Full parallelism of calculations of optimal flow control

1. Abstract

The project is about fully parallelizing a well-tested flow control code SEMTEX. It
has been partly parallelised in a homogenous direction by Fourier transform,
which is called modal parallelisation. After Fourier decomposition, 3D flow can
be decomposed into a number of, weakly interacting 2D problems. There are two
aims in this project. The first one is to parallelise a 2D problem by partitioning
the plane and distribute the partitioned elements among the processes, which is
called elemental parallelisation. The second aim is to hybrid the modal and
elemental parallel techniques to realise fully 3D parallelisation. After this project,
very large scale problem, e.g. flow around a cylinder at Reynolds number over
one million, can be run successfully using the fully parallelised 3D DNS.

2. Introduction

The spectral/hp element method,! whilst being well suited to direct numerical
simulation of fluid flow for many years in an academic setting, is now emerging
as an attractive alternative to many traditional numerical discretisations on
modern HPC hardware. As opposed to the classical finite element method,
spectral/hp elements use high-order polynomial expansions on each element. On
one side, this has the advantage of low dispersion and diffusion alongside
exponential convergence in the polynomial order. On the other side, discretised
operators are dense and have a far richer structure compared to linear
expansions, meaning that they can more effectively utilise caching on modern
HPC hardware. The tensor product of one-dimensional basis functions on each
element also admits a rich fabric of implementation strategies.?

Spectral element-Fourier discretisations3112 are feasible for flows where the
geometry exhibits arbitrary complexity in a sectional plane but is infinite or
periodic in an orthogonal direction. In such systems, Fourier expansions can be
used in the azimuthal coordinate, while arbitrary complexity can be dealt in the
meridional semi-plane through use of spectral elements. In this study we are
specifically interested in the case where only one coordinate direction possesses
geometric homogeneity. Therefore, the 3D domain is decomposed into a
sequence of spectral/hp element planes, coupled using a Fourier expansion in
the third coordinate directions. SEMTEX is such an open source quadrilateral
Fourier spectral element code that uses the standard nodal GLL basis functions
and (optionally) Fourier expansions in a homogeneous direction to provide
three-dimensional solutions for the Navier-Stokes (NS) equations.

Two typical approaches are used when parallelising this type of discretisation.
One is to use mesh-decomposition in the spectral/hp element planes, and the
other is to apply a modal decomposition in the Fourier direction. The latter takes
advantage of the orthogonality property of the Fourier basis for linear operators.
The optimal choice of parallelisation strategy typically depends on the size of the
problem, the ratio of Fourier planes to spectral elements, alongside the hardware
and interconnect of the parallel system. This study will hybrid these two
approaches to extend the limit on the number of viable processes.

3. Fourier spectral/hp element method



Assuming the fluid to be Newtonian and the flow incompressible, the relevant
equations of motion for the primitive variables (velocities, pressure), denoted as
(u, p), are the incompressible Navier-Stokes equations.
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where p is the kinematic pressure, v is the kinematic viscosity and u = [u, v, w]" is
the velocity.

3.1 Spatial discretisation

The SEMTEX code aims at simulating flow that is three-dimensional (3D) but
homogeneous in one direction. For example, flow around an infinite turbine
blade is 3D but homogeneous in the spanwise direction. Another example is flow
in cylindrical coordinate where the physical variables are naturally 2n-periodic
in azimuthal direction. In both cases, the velocity field can be projected exactly
onto a set of two-dimensional complex Fourier modes. For simplicity, we only
consider Cartesian coordinate (x, y, z) in the following, and the z direction is
assumed to be homogeneous.

The velocity field can be projected onto a set of two dimensional complex
Fourier modes

i (x, y,t) = i ﬁf” u(x, 2,1 exp(-ikz)dz,

where Kk is an integer wavenumber. The velocity field can be recovered from
these complex modes through Fourier series reconstruction
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u(x,y,z,0) = Yy d(x, y,0)exp(ikz).
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In practice, a finite number of modes are retained in the calculation, and the
conjugate-symmetric property of the Fourier transforms of real variables is
exploited, so that the negative-k modes are not required.1 Note that in
cylindrical coordinate, appropriate conditions need to be applied at the axis and
can be derived from solvability requirements and kinematic constraints on
scalar and velocity fields at the origin.3

The two dimensional spectral/hp element planes span the x and y coordinate
directions. The planes are discretized into quadrilateral elements and standard
nodal GLL basis functions are used in each element. Error! Bookmark not defined. The
similar approach may be equally applied when using triangular elements.
Numerical integration and differential operators are constructed on a standard

reference element Q" (st which is mapped to each £° using a bijective map,

x:Q2" = Q°, as x=x°(§), On each element, the solution u may be

approximated as
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where # are elemental coefficients. These correspond to the tensor-product of

nodal expansion bases, ¢,(x) and ¢,(y), of order P defined as Lagrange

polynomials through Gauss-Lobatto-Legendre points.
The connectivity of elements in a plane is represented by an assembly mapping A
which maps the concatenated vector of elemental degrees of freedom to their



global counterparts and enforces a Co-continuity constraint. The global degrees
of freedom are assembled using the relation 4° = Aa®, where A is the matrix
equivalent of A. This matrix is in general highly sparse and so is in practice not
constructed explicitly. Operators in the spectral/hp element method are
constructed elementally and applied using the sum-factorisation technique* as
this has been demonstrated to be more efficient when operating on elements
with higher-order bases.> The tensor-product nature of the elemental expansion
bases allows matrix-vector operations to be decomposed into a sequence of
smaller, more computationally efficient matrix-matrix operations, performed in
each coordinate direction separately.

Taking z direction into consideration, the solution is expressed using a Fourier

basis of Nz/2 complex modes, ¢ (z) = e, to give an expansion of the three-
dimensional solution on an element as
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3.2 Temporal discretisation

In the temporal discretization of the gonverning equations, a velocity-correction
projection scheme is used, based on backwards differencing in time.® The value
of a term at a new time level (n + 1) is explicitly extrapolated from previous steps
through polynomial approximation
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while the value of derivatives at a new time level is implicitly approximated as
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where J is the integration order. In practice, at the beginning of the simulation,
when n < J, n is used as the integration order. The discrete weights ay, B4 for
order up to J/ = 3 are given in literature.6
The time-step for the velocity-correction scheme commences with solution of a
pressure Poisson equation following a velocity update and then the velocity is
further updated using the pressure gradient. This process is formulated as
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which is used to estimate a Neumann pressure boundary condition on
boundaries where the velocity boundary conditions are of Dirichlet type.
The time-step is completed by applying a viscous correction through the solution
of a Helmholtz equation (actually, a set of scalar Helmholtz equations) for u(»+1)
together with appropriate velocity boundary conditions at time (n + 1)At as
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3.3 Parallelisation

There are two approaches for parallel computing, one is parallel decomposition
of the Fourier modes (modal parallelisation) and the other is parallel
decomposition of the spectral/hp element planes (elemental parallelisation).
Prior to this project, SEMTEX only enables modal parallelisation which limit
parallel efficiency and scaling. The primary objective of this project is to
implement elemental parallelisation and then hybrid those two approaches, i.e.
combine both techniques. ?

For modal parallelisation, the Nz planes corresponding to Nz/2 complex Fourier
modes, are distributed equally among the Nz/2 processes. As can be found above,
after time discretization, a Helmholtz problem needs to be solved for each
velocity component and the pressure at every time step. Each discrete Helmholtz
problem, when discretized within a Galerkin formulation, results in a matrix
problem which can be solved either directly or iteratively. Such elliptic solves are
decoupled in the Fourier-transformed space and can be performed
independently. The non-linear advection term is more efficiently computed in
phsical space. The inverse and forward Fourier transforms, used before and after
the advection calculation respectively, need to be performed and the data to be
transformed must reside on the same process. In practice, this requires a
transposition of the data using an MPI all-to-all operation. To support efficient
differentiation in the z-coordinate direction, we additionally impose the
constraint that both the real and imaginary components of each complex Fourier
mode reside on the same process, since, in the Fourier space, derivatives are
calculated through the multiplication #, =a -iki,. This restricts the maximum

number of useable processes to Nz/2.

In contrast, elemental parallelism partion each plane into N, parts and distribute
them among the processes. The partitioning of the 2D plane is implemented
using the METIS library® and an identical partitioning and distribution amongst
processes is used for each plane in the domain. The natural limit on the number
of useable processes is therefore Ne. The nodal-graph of the mesh is partitioned
among the R processes to equally distribute the number of degrees of freedom,
whilst minimising the edge-cut, and therefore the inter-process communication.
Elliptic solves are performed iteratively, with communication being required to
exchange boundary information between adjacent elements residing on different
processes at each iteration. This data exchange is implemented using the gather-
scatter algorithm from Nek5000° which uses a global numbering of the DOFs in
the plane to efficiently summate process-local contributions and distribute the
result back to the participating processes.

Hybrid parallelisation combines both modal and elemental approaches by
organising the available processes in a Cartesian grid,1° see in Fig. 1. In this
arrangement, the world communicator is split into a series of row
communicators which support elemental parallelisation, while column
communicators enable modal parallelisation. Each process belongs to precisely
one row communicator and one column communicator and nominally operates
on a fixed subset of elements in a fixed subset of planes. As in modal parallelism,



elliptic solves are performed in Fourier-transformed space, but due to the
elemental parallelism the iterative conjugate gradient solver must be used. The
limit on the number of viable processes is now increased substantially to Ne; x
Nz/2. The hybrid parallelisation has been implemented in Nektar 1! and
Nektar++7 for Cartesian coordinates, whereas the difference in here is
that SEMTEX supports both cylindrical and Cartesian coordinates.
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Figure 1. A simple model illustrate MPI Cartesian communicator for a hybrid
parallelisation of a Fourier spectral/hp element discretisation using 4 elements per
plane and 4 planes, on 16 MPI processes. Row communicators handle the
communication between mesh partitions for elemental parallelisation while
column communicators handle communication between planes for modal
parallelisation. Figure from Ref. 7.

4. Results
Table 1 Speedup tested on ARCHER:

The parallel efficiency has been tested on archer. Our test case is flow past a
circular cylinder. The 2d plane is divided into 8577 elements and the tensor
product polynomial order np=6 is used. The speedup can be found in Table 1. It
can be seen that the parallel efficiency decreases with increaing core number.
The efficiency is low when using 192 cores, which may be due to the large cost of
communication.

5. Conclusion



In summary, we have implemented 2d parallelism in the Fourier spectral code
SEMTEX. Fully 3d parallelism is achieved by hybrid the newly implemented 2d
elemental parallelism with the existed Fourier (modal) parallelism. The parallel
performance has been tested by simulating flow past a circular cylinder. The
parallel efficiency can only be maintained for small scale calculation. The scaling
still needs to be improved. The scaling can be possibly improved by introducing
OpenMp and reducing communication.
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