giving a smoothing

e↵ect), it was much more readily integrated into the plugin.

A modification was added to the curvature estimator. Dorias code computed the aver-

age distance from the best fit plane to points within a sphere of given radius. This value

was then normalized to lie in the interval 0�1. Instead, we suppose that the average devi-

ation, h, from the best-fit plane occurs at l (which is some fraction of the search radius L).

A best-fit circle of radius r can then be found passing through this point and the centre of

the search sphere. We define the angle a as:

a = tan�1(h/l)

By simple trigonometry, we know that the angle subtended at the centre of the fitted

circle is 2a. The search sphere (dotted in Figure 2) maps to a circle on the best-fit plane.

VOX-FE: New functionality 7

Figure 2: The modified best-fit circle algorithm

Assuming that the points within the search sphere are evenly distributed, then half of

the points will fall within a radius L/
p

2 of the mapped circle (and half without). Thus,

setting l to L/
p

2, we can estimate the radius r as:

r = (L/
p

2)cos2(a)/sin(2a)

This produces a clearer estimate of curvature (= 1/r) then the original code. Testing

the approximation using vtkSphereSource meshes generated in ParaView typically yields

values within 5% of the true radius.

The code for estimating normals works as given, provided that an outward orientation

can be supplied. This can be readily computed from the PCA transformed point data,

comparing data from the edge and central regions of the transformed space.

2.2.4 Computing the shortest path

VTK provides the vtkDjikstraShortestPath class to apply the associated shortest

path algorithm on triangular mesh data. Using the Delaunay (2D) algorithm to compute

the mesh topology, it is therefore possible to compute paths from each selected point

8 VOX-FE: New functionality

Figure 3: Shortest path between two points on the surface of a voxel mesh.

Figure 4: Concentration of paths towards a single point

towards a user-supplied target point (see Figure 3).

A problem occurs, however, where the mesh topology is constructed from the selected

area towards the target point. A convex edge is established which minimises the number

of triangles towards the target leading to an edge e↵ect. This causes the paths to concen-

trate along a few strands towards the target point, rather than along possible grooves in

the underlying bone (see Figure 4; note the surface colour mapping is by curvature).

To correct for this, an alternative graph algorithm was devised, using the Boost graph

library1. The Delaunay mesh can be interrogated to find the mesh triangles associated

with the target point and neighbouring points are also recovered. The user is then re-

quested to set a maximum edge side, say �, so that all triangles with sides larger than �

1http://www.boost.org/doc/libs/1 61 0/libs/graph/doc/index.html

VOX-FE: New functionality 9

Figure 5: Distribution of strands along a path

can be removed and/or remodelled. This results in a much more even strand distribution,

although there is still an accumulation along particular paths, see Figure 5.

2.2.5 Tangents

The Boost graph algorithm for the Dijkstra shortest path allows paths to be traced from

every point to the target. Each point therefore has an associated path except where a path

terminates. If this path segment is projected into the plane defined by the normal, then

we can form the associated tangent. A resultant force can then be computed using the

normal, tangent and curvature properties as described in Section 2.2.

2.2.6 Comments

The muscle-wrapping algorithm requires a number of properties to be defined which can

be strongly a↵ected by the choice of algorithm and the smoothness of the extracted sur-

face. Time has not permitted the sensitivity of the algorithm to be determined for the

factors obtained as described here. A further issue is the scaling of the normal (compres-

sive) force which must be determined experimentally.

10 VOX-FE: New functionality

3 The VOX-FE 3.0 solver

3.1 Overview

The VOX-FE solver determines the e↵ect of constraints and forces applied to a bone

model. It does this by solving a system of coupled linear equations defined by a Global

Sti↵ness Matrix (GSM), which describes the relationship between the bone elements

making up the model and their material properties, and a force vector of any constraints

placed upon the bone elements. Each bone element is a cuboid with eight nodes (the

corners). When the linear system of equations is successfully solved, the solver outputs

the final nodal displacements.

In eCSE01-15 [6], we developed VOX-FE 2.0, in which a the legacy VOX-FE solver

PARA-BMU was replaced with a PETSc2-based solver. The VOX-FE 2.0 solver (solver

2.0 from here on) outperformed the legacy solver in several ways: by solving larger

models (> 20M elements) with an arbitrary number of material types, by scaling to higher

core counts (> 256 cores), by being more memory e�cient in using more cores per node

and by o↵ering a wider range of solution algorithms through the PETSc library.

In solver 2.0, every MPI process loads the whole bone model. This keeps MPI com-

munication between processes to a minimum. However, it increases the memory cost per

process as the model size increases. Construction of the GSM is divided evenly amongst

processes, so that process p is responsible for the pth set of consecutive GSM rows. The

MPI communication involved in constructing the GSM and solving the linear system is

handled by the PETSc library. For models with a dense, contiguous structure, e.g. a

cylinder beam, dividing work between processes in this simple way works well. How-

ever, realistic bone models are sparse and have highly irregular complex structure which

results in load imbalance across processors.

In this project we have addressed the load imbalance and memory e�ciency issues of

solver 2.0. We use ParMETIS3, an e�cient, scalable graph partitioning library, to parti-

tion the model between processes so that work is balanced evenly across processes. We

2Portable, Extensible Toolkit for Scientific Computation [7]
3http://glaros.dtc.umn.edu/gkhome/views/metis

VOX-FE: New functionality 11

also introduce an improved method for model loading, whereby each process reads and

owns a subset of the entire model. Thus the memory footprint of each process is reduced.

These new developments are built into the VOX-FE 3.0 solver (solver 3.0 from here on)

and are discussed in Section 3.2. The new solver’s performance results, discussed in sec-

tion 3.4, confirm that with good load balancing, it outperforms solver 2.0 for realistic

bone models. Furthermore, the reduced per-process memory usage means that solver 3.0

is able to solve models an order of magnitude larger than the largest models solved with

solver 2.0, and on a larger number of cores than was possible with solver 2.0.

3.2 Algorithm

The VOX-FE solver is written in C++ and parallelised with MPI. Figure 6 shows the

main classes of the solver. The red highlighted methods are the key developments in

solver 3.0.

Figure 6: Solver 3.0: new developments are highlighted in red.

The overall algorithm for partitioning the model optimally is described below:

1. Model elements are evenly divided across processes.

12 VOX-FE: New functionality

2. Each process has a set of local elements, ElemS, a set of corresponding local nodes,

NodeS, a set of non-local or “ghost” (i.e. belonging to another process) elements,

GElemS, and a set of corresponding non-local nodes, GNodeS. GElemS and GNodeS

contain elements and nodes that neighbour the elements and nodes in ElemS and

NodeS respectively. Note that it is necessary for every process to know all the

neighbours of the nodes it owns (in NodeSi) in order to construct its part of the

GSM: a GSM row corresponds to a node, and each non-zero GSM column corre-

sponds to that node’s neighbour node(s).

3. Using the ParMETIS Mesh2Dual method, the element neighbours of each element

in ElemS are found, which in turn determines the nodal neighbours of each node in

NodeS.

4. Element and nodal neighbour information is distributed to all processes using MPI_-

Alltoall.

5. All nodes are renumbered so that each process owns a consecutively numbered set

of nodes. This is necessary for using ParMETIS methods.

6. Using the ParMETIS PartGeomKway method, the optimal distribution of nodes

across processors, i.e. the partition vector, is found.

7. Repartitioned element and nodal information is once again distributed to all pro-

cesses using MPI_Alltoall.

8. All nodes are once again renumbered. This is necessary for the construction of the

GSM, which requires that each node set is consecutively numbered.

Once the model has been partitioned, forces and constraints are loaded. The GSM

is then constructed and the linear system is solved using PETSc. In solver 2.0, the final

nodal displacements are sent to a master process that writes the displacements to a file in

Cartesian order. In solver 3.0, to output the displacement data in order, it proved simplest

to have each process write its set of nodal displacements to a separate file and then to

collate the data in a single file using an external post-processing script. This is not an

VOX-FE: New functionality 13

ideal solution but proved to be the most straightforward without requiring any MPI-IO

methods or sending all the data to a master process which would cause memory issues

when solving models with hundreds of millions of elements.

3.3 Test models

We tested the performance of the new solver using three di↵erent models: (a) a 200M

element (sparse) horse bone cube model, (b) an 8M element (dense) cylinder model and

(c) a 25M element (sparse) trabeculae cube model. Figure 7 shows models (a) and (b);

model (c) is similar in structure to model (a). We chose these models to test the solver’s

performance on di↵erent bone geometries (idealised and realistic) and di↵erent sized

models.

(a) Horse trabeculae cube model (200M). (b) Dense cylinder model (8M)

Figure 7: Test models with total number of elements indicated in brackets.

3.4 Performance results

We ran all three models on solver 3.0. We also ran the cylinder model and the sparse

trabecular model on solver 2.0; the horse bone model was too large for the old solver.

Additionally, to maximise the per-core memory for the 25M element trabeculae model

on solver 2.0, ARCHER nodes were underpopulated so that only one or two cores were

used per node. Finally, we excluded the time taken to output nodal displacements from

the performance data to make comparisons between the two solvers fairer.

14 VOX-FE: New functionality

Figure 8: Strong scaling of solver 2.0 and solver 3.0 using the dense cylinder model (8M
elements). T (p) is the time taken by either solver on p processors and T 2.0(64) is the
baseline time taken by solver 2.0 on 64 processors.

Figures 8 and 9 show the strong scaling performance of solver 3.0 relative to solver

2.0. We see that the performance of the solvers varies between the two types of models.

For model loading and constructing the GSM, solver 3.0 consistently shows super-linear

scaling and outperforms solver 2.0. However, in solver 3.0, the time to solve the linear

system scales sub-linearly for the cylinder model and drops below ideal scaling above 512

cores for the trabeculae model. The overall solver time for both solvers (excluding the

time to output nodal displacements) scales sub-linearly in the case of the cylinder model,

with solver 3.0 outperforming solver 2.0 on 512 or more cores. Solver 3.0 consistently

outperforms solver 2.0 in the case of the trabeculae model, and shows super-linear scaling

for up to 512 cores, before scaling sublinearly.

Figure 10 shows the strong scaling performance of solver 3.0 using the 200M element

VOX-FE: New functionality 15

Figure 9: Strong scaling of solver 2.0 and solver 3.0 using the sparse trabecular model
(25M elements). T (p) is the time taken by either solver on p processors and T 2.0(64) is
the baseline time taken by solver 2.0 on 64 processors.

horse bone model. The solver shows close to ideal scaling up to 4096 cores.

3.5 Discussion

We have developed the next version of the VOX-FE solver, solver 3.0, by improving the

overall load balance and the memory usage per core of previous solver. The performance

results show that these developments have led to the solver now being able to handle

models that are an order of magnitude larger than previously possible, and with good

scaling on thousands of cores. Furthermore, the memory usage per core has been signifi-

cantly reduced so that fewer nodes are needed to run the same model sizes on new solver

compared to the old solver. This reduces computing costs and is more energy e�cient.

16 VOX-FE: New functionality

Figure 10: Strong scaling of solver 3.0 using the horse bone model (200M elements).
T (p) is the time taken by the solver on p processors.

Solver 3.0 performs well for realistic bone geometries. For smaller, less realistic models

such as the dense cylinder model, ParMETIS may be unable to improve upon the simple

model decomposition used in solver 2.0. Possible avenues for future work could include

exploring why this might be and also how MPI-IO could be used to e�ciently output the

nodal displacement data to one file.

4 Adaptive Remodelling

A adapative remodelling harness was added to VOX-FE in the 2.0 release, and is fully

described in Section 4 of [6]. The main drawback of the initial remodeller was that

selecting the upper and lower strain thresholds for applying remodelling was di�cult,

and the best values would vary from iteration to iteration as the structure adapted to the

VOX-FE: New functionality 17

imposed load and constraints. Two improvements have been implemented in this project:

• A formal command-line interface based on the Boost program options module,

which can also be configured either on the command-line or by a simple text file;

and

• An adaptive histogram-based scheme for the selection of thresholds.

4.1 Configuring the execution parameters

Running the help option of the graph control utility now yields the following output:-

>./voxfeRemodelControl --help

Generic options:

-v [--version] print version string

-h [--help] produce help message

-c [--config] arg (=remodel.cfg) name of configuration file.

Configuration options:

-i [--script] arg VOX-FE script file

-m [--materials] arg Binary file mapping ordered GlobalElementID to

MaterialID

-g [--graph] arg Graph of node connectivity in element order

-a [--adaptive] arg (=Y) Use adaptive or hard threshold limits for adding

removing voxels. Enter Y/N

-l [--lower] arg Lower threshold limit (enter value between

0.0-1.0 eg. 0.005)

-u [--upper] arg Upper threshold limit (enter value between

0.0-1.0 eg. 0.95)

-k [--lazycentre] arg The lazy region (ie no further remodelling)

18 VOX-FE: New functionality

centre, denoted K in the literature, typically

0.0025-0.005

-s [--lazywidth] arg The lazy region (ie no further remodelling)

centre, denoted S in the literature, typically

0.3

-z [--lazypop] arg When this fraction of the SED data is within the

lazy region, remodelling will cease. Enter value

between 0.0-1.0

-d [--displ] arg The name of the solver generated displacement

file

-p [--petsc] arg (=Y) Use the the PETSC-based solver, or the older

solver (PARA_BMU). Enter Y/N

-f [--fullconnec] arg (=N) Use full/26-neighbour connectivity to remove

disconnected elements (aka islands), or the less

drastic 6-neighbour connectivity. Enter Y for

26- or N for 6-connectivity

Note that whilst all the options presented can be given in a configuration file, par-

ticular options can be overwritten on the command line using the given tags. Thus to

remind the user, the actual chosen command line options are stored in a generated file:

Remodelling.args.txt.

4.2 Adaptive Remodelling

Using fixed thresholds has several drawbacks: finding good initial thresholds requires

many runs to determine and often those starting values will give poor results after a hand-

ful of iterations. One factor, however, made the search for a more automatic threshold

more awkward - namely that the range of SED values generated at the surface of models

is neither normal nor half-normal. In fact, plotting histograms shows that the majority of

the data lie in the first or the first few bins.

VOX-FE: New functionality 19

Figure 11: Example strain histogram, showing the e↵ect of log scaling

The solution adopted in VOX-FE is to use a log scale to plot the histogram. Al-

though no longer a true histogram, this shows a much more normal shape, which is more

amenable to the selection of upper and lower populations (see Figure 11). If the user se-

lects adaptive thresholding (see Section 4.1), then two other parameters must be provided

giving the fraction of the population below which voxels are removed and that fraction of

the population above which voxels are added. Since more voxels tend to be added than

removed, it is advisable to to set these to be uneven e.g. 0.05 and 0.995.

Weinans et al [8] and several others have proposed that a ‘lazy zone’ can be defined in

which no further growth should occur. A zone (centre [-k] and width [-s]) can be set in the

configuration file which will terminate the remodelling process if a su�cient percentage

of the population should be found to lie within this zone.

4.3 Discussion

The process outlined above could be streamlined, particularly with regard to (re-)reading

input files. Ideally, the graph control would remain resident throughout, checking peri-

odically for the generation of appropriate files, perhaps, via notifications from the solver

through a socket interface. The current scheme, however, has the advantage of simplicity

and ease of debugging as all intermediate files are available.

Although use of the connected components algorithm is advised to remove separated

20 VOX-FE: New functionality

bone ‘islands’, the solver has so far proved to be robust to models with small numbers

of disconnected elements. Possibly this is because such regions are generally well away

from regions of high strain, so that the impact is slight. The less severe 26-face check

is therefore favoured currently, but it should be noted that only the 6-face connectivity

option removes all weakly linked (i.e. node or edge only) element connections.

Figure 12: Strain energy density visualisation of a trabecular bone model. Yellow and
red indicate regions of high strain, where new voxels will be added prior to the next
remodelling iteration.

Due to some memory issues with the 2.0 solver, only models of around 2 million

elements have been tested within the above scheme. The wall-clock time for this solving

the model, shown in Figure 12, lies between 280-370 seconds (on 16 cores), with the

remodelling step requiring less than 10 seconds.

Setting the ‘lazy zone’ to terminate the remodelling process, which should lie around

0.0025-0.0052 J/g (±30%) according to the literature, has not proved to be very workable

so far. It is unclear if these values may be too restrictive or whether these values may

vary for di↵erent bone types. Given that the zone is now highly configurable in VOX-FE,

however, it should be possible, with further experimentation, to define a likely termination

zones.

VOX-FE: New functionality 21

References

[1] DR Carter and WC Hayes. The compressive behavior of bone as a two-phase porous

structure. J Bone Joint Surg Am., 7:954–962, 1977.

[2] Benedikt Helgason, Egon Perilli, Enrico Schileo, Fulvia Taddei, Sigurur Brynjlfsson,

and Marco Viceconti. Mathematical relationships between bone density and mechan-

ical properties: A literature review. Clinical Biomechanics, 23(2):135 – 146, 2008.

ISSN 0268-0033. doi: http://dx.doi.org/10.1016/j.clinbiomech.2007.08.024. URL

http://www.sciencedirect.com/science/article/pii/S0268003307001866.

[3] Ian R. Grosse, Elizabeth R. Dumont, Chris Coletta, and Alex Tolleson. Techniques

for modeling muscle-induced forces in finite element models of skeletal structures.

The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology,

290(9):1069–1088, 2007. ISSN 1932-8494. doi: 10.1002/ar.20568. URL http://dx.

doi.org/10.1002/ar.20568.

[4] Jia Liu, Junfen Shi, Laura C Fitton, Roger Phillips, Paul OHiggins, and Michael J

Fagan. The application of muscle wrapping to voxel-based finite element models of

skeletal structures. Biomechanics and modeling in mechanobiology, 11(1-2):35–47,

2012.

[5] David Doria. Point Set Processing for VTK - Outlier Removal, Curvature Estimation,

Normal Estimation, Normal Orientation. The VTK Journal, 2010. URL http://www.

vtkjournal.org/browse/publication/708.

[6] N. Banglawala, I. Bethune, R. Holbrey, and M. J. Fagan. Voxel-based finite element

modelling with VOX-FE2. ARCHER Whitepaper, May 2015.

[7] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris

Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,

Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano

Zampini, Hong Zhang, and Hong Zhang. PETSc Web page. http://www.mcs.anl.

gov/petsc, 2016. URL http://www.mcs.anl.gov/petsc.

http://www.sciencedirect.com/science/article/pii/S0268003307001866
http://dx.doi.org/10.1002/ar.20568
http://dx.doi.org/10.1002/ar.20568
http://www.vtkjournal.org/browse/publication/708
http://www.vtkjournal.org/browse/publication/708
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

22 VOX-FE: New functionality

[8] Harrie Weinans, Rik Huiskes, and HJ Grootenboer. The behavior of adaptive bone-

remodeling simulation models. Journal of biomechanics, 25(12):1425–1441, 1992.

