
Hybrid OpenMP and MPI within the CASTEP code

E.J. Higgins1, M.I.J. Probert1, P.J. Hasnip1, K. Refson2, and I.J. Bush3

1Dept. of Physics, University of York
2Dept. of Physics, Royal Holloway, University of London

3Oxford e-Research Centre, University of Oxford

September 15, 2015

Abstract

This eCSE aimed to reduce the memory usage of CASTEP by using a hybrid OpenMP+MPI
approach, and to reduce calculation time on large systems by implementing a parallel matrix
diagonaliser. By implementing OpenMP and with selected use of threaded libraries, the memory
per node on ARCHER can be reduced to less than 10% without a significant penalty in calcu-
lation time. Using a parallel diagonaliser, the wall time of large calculations has also improved
dramatically.

Introduction

CASTEP[1, 2] is an ab initio density functional theory (DFT) code developed in the UK,
capable of modelling systems of up to a few thousand atoms, and can scale well up to a few
thousand cores on ARCHER. It has consistently been in the top 10 codes by core hours across
both HECToR and ARCHER[3], using over 5% of the machine over the course of a year[4].

CASTEP describes the electronic states (”bands”) of a material, using a plane-wave (”g-
vector”) basis at different points (”k-points”) in reciprocal space. CASTEP can parallelise the
work over these 3 dimensions, so that each k point has its own set of bands, and each band has
its own set of g-vectors. However, band parallelism is not widely used, and for large calculations
there are often only a small number of k-points.

In order to accommodate different sizes of calculations on a range of machines, CASTEP
allows for the user to switch between fast, high memory algorithms and slower algorithms that
use less memory. However for very large systems, it has sometimes been previously necessary
to under-populate the nodes to get sufficient RAM per core. This is because there are certain
arrays, e.g. the bands × bands subspace Hamiltonian, which are allocated on every MPI process.

Whilst a large part of a CASTEP calculation is parallelised some of the work, most notably
diagonalisation of large matrices, is performed in serial on all MPI processes. In large (1000+
atom) calculations, this work dominates the runtime, as it scales cubically with the system size.
In this project, we proposed the following work packages to address these shortcomings:

Work Package 1: Reduce memory per node The first aim of this project was to
reduce the memory usage by sharing the memory within a node using OpenMP. This allows
nodes to be fully utilised by using a combination of OpenMP threads and MPI processes. A side
effect of this is that use of threaded libraries might now be beneficial. This was also investigated.

1

Work Package 2: Parallel matrix diagonaliser The second aim of this project was
to implement a parallel matrix diagonaliser to distribute the matrix diagonalisation work over
multiple nodes using MPI.

Both work packages have been successfully completed, and the resulting code has been merged
into the current development version of CASTEP 9.0, for worldwide release later in 2015. Thus,
these developments will be available to all ARCHER users once the system modules have been
updated.

The benchmarks This report focusses on 2 benchmarks:

• Crambin - A small seed storage protein, containing H, C, N, O and S, (1284 atoms).

• Si8 7x7x7 conventional supercell, (2744 atoms).

All binaries for the benchmarks are compiled on ARCHER with gfortran 4.9.2, and use FFTW
3.3.4 and Cray’s LibSci 13.0.1, with the exception of figure 2 which was run earlier in the project.

2

WP1: Reduce memory per node

Work Package 1 aimed to reduce the amount of memory per node by reducing the number of
MPI processes and replacing them with OpenMP threads.

Memory Improvements

0

20

40

60

80

100

1 2 3 6 12 24

M
em

or
y

pe
r n

od
e

(G
B)

Threads per MPI process

CASTEP memory usage for crambin on 48 nodes

CASTEP 8 + SysV + OpenMP
Fitted line

Figure 1: Memory per node as MPI processes are traded for OpenMP threads whilst running

on 1152 cores. The line fits the function 24

(
R

threads + D
1152 cores

)
, with best fit values of

R = 3.41GB and D = 119.5GB.

Figure 1 shows the memory per node for the crambin benchmark after the completion of WP1,
calculated by reading the peak virtual memory from /proc/self/status on the root process
at the end of the calculation and multiplying it by the number of MPI processes per node. This
is an overestimate, since there are arrays only allocated on the root process. It is also unclear
whether this includes memory allocated by the MPI library. Nevertheless, it clearly shows a
dramatic reduction in the memory per node with the hybrid OpenMP+MPI approach, as MPI
processes are traded for OpenMP threads (keeping the number of cores in use constant).

The crambin calculation requires approximately 123GB to run in serial. Of this, 119.5GB is
distributed over MPI, and 3.41GB is replicated on every MPI process. If a large number of MPI
processes are used, the distributed memory becomes negligible per MPI process. Meanwhile, the
replicated data remains constant per MPI process, and therefore dominates the RAM usage per
node. Therefore, with ARCHER and 24 MPI processes per node, the replicated data becomes
24 × 3.41GB = 81.9GB per node. This cannot be reduced by increasing the total number of
MPI processes. By using a hybrid OpenMP+MPI approach, this replicated data can be shared
between OpenMP threads, and hence the total memory per node can be dramatically reduced,
as in figure 1.

3

Threaded Libraries

These memory savings are only generally useful if the performance of the hybrid code is not
significantly worse compared to pure MPI. Initially, it was thought that linking with threaded
libraries would provide an easy way to utilise threads in CASTEP. In particular, BLAS calls to
DGEMM and ZGEMM for matrix multiplications took between 20-50% of the runtime in the
crambin benchmark, depending on the number of threads. These are principally called from
routines in ion and wave - see table 1.

Routine Name # of calls Time before WP1 (s)
Total runtime 2091.20
ion beta add multi recip all 6317 485.12
ion all beta multi phi recip 1390 402.83
comms transpose exchange 168320 246.96
ewald calculate forces 1 110.97
wave orthog over wv slice 688 96.15
ewald calculate energy 1 79.36

Table 1: Performance of crambin on 48 nodes, with 2 MPI processes per node to simulate under-
populating a node, using CASTEP 8.0. The times are all averaged over 3 runs.

0

5000

10000

15000

20000

25000

1 2 3 6 12 24

Ti
m

e
(s

)

Threads per MPI process

Dramatic slowdown of threaded libraries for crambin on 24 nodes

Total runtime
Ion routine

Figure 2: Times for the crambin benchmark running on 24 nodes of ARCHER with
a partially threaded version of CASTEP. The dashed line shows the time spent in
ion all beta multi phi recip, where the threaded BLAS slowdown was most significant.

The dramatic slowdown with threaded BLAS, seen in figure 2 was found to be caused by the
overhead of forking and joining threads, as the matrix multiplications in CASTEP are typically
quite small, but called thousands of times. Hence the time for spawning and killing threads
was significant which meant that the library threading performance was inconsistent, and could
often increase the program’s runtime by up to 10x. Because of this, matrix multiplications were
wrapped up into a series of algor matmul routines and the operations threaded explicitly using
OpenMP. This allowed them to use existing OpenMP threads, and for control over how many
threads to use for each multiplication.

4

There remains a small overhead associated with OpenMP thread forking/joining in these new
routines, but not nearly to the same extent. The advantages gained by threading outweigh these
effects. They are however the principal cause of the bump at 3 and 6 threads on the solid line
in figure 3.

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 6 12 24

Ti
m

e
(s

)

Threads per MPI process

CASTEP performance for crambin on 48 nodes

CASTEP 8 + SysV
CASTEP 8 + OpenMP

CASTEP 8 + SysV + OpenMP

Figure 3: Times for the crambin benchmark running on 48 nodes of ARCHER with CASTEP 8.0,
CASTEP 8.0 + OpenMP, and CASTEP 8.0 + OpenMP + System V SMP.

System V Shared Memory

One place that there was the potential to get noticeable performance improvements was in the
parallel FFTs, where a number of MPI Alltoallv communications are performed. This is one
of the major bottlenecks in calculations on large process counts. By having fewer MPI processes
and more threads, this time should be reduced, at the cost of increasing the computation time.
This could be mitigated in the future by using a threaded FFT routine.

In CASTEP, this has previously been reduced using System V shared memory segments,
whereby all N processes are grouped into groups of m MPI processes. Data for the all-to-all is
then collected onto one of the m processes, and that process performs the MPI call. However
this is not widely used and could potentially be replaced by using m OpenMP threads per MPI
process. Figure 3 shows the performance of CASTEP before WP1, and with and without System
V shared memory after WP1. In both cases that use System V, m was selected where possible
such that there were 6 CPU cores in each group, for example 6 MPI processes on 1 thread and
3 MPI processes on 2 threads. For 12 and 24 threads, m was set to 1.

Final performance of WP1

Table 2 shows the exclusive time spent in the most time consuming routines in CASTEP 8.0,
and their corresponding times after WP1. The performance improvements are due to 2 changes.
Firstly, almost all of the time in the ion and wave, routines, along with a few smaller routines
were in matrix multiplications, which have now been threaded in the algor matmul routines, dis-
cussed above. Secondly, the ewald routines were optimised to take advantage of the separability
of the Coulomb interaction in reciprocal space.

5

Routine Name # of calls Time before WP1 (s) Time after WP1 (s)
Total runtime 2091.20 902.02
ion beta add multi recip all 6317 485.12 98.21
ion all beta multi phi recip 1390 402.83 105.71
comms transpose exchange 168320 246.96 266.83
ewald calculate forces 1 110.97 1.37
wave orthog over wv slice 688 96.15 10.17
ewald calculate energy 1 79.36 0.60
Other 669.81 419.13

Table 2: Performance of crambin on 48 nodes, 2 MPI processes per node. The final column shows
the time with 12 OpenMP threads per MPI process. The net result is a speedup of over 2x by using
OpenMP. The 20s difference in comms transpose exchange is due to timing noise on ARCHER.

6

WP2: Parallel matrix diagonaliser

Work package 2 aimed to implement a parallel diagonaliser in CASTEP. This was previously
done using a serial or threaded LAPACK call to ZHEEVR. However, the scaling of this was
limited the number of threads per process. The use of parallel libraries such as ScaLAPACK
has been previously investigated. However they do not scale well, since they have their own
parallelisation strategies and the cost of redistributing the data is too high.

A parallel Jacobi-like diagonaliser was chosen, based on the BFJ algorithm by Littlefield and
Maschhoff[5]. The advantage of writing the diagonaliser within CASTEP is that CASTEP’s
pre-existing parallelisation scheme can be utilised, and data will not have to be gathered and
redistributed.

Jacobi’s method

Jacobi’s eigenvalue algorithm[6] aims to solve the Hermitian eigenvalue problem

Ψ+HΨ = ε (1)

by iteratively reducing the Frobenius norm of the off diagonal elements:

off(H) =

√√√√ n∑
i=1

n∑
j 6=i

hij . (2)

This is done by cycling over the off-diagonal elements in the upper triangle

hij ; i = 1→ (N − 1), j = (i + 1)→ N .

Each time, the i’th and j’th rows and columns of H, and the i’th and j’th rows of Ψ are updated
such that hij is zeroed.

By rewriting equation 1 as
(Ψ+H)Ψ = GΨ = ε , (3)

hij can be zeroed by only updating columns of G and rows of Ψ. This is known as the one sided
Jacobi algorithm and allows the columns of G and ΨT to be updated independently from each
other, and distributed across multiple processes.

Parallel Distribution

The order in which the columns of G and ΨT are updated does not matter, provided each
i, j pair is updated once and only once per iteration. One way of doing this is by dividing the
columns up into 2 groups, and distributing both groups across all processes. An example of this
can be seen in table 3.

process 1 process 2 process 3

Group 1 1 2 3 7 8 9 13 14 15

Group 2 4 5 6 10 11 12 16 17 18

Table 3: Parallel distribution of columns for an 18×18 matrix on 3 processes.

For a given iteration, each process updates every column with every other column in each
group individually. For example, process 1 in table 3 would update columns (1,2), (1,3) and
(2,3) for group 1 and (4,5), (4,6) and (5,6) for group 2.

7

Next, all inter-group pairs are updated on each process. E.g. process 1 would rotate (1,4),
(1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5) and (3,6).

After this is done, all the groups of columns except group 1 on process 1 are cycled anticlock-
wise in a ring. The result of this is shown in table 4.

process 1 process 2 process 3

Group 1 1 2 3 13 14 15 16 17 18

Group 2 7 8 9 4 5 6 10 11 12

Table 4: Parallel distribution of columns after 1 pass.

The inter-group columns are updated on each process as before, but now with the pairs of
groups. This action of cycling and updating the columns is repeated until all the columns are
back where they started. This completes one Jacobi iteration.

Since this work is replicated across the g-vectors, and since calculations big enough for the
work to be significant is generally well parallelised over g-vectors, it was decided that columns
should be distributed over the g-vector group.

Performance

While Jacobi’s algorithm has more scope for parallelism it is slower in serial than the LAPACK
routines, so has not entirely replaced the old diagonaliser in CASTEP. It was found that Jacobi
started to beat LAPACK at 24 processes, and on matrices larger than 750x750. CASTEP
automatically chooses which algorithm to use based on these criteria. Figure 4 shows the parallel
performance of ZHEEV and CASTEP’s Jacobi algorithm on varying numbers of cores.

0.1

1

10

100

1000

10000

1 10 100 1000 10000

Ti
m

e
(s

)

of cores

Performance of ZHEEV vs Jacobi diagonalisers

1000x1000
2000x2000
4000x4000
6000x6000

Figure 4: Comparison of ZHEEV (1-24 cores) and Jacobi (24-3456 cores) diagonalisers on various
sized matrices. ZHEEV is using LibSci’s threading, and Jacobi is MPI parallel. Note the logarithmic
scale on both axes.

8

It can be seen from figure 4 that, while ZHEEV saturates around 6 threads, Jacobi is able
to scale up to N

4 cores. Beyond this, there are not enough columns to distribute across any
remaining processes. Beyond this point, performance does not change significantly as additional
cores are not used.

Results

1024

2048

4096

8192

6 12 24 48 96 144 192

Ti
m

e
(s

)

of nodes

Performance of Si8 7x7x7 benchmark

CASTEP 8.0
1 thread

2 threads
6 threads

12 threads
24 threads

0.5

1

1.5

2

2.5

3

3.5

6 12 24 48 96 144 192
Sp

ee
du

p
ov

er
 6

 n
od

es
, 1

 th
re

ad
 p

er
 M

PI

of nodes

Scaling of Si8 7x7x7 benchmark

1 thread
2 threads
6 threads

12 threads
24 threads

Figure 5: Performance of the Si8 7x7x7 supercell benchmark on different numbers of nodes in
CASTEP 9.0. The times are also compared to that of CASTEP 8.0. Here, each System V SMP
group contains 12 cores.

Figure 5 shows how CASTEP 9.0 scales with core count, on varying numbers of nodes. It
shows that while lower thread numbers are faster for small core counts, higher thread numbers
scale much better and are eventually much faster. For example, 2 threads per MPI process is
the fastest on 6, 12 and 24 nodes, but does not scale beyond that. 24 threads however is the
slowest on 12 and 24 nodes, but is able to scale right up to 144 and 192 nodes, where it is the
fastest.

This is not surprising as it is the communications that are the bottleneck in the scaling limit.
Since higher thread numbers means fewer MPI processes, this communication time would be
expected to reduce.

It is also interesting to note that calculations with 1 thread per MPI process ran out of
memory after 48 nodes, and 2 threads per MPI process ran out at 192 nodes.

Future work

WP1 While all the major bottlenecks for large calculations have been threaded where possi-
ble, the profile for smaller systems can be significantly different. While beyond the scope of this
project, threading could be implemented in such routines, allowing non-MPI CASTEP binaries
to still make use of multi-core machines.

9

In addition, new technologies such as the Xeon Phi and GPU cards make heavy use of many-
threaded architectures. Extensions into OpenMP 4 or OpenACC will allow for such accelerators
to be used more effectively. Alternatively, MPI 3 provides a shared memory interface which,
while still relatively new, could be of benefit and may be worth investigating.

WP2 Now that the diagonaliser is in place in CASTEP, various optimisations could be made
to it, for example with improved blocking or asynchronous communications. The Littlefield
paper[5] does suggest a way of doing a 2D distribution of the work, enabling the calculation to
scale to higher numbers of cores. This was implemented using threading, but performance for
medium sized matrices was poor, so this was left out. However it may well still possible, either
with a different approach to the threading or by distributing in 2D over MPI.

Beyond the diagonaliser, matrix inversion is another task which is currently not MPI parallel.
While not a bottleneck at the moment, this scales cubically with the system size and will
eventuall dominate the run-time for a large enough system.

Summary

This project set out to reduce memory per node of large calculations, without affecting the
runtime of the calculation. In addition to this, it also aimed to improve the parallel scaling of
such calculations by distributing the work of the matrix diagonalisation.

By implementing OpenMP threading and making selected use of threaded BLAS and LA-
PACK libraries, the number of MPI processes per node has been reduced without any significant
slowdown. Indeed, on large core counts, using threads often turns out to be faster than not. By
doing this, the amount of memory per node has been reduced dramatically.

By implementing a parallel matrix diagonaliser, calculations on large systems has sped up
significantly, with systems such as Si8 7x7x7 (6500 bands) seeing a reduction in the time spent
in the diagonaliser from over 1200 seconds to less than 200 seconds on 48 nodes.

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK National
Supercomputing Service (http://www.archer.ac.uk).

References

[1] S.J. Clark et al., First principles methods using CASTEP ; Zeitschrift für Kristallographie -
Crystalline Materials, (2005) 220: 5-6 p567.

[2] CASTEP web page; http://www.castep.org Accessed 31 August, 2015.

[3] A. Turner, Parallel Software usage on UK National HPC Facilities 2009 - 2015 ; ARCHER
White paper, 2015.

[4] ARCHER Usage Data; http://www.archer.ac.uk/documentation/white-papers/app-
usage/ARCHER report.txt, Accessed 28 August, 2015.

[5] R. Littlefield, K. Maschhoff, Investigating the performance of parallel eigensolvers for large
processor counts; Theoretica Chemica Acta (1993) 84: p457-473.

[6] G. Golub, C. Van Loan, Matrix computations 4th Edition; John Hopkins University Press,
2013.

10

