minEPOCH3D Performance and Load Balancing on Cray XC30

Michael Bareford
Edinburgh Parallel Computer Centre
University of Edinburgh
Edinburgh, UK
Email: michael.bareford@epcc.ed.ac.uk

Abstract

EPOCH is a mature laser-plasma MPI simulation code that has a large international user base. The code uses particle-in-
cell techniques to move Monte-Carlo sampled particles through a fixed grid. Thus, the core scheme is dominated by particle
pushes and particle to field and field to particle interpolations. This report investigates the performance improvements that can
be gained by changing how particles are stored in memory. Currently particles are stored in linked lists (LL), however, it is
expected that storing particles within arrays — either as arrays of particle structures (AoS) or as separate arrays of particle
properties (SoA) — will provide better performance. We also investigate the benefit of sorting the particles within the array.
Following on from this work, we explore how the splitting of the particle push loop in order to exploit Intel vectorisation
optimisations can give further reductions in runtime.

This report also covers a new scheme for balancing the workload within EPOCH. The default balancing splits the domain
such that each MPI process is assigned an identically-sized section of grid space; this approach, although suitable for simulations
that feature a uniform particle distribution, will not perform well should particle concentrations change markedly within the
domain. For this reason, we have implemented and tested an alternative scheme that balances the number of particles per
process rather than the sub-grid volume.

SoA with particle sorting or with Intel vectorisation runs faster than linked list, with the speed-up achieved falling between
1.03 and 1.44, depending on compiler and grid resolution. Typically, smaller speed-ups are seen for high grid resolutions.
Although, SoA with particle balancing showed strong performance gains for the higher of the two grid resolutions tested:
speed-up improved as the number of compute nodes was increased, e.g., 2.43XLL (4 nodes) and 3.58 xLL (8 nodes).
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I. INTRODUCTION

This report covers a series of performance-improving enhancements that were made to a special barebones version of the
EPOCH3D code, and subsequently tested on the ARCHER supercomputer [1], a Cray XC platform. The release version of
EPOCH3D [2] is capable of simulating a variety of physical processes, such as QED physics and particle ionisation. It was
decided to strip these features from EPOCH3D v4.4.1 and thereby create a new version, called minEPOCH, that could be
used to test which enhancements provided the most benefit. Furthermore, a particular test case was built into minEPOCH
in order to provide a common benchmark. The test case features two species of uniformly-distributed particles, initialised
with opposing directions of motion. One species of around one million particles is initialised with a leftward (negative x)
momentum and an identical number of particles, forming the second group, are given a rightward momentum. Note, each
particle in fact represents a large number of real particles (electrons in this case) and so a spline function is used that gives
the actual particle density over the volume occupied by the simulation particle. The simulation domain was a simple cube
of size 5 x 10° consisting of 64 x 64 x 64 cells — periodic boundary conditions prevented particle loss.

The minEPOCH code itself is held within a GitLab repository [3] hosted at the University of Warwick, where the
master branch, denoted by LL, is the original minEPOCH that stores particles within linked lists. Within this repository,
there are separate branches for each type of enhancement, which are named as follows, AoS (Array of Structures), SoA
(Structure of Arrays), AoSoA, SoA_vec and SoA_sfc. The last two are additions to the SoA branch: SoA_vec uses a
vectorised particle push loop and SoA_sfc incorporates particle load balancing through the use of a Hilbert space-filling
curve. If you wish to create an account on the University of Warwick GitLab Server, please contact Keith Bennett on
k.bennett@warwick.ac.uk.

Unless stated otherwise, all tests were conducted on a single ARCHER compute node containing 24 CPUs or cores. The
simulation time was set to 0.07s, allowing the LL branch of the minEPOCH code to achieve a runtime of approximately
20 minutes over 4890 time steps. Each test was repeated three times; a speed-up value was then calculated by taking the
average run time and comparing it with the average achieved by the LL branch. Lastly, all tests, unless otherwise stated,
ran with Cray-compiled (v8.3.7) executables of the minEPOCH branches.



II. PARTICLE DATA STRUCTURES
The linked list branch of minEPOCH defines the particle structure as follows.

Listing 1. Linked List Code Definition
TYPE particle
TYPE(particle ), POINTER :: next, prev
REAL, DIMENSION(3) :: pos, mom
REAL :: mass, weight, charge
END TYPE particle

A particle is described by five properties, position, momentum, mass, weight and charge, with the weight being the number
of actual particles represented by the simulation particle.

The two pointer attributes (next and prev) can be dropped when using an array-based data structure, as is the case for
the AoS branch.

Listing 2. AoS Code Definition
TYPE vector
REAL :: x, y, z
END TYPE vector

TYPE particle
TYPE(vector) :: pos, mom
REAL :: mass, weight, charge
INTEGER :: cell

END TYPE particle

TYPE particle_data

INTEGER :: size, count

TYPE(particle ), DIMENSION(:), POINTER :: part_list
END TYPE particle_data

The new cell attribute within the particle structure is an index value that indicates the grid cell location of the particle:
thus, for a 3D grid, cell =i+ (j — 1)ny + (k — 1)nyn,. The main reason for this attribute is to allow the sorting of
particles according to spatial proximity. The array itself is pointed to by the part_1ist attribute of the particle_data
structure. When the particle array is created at runtime it is possible to specify a surplus capacity. Two global constants
were added for this purpose: partlist_size_multiplier is multiplied with the requested particle count in order to
calculate the actual array size, and partlist_size_min defines the minimum size for all particle arrays. Each MPI
process maintains such an array for each particle species, updating those arrays whenever particles enter or leave the sub-grid
assigned to the process. Particle removal can be performed by either zeroing the cell attribute of the element within the array
that held the particle, or by shifting down by one all the particles stored after the array position of the departed particle. A
global boolean flag, c_part_shift, is set to true if the second method is desired. Particle addition involves either finding
the first particle element with cell = 0, which may exist at any array index if c_part_shift is false; otherwise, the
new particle is simply inserted at an index one greater than the current particle count. The particle array can be dynamically
extended should the particle count be equal to the array size.

The features described in the previous paragraph also apply to the SoA branch, where each particle property is a separate
array held within a single data structure.

Listing 3. SoA Code Definition
TYPE particle_data
INTEGER :: size, count
TYPE(vector ), DIMENSION(:), POINTER :: pos, mom
REAL, DIMENSION(:), POINTER :: mass, weight, charge
INTEGER, DIMENSION(:), POINTER :: cell
END TYPE particle_data



The sorting of particle arrays (by grid cell index) can be controlled via the setting of a global constant called
sort_partlist_stride, where the term stride refers to the number of time steps that are required to elapse before
the particle arrays are resorted. The particles are never sorted if the stride is set to zero. A third data structure, AoSoA, can
be implemented such that it is capable of sorting the particles at every time step.

Listing 4.  AoSoA Code Definition
TYPE particle_species
TYPE(particle_list), DIMENSION(:), POINTER :: part_list

END TYPE particle_species

TYPE particle_list
TYPE(particle_data), POINTER :: part_data
END TYPE particle_list

TYPE particle_data
INTEGER :: size, count
TYPE(vector), DIMENSION(:), POINTER :: pos, mom
REAL, DIMENSION(:), POINTER :: mass, weight, charge
LOGICAL, DIMENSION(:), POINTER :: live

END TYPE particle_data

For each particle species, an array of pointers to SoAs is maintained, where the index to the part_1ist array now plays
the same role as the cell attribute from before. The size of the part_list array is fixed: there is one element for each
cell in the sub-grid and the element order implicitly sorts the particles. A 1ive attribute is now required in what used to be
the SoA data type (particle_data) since if c_part_shift is false we need to indicate which particles have departed.

III. LINKED LISTS VS ARRAY STRUCTURES

Figure 1 shows that SoA gives the best performance. The relative speed-up compared to linked list is 1.22xLL, which is
slightly greater than that achieved by using 2oS (1.19xLL). Turning off particle shifting improved the performance further:
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Figure 1. Runtimes for three branches of the Cray-compiled minEPOCH application, LL, AoS and SoA. Each runtime shown is the average of three runs
and is displayed in the legend according to the following format, mm : ss & ss. Particle shifting was turned on and particle sorting was turned off.

speed-ups were increased to 1.22xLL for AoS and to 1.27xLL for SoA.
As mentioned previously, it is also possible to sort the particles such that adjacent particle array elements are either located
within the same grid cell or within neighbouring cells. Reordering the particles in this way leads to further improvement:



the fastest runtimes were achieved by applying the quick sort algorithm to all particle arrays every ten time steps (i.e.,
sort_partlist_stride = 10). Figure 2 compares the speed-up due to particle reordering across four different data structures.
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Figure 2. Runtimes for four branches of the Cray-compiled minEPOCH application, LL, AoS, SoA and AoSoA. Particle shifting was turned on and
particle sorting was also turned on for AoS and SoA: a quick sort was applied over all particle arrays every ten time steps.

Note, a sorting algorithm is not used for AoSoA, since the data structure itself ensures the particles are always sorted. The
difference in performance between AoS and SoA is now so slight (SoA is 4 seconds faster) that both data structures have
the same speed-up compared to the linked list branch, 1.33xLL. AoSoA yielded a speed-up of 1.3xLL. When particle
reordering is applied, turning on particle shifting worsens performance: the speed-up drops to 1.24 for SoA and 1.25 for
AoSoA, and for AoS, the speed-up disappears altogether, i.e., AoS runtimes are slower than that achieved when using linked
list.

The ordered particle test runs (with particle shifting turned off) were repeated for higher node counts of four and eight.
The simulation time was increased such that the runtime for the linked list branch was maintained at around twenty minutes
regardless of node count (e.g., 0.25s for four nodes and 0.48's for eight). The relative performance of the different branches
was unchanged although the speed-ups did increase: for example, SoA achieved 1.45 x LL on four nodes and 1.4 on eight.



IV. CRAY VS INTEL

The runtimes generated by the Cray-compiled (v8.3.7) minEPOCH executables were compared with the runtimes achieved
by the Intel compiler (v15.0.2.164), see Figure 3. For Cray-compiled code, moving to SoA with particle sorting gives a
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Figure 3. Runtimes for four branches of the Intel-compiled minEPOCH application, LL, A0S, SoA and AoSoA. Particle shifting was turned on and
particle sorting was turned on for 2oS and SoA. The longer Cray runtimes are indicated by the white bar segments.

1.33xLL speed-up; however, for Intel-compiled code, this speed-up is a less impressive 1.03xLL (AoSoA has a slightly
higher speed-up of 1.07xLL). Furthermore, the improved performance gained by simply moving to an Intel compiler also
applies to the linked list branch, which is now faster than AcS.

These results are sensitive to the number of cells used to divide the grid (i.e., grid resolution): for example, using a
50x50x50 grid with a simulation time of 0.15s, the Intel-compiled code now shows a speed-up of 1.17xLIL for sorted
SoA (AoS and AoSoA exhibit smaller speed-ups of 1.13xLL).

V. INTEL VECTORISATION

Continuing with the Intel compiler, it is possible to alter the structure of the code within the particle push loop in order
to maximise the opportunities for vectorisation. We have incorporated the code restructuring discussed by Bird 2015 [4],
which involves first splitting the particle push loop into three. The first loop calculates the particle positions at the half
time step, after which, the particles are sorted according to the global cell index using a bin sort. The second loop updates
particle momenta and calculates the particle positions at the full time step. (At this point, Bird et al. re-sort the particles, but
this time, according to the cell index occupied at the next half time step - we found that the addition of this step worsened
performance, hence it will not be discussed in the main text). Finally, the third loop calculates the currents - this is actually
done within a three-deep nested loop, one for each dimension, see the following code fragment.

Listing 5. Current Calculation
DO iz = zmin, zmax
DO iy = ymin, ymax
!DIR$ VECTOR ALIGNED
!DIR$ SIMD PRIVATE(...)
DO ix = xmin, xmax
jx(...) += jxh(...)
Jjy (...) += jyh (...)
jz (...) += jzh (...)
ENDO
ENDDO
ENDDO



In addition, it was necessary to change the set of compile options (e.g., g —traceback -heap-arrays 64 -02
-xHost —gopt-report5 —align array64byte) such that vectorisation directives were activated and also reported.
The benefit of vectorisation depends on where the directives are placed within the current-calculating loops: in the code
fragment shown above, the directives are placed immediately before the start of the x loop.

Intel Vectorised SoA

20 T -
particle shift v . B 13:58+0.4
sort v/ (stride =1) 13:56+8
13:37+5
15l B 12:54+4
m
£
£ 10}
[
£
[
5L
0 ' ‘
LL SoA (x) SoA (y) SoA (z)

Figure 4. Runtimes for the SoA_vec branch of the minEPOCH application distinguished by the placing of vectorisation directives. Particle shifting was
turned on and particle sorting was applied within the first loop of each particle push.

Figure 4 shows that placing the directives before the z loop gave the best speed-up (1.08 x LL) out of the three possibilities.
Again, the result improves for a reduced grid resolution of 503, speed-up rises to 1.25xLL. Neither of these results is as
high as the one reported by Bird et al. [4] which was 1.55xLL, albeit for a different code base called miniEPOCH2D.

VI. PARTICLE LOAD BALANCING

All variants of minEPOCH discussed so far divide the domain such that each MPI process (or rank) handles a similar-
sized portion of the global grid. Instead, the workload could be divided such that each rank handles approximately the same
number of particles. Hence, the MPI processes may be assigned grid spaces that vary in volume and are not necessarily
cuboid. In order to divide the grid in this manner, we require a curve that visits every grid cell: furthermore, any two adjacent
points on the curve must always refer to neighbouring grid cells. The Hilbert space-filling curve fulfils these requirements,
it allows us to represent a multi-dimensional space as a one-dimensional function (Figure 5). Plotting the space-filling curve
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Figure 5. Illustrations of Hilbert space-filling curves for 2d (left) and 3d (right) spaces. The left image is credited to Massimo Cafaro, University of
Salento, and the right image is credited to William Gilbert, University of Waterloo.



can be done recursively and the sequence of points can then be recorded in the following data structure.

Listing 6. Space Filling Curve Code Definition
TYPE global_sfc
INTEGER, DIMENSION(ncell) :: icell
INTEGER, DIMENSION(ncell) :: ranmnk
INTEGER :: ilocal, ncell_local
END TYPE

Every process holds an identical copy of the full space filling curve: the icell array maps each element (or point) of the
curve to a specific grid cell and the rank array records the sections of curve assigned to each MPI process, which changes
every time the particle load is rebalanced. The curve segment managed by the local process is defined by the i1ocal and
ncell_local fields.

A traversal of the curve allows the particles to be shared evenly, since both the total number of particles and the number
of MPI processes are known. The former is divided by the latter to get the number of particles per rank. This value can then
compared with the number of particles counted over the first section of the space-filling curve. Finding a match demarcates
the sub-grid to be handled by rank zero. Repeating this process for all ranks in turn divides the workload according to
particle number.

Figure 6 shows a situation where each rank manages a sub-grid of equal area. This regularity permits a straightforward

Figure 6. A square sub-grid surrounded by regularly-spaced neighbouring sub-grids. The numbers indicate the ranks of the MPI processes.

scheme for dealing with particles that have crossed sub-grid boundaries. Each MPI process conducts a round of calls to
MPI_SENDRECV between it and its neighbours: for example, when rank 4 sends particles to rank 5 (its right neighbour), it
also receives from its left neighbour (rank 3). In other words, send and receives always involve neighbours from opposing
sides. This arrangement breaks down when using the space-filling curve approach: if the particle density rises steeply as
one moves across the sub-grid then the rank that manages that grid space will have more neighbours on one side than on
the other.

A solution is to consider the fact that every sub-grid is associated with a halo of cells that is known to be under the control
of the neighbouring ranks. In fact there are two types of halo or boundary cell that fall within the view of a particular rank:
an external boundary cell is one that has been assigned to a neighbouring rank, whereas an internal boundary cell is
controlled by the local rank but falls within the external boundary of a neighbour. These terms are illustrated by Figure 6:
the two data structures for external and internal boundary cells both point to an array of cell index lists, each element in
the array corresponds to an individual neighbour.
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Figure 7. The difference between external and internal boundary cells. Orange indicates the boundary cells for the rank 4 process, black the boundary

cells for rank 5.

Thus, the communications between a rank and an arbitrary set of neighbours can proceed like so.

Listing 7. Boundary Cell Communication Loop

for each neighbour in sfc_neigh_ext

MPI_IRECV field data for all external boundary cells

for each neighbour in sfc_neigh_int

MPI_ISEND field data for all internal boundary cells

MPI_WAITALL

Although the example above is concerned with field updates, a similar algorithm can be used for transferring particles. In
addition, we could also send first then receive, using either MPI_ISEND/MPI_RECV or MPI_ISSEND/MPI_RECV.
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Figure 8. Runtimes for three branches of the Cray-compiled minEPOCH application, LL, SoA and SoA_sfc
into three, one for each communication scheme. Particle shifting was turned on and particle sorting was turned off. Note, particle balancing only applies

to the SoA_sfc branches.

. The results for the latter branch are split

Figure 8 compares the times achieved for all three communication schemes. Using a non-blocking synchronous send
(MPI_TISSEND) followed by a blocking receive (MPI_RECV) produces a speed-up of 1.06x LL, fractionally faster than using
non-synchronous sends. Two constants have been added to the SoA_sfc branch for the purpose of specifying which of the



three communication schemes are to be used for particles (partcomms_default) and field data (neighcomms_default).
All three SoA_sfc times (Figure 8) are slower than that given for SoA: this is because the minEPOCH test case describes
a uniform particle distribution (~ 4 particles per cell). We must therefore change this test case to one more suitable for the
SoA_sfc (MPI_ISSEND / MPI_RECV) branch.

The minEPOCH test case will still have two species of particles streaming in opposite directions, but this time, the
particles will be concentrated at two density peaks, located at (0.25,0.5,0.5)Zmax for the rightward-propagating species and
at(0.75,0.5, 0.5)zmax for the other species, where Tmax = Ymax = Zmax = D X 10°. The particle density over the entire grid
is thus given by the following equations.

P = Pmax [e—(zl+yl+zl)/Po + e—(mrﬂ/r-"zr)/Po] , )

where 1 ) 3 )
Itl(l') - (1' - meax> ) {ET(Z') = (1' - meax) 5 (2)

1 2 1 2
yl,r(y) = (y - iymax> P Zl,r(z) - (Z - izmax> . (3)

The constants, pmax and py are set such there are ~1.1 million particles in total, and the simulation time is now set to
0.074 s so as to maintain an execution time of twenty minutes for the linked list branch.

With a non-uniform particle distribution, we now see that SoA_sfc is faster than SoA and LL (Figure 9). The speed-up
for SoA_sfc is 1.1xLL. This modified test case was repeated for node counts of four (¢s,, =0.165s) and eight nodes
(0.19s) — the associated simulation times that keep the LL runtime at approximately 20 minutes are given in brackets.
At larger node counts the performance gain produced by SoA_sfc is more impressive, see Figure 10; the speed-ups are
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Figure 9. Runtimes for three branches of the Cray-compiled minEPOCH application, LL, SoA and SoA_sfc.

2.43xLL (4 nodes) and 3.58xLL (8 nodes).
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Figure 10. A repeat of Figure 9 for four nodes (left) and for eight nodes (right).

VII. CONCLUSIONS AND FURTHER WORK

SoA with particle sorting or with Intel vectorisation runs faster than linked list, although, the precise speed-up depends on
compiler and grid resolution (Table I). However, SoA with particle balancing (SoA_sfc) shows strong performance gains

minEPOCH3D SoA | 50x50x50 (0.15s, 8190ts) | 64x64x64 (0.07s, 4890 ts)
Sorted (Cray) 1.44 1.33
Sorted (Intel) 1.17 1.03
Vectorised (Intel) 1.25 1.08
Table 1

SOA SPEED-UPS COMPARED TO LINKED LIST (X LL) FOR THE CRAY AND INTEL COMPILER AT TWO GRID RESOLUTIONS (TS = TIME STEP).

at 64x64x64 (compared to linked list) for a non-uniform particle distribution: speed-up improves as node count increases,
e.g., 2.43xLL (4 nodes), 3.58xLL (8 nodes).

As regards further work, the SoA_sfc branch should be retested with particle sorting turned on; this should improve
performance once more. There are also some aspects of the particle balancing that could be enhanced: for example, at
present, only periodic boundary conditions have been implemented for the field arrays. Secondly, the fact that every MPI
process has a copy of the entire space-filling curve, limits the grid size to 5123 for an ARCHER node of 24 cores and
64 GB of RAM.

The ability to represent larger grids would require the use of MPI IO to write the global_sfc data structure to file.
The current SoA_sfc implementation has each MPI process performing the same recursive algorithm to plot the entire
space-filling curve (see the plot_sfc subroutine in balance_sfc.F90). The MPI processes then independently identify
those sections of the curve under their control. A subsequent MPI_AllReduce results in all processes having a record
of the initial rank ownership for the full curve. If MPI IO is to be used, just one rank should be responsible for plotting
the Hilbert curve, writing the coordinates to a file as it does so. This rank should also be able to specify the initial rank
ownership, assuming that the grid space has been evenly partitioned before any particle balancing has been applied. So far,
all IO relating to the Hilbert curve is a once only cost, incurred before the first time step. During the simulation, a set of file
IO operations, from all processes, will be needed to re-specify the rank ownership whenever the workload is re-balanced;
some parallelism should still be possible if the process 10 is done a block at a time, and if the options for Lustre file striping
[5] have been set appropriately.

Finally, the minEPOCH code uses three-dimensional arrays to record how the electromagnetic field varies over the sub-
grid volume, but the segment of space-filling curve that encloses a sufficient number of particles for a single MPI process is
unlikely to map to a sub-grid that has a regular shape. Instead, the sub-grid for a single process is represented as the smallest
regular shape that encloses the section of space-filling curve, see red rectangle in Figure 11 (right). This enclosing shape is
expanded to include the boundary cells (Figure 12). Then a mask is added that records which cells are actually controlled



Figure 11. A space-filling curve defines a 2D volume that is not rectangular (left), however, the associated field arrays do encompass a rectangular area
(right).

; ; 10 10 10
; ; 10 10 10
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Figure 12. The sub-grid field arrays are enlarged to include the boundary cells (left) and a mask is applied that indicates which ranks control which cells
(right).

by the MPI process (e.g., rank 10) and which processes are in charge of the boundary cells. The value of -1 is reserved
for those cells that fall outside the true boundary. This method is convenient but creates some wastage: on average, ~22%
of the sub-grid field array elements are not used (i.e., have been assigned a -1 value) for the uniform particle distribution
test case. This figure falls to ~10% for the non-uniform distribution. One way to eliminate negative mask cell values would
be to divide an irregular-shaped sub-grid into a set of differently sized sub-sub-grid volumes (Figure 13, left): alas, each
of these smaller sub-grid volumes would need to maintain a collection of boundary cells in order to be processed by the
particle push routine. Hence, overall, more cells would be required compared to the simpler implementation.

Figure 13. The irregular sub-grid is split into two regularly-sized smaller sub-grids (left), which are then enlarged to include the necessary boundary cells
(right). Duplicated boundary cells are shaded grey.
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