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Abstract

In this project we have significantly improved the parallel scaling of the spectro-

scopic modules in CASTEP (specifically the Nuclear Magnetic Resonance (NMR) and

vibrational spectroscopy modules) by introducing an additional layer parallelism into

the code; parallelism over perturbations. Many spectroscopic parameters can be con-

sidered as the response of the electronic structure to a perturbation. For example the

NMR J-coupling is the response of a system to the magnetic field generated by exci-

tation of a nuclear spin; the NMR magnetic shielding is the response of a system to

an applied external magnetic field; lattice dynamics is the response of the system to

the movement of the ionic cores. Utilising this new level of parallelism means that
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for large core counts the parallel FFT is only computed within a small subset of the

participating cores dramatically increasing the scaling performance of the code.

Introduction

In recent years it has become clear that in the broad discipline of Materials Science the

power of modern experimental spectroscopic techniques is inextricably linked to the avail-

ability of advanced computational tools and the infrastructure to run such simulations. This

is particularly true in the fields of solid-state Nuclear Magnetic Resonance (NMR) and vi-

brational spectroscopy (neutron and X-ray scattering, Raman and IR spectroscopy), where

deployment of first-principles methods to predict experimental observables has enabled many

research groups to employ a combined experimental and computational approach.

The key quantity of Materials Modelling approaches based on Density Functional Theory

(DFT) is the total energy of the system.1 This is obtained by solving the Kohn-Sham2

eigenvalue equations corresponding to different sampling points (‘k-points’) of the reciprocal-

space Brillouin zone of a periodic simulation cell,

Ĥkψbk(~r) = Ebkψbk(~r) (1)

where Ĥk is the Hamiltonian at k-point k, {ψbk(~r)} are the eigenstates, known as bands and

{Ebk} are the corresponding band-energies (i.e. the eigenvalues).3 The Hamiltonian is not a

fixed operator but contains terms that depend on the electronic charge density n, which is

given by

n(~r) =
∑
bk

fbk

∫
|ψbk(~r)|2d3k (2)

The total energy can be used to rank the stability of structures - however, many experi-

mental observables can be obtained as changes in total energy in response to a perturbation

to the system. A simple example is the change in total energy on displaying an atom -
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which gives rise to the force acting on the atom. In the context of NMR spectroscopy the

key observables can be formulated as changes in the total energy. For example the magnetic

shielding is the 2nd order change in the total energy with respect to an external magnetic

field and a nuclear magnetic moment.

NMR Spectroscopy

Magnetic Shielding

The Zeeman interaction between a magnetic field, B, and a set of spin 1/2 nuclei K, is given

by

H = −ΣKγKIK ·B, (3)

where h̄IK is the spin angular momentum and γK the gyromagnetic ratio of nucleus K. If

we consider B as the field at the nucleus due to the presence of an externally applied field

Bext we can express Eqn. 3 as

H = −ΣKγKIK(1− σ̄)B (4)

The first term is the interaction of the bare nucleus with the applied field while the second

accounts for the response of the electrons to the field. This electronic response is charac-

terized by the absolute magnetic the shielding tensor is defined as the ratio between this

induced field, and the external applied field

Bin(r) = −~σ(r)Bext. (5)

In a diamagnetic insulator this arises from orbital currents induced by an external magnetic

field.4,5 This current j(r), produces a non-uniform induced magnetic field in the material,
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which is given by the Biot-Savart law as

Bin(r) =
1

c

∫
d3r′j(r′)× r− r′

|r− r′|3
. (6)

The shielding tensor can equivalently be written as a second derivative of the electronic

energy of the system

σ̄ =
∂2E

∂mK∂Bext

. (7)

J-coupling

In the previous section we considered the effect of the magnetic field at a nucleus resulting

from an externally applied field. However, there may also be a contribution to the magnetic

field at a nucleus arising from the magnetic moments of the other nuclei in the system. In

an effective spin Hamiltonian we may associate this spin-spin coupling with a term of the

form

H = σK<LIK(D̄KL + J̄KL)IK (8)

D̄KL is the direct dipolar coupling between the two nuclei and is a function of only the nuclear

constants and the inter-nuclear distance. The J-coupling, J̄KL is a small perturbation to the

electronic ground-state of the system and we can identify it as a derivative of the total energy

E, of the system

JKL =
h̄γKγL

2π

∂2E

∂mK∂mL

(9)

An equivalent expression arises from considering one nuclear spin (L) as perturbation which

creates a magnetic field at a second (receiving) nucleus (K)

B
(1)
in (RK) =

2π

h̄γKγL
JKL ·mL. (10)

Eqn. 10 tells us that the question of computing J is essentially that of computing the mag-

netic field induced indirectly by a nuclear magnetic moment.6 When spin-orbit coupling is
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neglected we can consider the field as arising from two, essentially independent, mechanisms.

Firstly, the magnetic moment can interact with electronic charge inducing an orbital current

j(r), which in turn creates a magnetic field at the other nuclei in the system. This mechanism

is similar to the case of magnetic shielding in insulators. The second mechanism arises from

the interaction of the magnetic moment with the electronic spin, causing an electronic spin

polarisation. By working to first order in these quantities we can write the magnetic field at

atom K induced by the magnetic moment of atom L as

B
(1)
in (RK) =

µ0

4π

∫
m(1)(r) ·

[
3rKrK − |rK|2

|rK|5

]
d3r

+
µ0

4π

8π

3

∫
m(1)(r)δ(rK) d3r

+
µ0

4π

∫
j(1)(r)× rK

|rK|3
d3r. (11)

The first two terms arise from the induced spin density and are respectively termed the

dipolar (DIP) and Fermi-contact (FC) contributions. The final term is due to the induced

orbital current and can be further decomposed into a paramagnetic (PARA) and diamagnetic

(DIA) contributions. The isotropic contributions to the J-coupling tensor can hence be

written as7,8

Jiso = JSDiso + JFCiso + JDIAiso + JPARAiso (12)

Summary

The magnetic shielding tensors for a system can be obtain from the response to a single

external perturbation - i.e. the current induced by an external magnetic field. However,

for a system of N atoms there will be N2 J-coupling tensors. A single perturbation gives

the current (or spin density) induced by a single atomic movement. N perturbations will be

required to obtain the full set of J-coupling tensors. In some experiments only a subset of

the J-couplings will be required (e.g. those involving particular pairs of NMR active nuclei),

however, in other materials, such as glasses, all possible J-couplings will be required. It can
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hence be seen that while the magnetic shieldings cannot take advantage from perturbation

parallelism, the J-coupling presents an ideal case.

Prior parallel performance

Response calculations such as J-couplings made use of two levels of parallelism within

CASTEP. The calculation of contributions from different k-points are almost independent

of each other and so it is natural to distribute the data over the k-points. Calculations scale

almost perfectly with this distribution of data. However, as the size of the simulation cell

grows, the size of the Brillouin Zone correspondingly reduces. This means that for larger

calculations often a single k-point is required. This means that k-point parallelism is of

limited use in a HPC environment. The second strategy is to distribute the data by the

G-vectors. Since the number of plane-waves is often large, and grows approximately linearly

with simulation cell size, this enables efficient data distribution and load-balancing. During

the application of the Hamiltonian the data must be transferred from real to reciprocal space

using a 3D FFT. This operation involves a transpose of the data and all-to-all communi-

cations. This limits the number of cores that can be used effectively. Figure 1 shows the

scaling of a typical NMR calculation with number of processing elements.

Perturbation parallelism

The implementation made use of the MPI communicators previously introduced to handle

task farming parallelism. CASTEP’s modular structure means that all mpi calls are con-

tained within the comms module - and so the additional communication routines only needed

to be added to this file. The J-coupling code was original written to be called only a single

time in each run. Careful testing was needed to make sure the routines were re-entrant and

numerically identical results were obtain no matter which order the perturbations were com-

puted. To enable the user to easily select which perturbations to include in the calculation
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Figure 1: Performance of J-coupling code prior to e-CSE work. Scaling is limited by the 3D
FFT and the all-to-all communication.

the following keyword was added to the CASTEP input file (via the “cell” file)

jcoupling_site : all ! All atomic sites

jcoupling_site : C N ! All sites belonging to the listed species

jcoupling_site : C 1 !The site C 1

jcoupling_site : C{1,3,5-11} ! The sites C1,C3,C5,C6,C7,C8,C9,C10,C11

The output of the calculation (the J-coupling tensors) is written to a single file in the magres

file format.9 Tools for the visualization and processing of magres files have recently been

developed.9 Initial very poor parallel performance was tracked down to i/o issues (namely

multiple cores trying to write data to the same, admittedly small, file). Once this was

corrected we found very good scaling up to large number of cores (10k+). Figure2 shows

the scaling behaviour for a 108 atom model of a silicate glass. The calculations reach 80%

speed up at the largest core count (approx 10k) when each task farm is assigned a single

perturbation. On further investigation we believe this reduction from ideality is due to the
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Figure 2: Scaling of the calculation of NMR J-coupling with number of cores for a 108atom
model of a siliate glass.

relatively short duration of the calculations, and we expect larger systems to show better

performance. Load balancing is not a significant issue as we find that each perturbation

takes almost an identical time to compute (within the variation of run times). In Figure 3

we show the results from the calculation on a the silicate glass model - namely that there is

a strong correlation between JSiO and the Si-O-Si bond angle. This previously unpublished

result shows the potential significance of using NMR J-coupling to determine the structure

of glassy materials.
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Figure 3: Distribution of 1JO−Si with Si-O-Si bond angle for a model of a silicate glass.

Vibrational Spectroscopy

The theory of lattice dynamics begins with an expansion of the total energy of the system

in terms of the atomic coordinates,10

E = E0 +
∑
κ,α,a

∂E

∂uκ,α,a
+

1

2

∑
κ,α,κ‘,α‘,a

uκ,α,aΦ
κ,κ‘
α,α‘uκ‘,α‘,a + ... (13)

where uκ,α,ais the vector of atomic displacements from equilibrium. Φκ,κ‘
α,α‘ is the matrix of

force constants,

Φκ,κ‘
α,α‘(a) =

∂2E

∂uκ,αuκ‘,α‘
(14)

At equilibrium the first order term in the expansion is zero. The vibrational modes of the

system are obtained by solving the eigenvalue equation,

Dκ,κ‘
α,α‘(q)εmκ,αq = ω2

m,qεmκ,αq (15)

9



Where the dynamical matrix, Dκ,κ‘
α,α‘(q) is the mass weighted fourier transform of the force

constant matrix,11 Φκ,κ‘
α,α‘

Dκ,κ‘
α,α‘(q) =

1√
MκMκ‘

∑
a

Φκ,κ‘
α,α‘(a)e−iq·Ra (16)

It can be seen that the task of computing the vibrational frequencies, ω2
m,q, of the system

is essentially that of computing the force constant matrix - the response of the system to

the movement of the ionic cores. In general there will be 3N perturbations, however in most

situations the symmetry of the crystal will reduce the number of unique perturbations.
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Figure 4: Parallel performance post-eCSE of the calculation of phonon modes in the case of
a single k-point to sample the Brillouin Zone

The distribution of the perturbations between the task farms made use of the same

communicators as the J-coupling in the previous section. However, there are two additional

challenges. Firstly, the calculations of the force constant matrix includes an element of work

that is not distributed over the task farms. In the following graphs the timings with and
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without this contribution are included. The solution to this is to perform an initial non-task-

parallel calculation to pre-compute the necessary quantities. As a prerequisite to a phonon

calculation is a optimization of the geometry, these contributions could be calculated at the

end of the geometry optimization - thus avoiding the need for an additional job. A more

significant challenge is load balancing between the farms. For calculations on an isolated

molecule, or a very large crystal it is sufficient to sample the electronic Brillouin zone with a

single k-point. In this case the time for each perturbation is almost identical and there is no

load balancing issue. However, for small and even moderately large crystals it is necessary to

sample the Brillouin Zone with multiple k-points. Depending on the symmetry of a particular

perturbation the number of unique k-points will be different. The calculation time is well
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Figure 5: Parallel performance post-eCSE of the calculation of phonon modes in the case
where multiple k-points are needed to sample the Brillouin Zone.

correlated to the number of kpoints - and so the time to calculate each perturbation will

vary significantly. One approach to addressing this would be to assign variable numbers of

processors to each farm. It was felt that this would introduce significant complexity into the
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code - and would also be problematic in the case of farms dealing with multiple perturbations

(i.e. communicators would need to be dynamically re-assigned during the code run). Instead

a fixed farm size was chosen. This means that in the limit that each farm calculates one

perturbation the efficiency will be limited by the most expensive perturbation. This can be

seen in Figure 5 where using the maximum number of farms (15) gives only an 11x speed

up. However, when each farm can deal with multiple perturbations the perturbations can

be assigned so as to choose the optimal combination of perturbations to assign to each farm.

This is done by pre-computing the number of k-point required for each perturbation and

estimating the workload required. Figure 5 shows the effect of the calculated assignment of

perturbations in comparison to a random assignment. For 8 farms there is an almost perfect

scaling. It is clearly important for a user to be able to determine the optimal number of

farms for a given system. A simple command line tool has been developed to estimate the

load balancing for different numbers of farms, and hence allow the user to identify the most

efficient.
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