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1.1 Abstract

Chemical reactions, drug-protein interactions, and many chemical and physical
processes on surfaces are examples of technologically important processes that
happen in the presence of solvents. The inclusion of electrolytes (salt) in solvents
such as water is crucial for biomolecular simulations, as most processes
(e.g. protein-protein or protein-drug interactions or DNA mutations) take place
in saline solutions. In this project we aimed to develop the capability to model
electrolyte-containing solvents in quantum-mechanical simulations of materials
from first principles.

The above aim has been achieved by extending the functionality and
performance of two existing computer codes in tandem - the DL_MG multigrid
solver and the ONETEP linear-scaling density functional theory package. The
modifications to DL_MG were extensive in scope and included implementing an
inexact-Newton solver, revisions in the treatment of boundary conditions, with
simultaneous careful consideration of numerical stability in the presence of
severe nonlinearities, and with continued excellent parallel performance in mind.
Modifications to ONETEP involved comparatively less implementation, with
significant focus on the physically correct capturing of relevant energy terms
that arise in the presence of Boltzmann ions.

1.2 Introduction

The sustained exponential growth of computer power over the last decades now
offers the capability to study quantum models of large molecules interacting in
the presence of an ionic solute, which are of fundamental importance in a
number of scientific fields and technological applications. One of most widely
used equations to describe the solute and ion effects on the electrostatic
potential is the Poisson-Boltzmann Equation (PBE):
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where ne is the electronic density, nw: is the combined electronic and nuclear
density, ¢ is the electrostatic potential, and ¢ is the dielectric permittivity, which
is a functional of ne1 in ONETEP, gi are the charges of the ions that are in solution,
each with a bulk concentration of c;, V(r) is the steric potential, and S =1/kT is
the usual Boltzmann factor.

This project constituted a continuation of the dCSE project “Multigrid solver
module for ONETEP, CASTEP and other codes“ (1) which delivered the multigrid
solver DL_MG to ONETEP and CASTEP developers. In the first release of DL_MG
the Poisson Equation solver was fully tested and integrated in ONETEP and a
basic implementation of the non-linear solver was produced as well. The work in
the current project aimed to complete the implementation of the non-linear
solver for PBE (WP1), its integration with ONETEP (WP2) and to release DL_MG
to the wider community (WP3).

In the following sections we describe the main steps of the development for each
of the work packages (WPs) and the new features made available.

1.3 WP1: Poisson-Boltzmann Equation solver

The first version of the nonlinear PBE solver was implemented with the Full
Approximation Scheme (FAS) algorithm (2). Although this solution is elegant
from a formal point of view, as it uses the multigrid elements developed for the
Poisson equation solver, it converges very slowly or not at all for the values of
concentration and temperature that are in the range of physical relevance.
Consequently, we have moved to an inexact-Newton algorithm devised
specifically for PBE of solutes described in detail in Ref. (3). In short, in this
algorithm the linear multigrid is used at each step to find an approximate
solution of the linearised equation. A damping factor is also computed for the
linear correction in order to ensure global convergence. From the
implementation point of view the work performed consisted in the following
main steps: i) writing the subroutine for the inexact-Newton algorithm and the
auxiliary subroutines for the computation of the damping factor, ii) writing a
suite of tests to verify the correctness of the implementation, iii) extending the
application programing interfaces and iv) testing and validation.

The parallel performance of the Poisson solver was presented in detail in (1). We
should note here that the parallel scaling of the non-linear solver is not affected
by the addition of the non-linear algorithm, as the majority of operations are
local. If anything, the parallel scalability improves as the ratio of FLOPs to data
transfers increases significantly in the non-linear section of the solver due to the
computationally intensive floating point computations which now involve the



(capped) exponential function, see Figure 1. To allow for full flexibility and
efficiency, both the hard-core and soft-core potentials were implemented in
separate functions. For the same reason the linearised PBE solver was
implemented separately. During this development work the boundary
conditions for the solver were extended to include Dirichlet, periodic and mixed
for all cases of the solver.
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Figure 1 Comparing the scaling of the PBE solver vs PE solver for a spherical charge problem. The

grid sizes, 449x545x609, are typical for ONETEP runs. The grid is distributed to 128 MPI ranks
along one dimension, again typical for ONETEP computational setup.

1.4 WP2: Extend the ONETEP solvent model to saline solutions

The ONETEP solvent model has been suitably extended to support implicit
solvation calculations in the presence of Boltzmann ions. A simple user interface
has been provided, where an additional section in the input file can be used to
specify species, charges and molar concentrations associated with the ions. The
interface between ONETEP and DL_MG has been generalised to allow
calculations where the linearised or full Poisson-Boltzmann equation is solved, in
addition to calculations with the pure Poisson equation that had previously been
supported.

Boundary conditions for implicit solvent calculations in saline solutions are now
automatically set up to use the Debye-Hiickel formulation, with a user option to
override the default setting.

Both the hard-core and the soft-core steric potentials have been implemented in
ONETEP. The hard-core potential strictly prevents the Boltzmann ions from
entering spherically-shaped regions centred on atoms (the sphere radii are given
through the input file), while the soft-core potential mimics damped Pauli
repulsion with a term proportional to A erf(ar)/r2, with A and a specified



through the input file, thereby repelling the ions with a continuous potential. The
steric potential is truncated at a user-specified distance to retain ONETEP's
linear scaling, the discontinuity at the cutoff distance is prevented by an
automatic shifting of the potential.

The defect-correction procedure has been extended to the case of non-zero salt
concentrations. Suitable defect-correction equations have been re-derived and
implemented through a concerted effort on both sides of the DL_MG and ONETEP
interface. The defects in both the Poisson and Boltzmann terms are printed
separately in the output to aid debugging in problematic situations.



The total energy expressions become non-trivial in the presence of Boltzmann
ions, with the full PBE case necessitating particular attention. Following
literature review (4) (5) (6), five energy terms have been identified and
implemented in the full PBE scheme. In addition to the straightforward and
previously implemented solvation of the solute in zero-ionic-strength solvent
these are

1. the electrostatic work of placing the solute in the already organized ion

atmosphere,

2. the electrostatic self-energy of the ion atmosphere,
the entropy of organizing the ions,
4. the so-called osmotic term arising from the excess osmotic pressure of the

w

mobile ion cloud.

Furthermore, the above terms have been generalised in two ways beyond what
is presented in established literature. First, the use of the capped exponential
function in practical PBE calculations introduces a number of difficulties that are
absent in purely-mathematical derivations of the above energy terms - with
certain cancellations only taking place for uncapped exponentials. Second, the
use of smooth ion accessibility functions (steric weights) complicates certain
expressions. Both of these difficulties have been carefully addressed in this
project.

The correctness of the implemented developments has been validated against
carefully set up calculations with APBS (7), which is a well-known package for
performing electrostatic calculations in the presence of solvent. While APBS is
geared towards classical (point-charge) calculations, in one of its modes of
operation it admits suitable quantities (charge density, permittivity, boundary
conditions, ionic accessibility) on a Cartesian grid, which allows mimicking the
set up of ONETEP solvation calculations. We demonstrated the agreement
between the electrostatic energies in ONETEP and APBS on a simple test-case of
a hydroxyl radical solvated in 0.1M NaCl for varying characteristics of hard-core
and soft-core steric potentials. Below we reproduce plots that demonstrate very
good agreement between APBS and ONETEP for both the linear and full
formulation of the Poisson-Boltzmann equation and the unsuitability of point-
charge solvation for meaningful comparisons.
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Comparison between ONETEP+DL_MG and APBS+PMG -- linear PBE.
Test case: OH- in 0.1M NaCl.
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Effect of ion accessibility on solvation energy.
Comparison between ONETEP+DL_MG and APBS+PMG -- full PBE.
Test case: OH- in 0.1M NaCl.
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energy of solvation of a hydroxyl radical in 0.1M NaCl, as computed by
ONETEP with the DL_MG solver and APBS with the PMG solver. Linearised
panel) and full (bottom panel) formulations have been tested. While
APBS's point-charge model (yellow) is seen to be unsuitable for direct
comparison against our formulation, a carefully set up distributed-charge

APBS calculation (blue) reproduces our results (red) very well.




1.5 WP3: Usability improvements and first public release

The addition of the non-linear solver and the linearised PBE solver in DL_MG has
significantly increased DL_MG's code complexity, and with it the number of input
parameters. In order to avoid setup errors or inconsistencies, the initialisation
subroutines now use a set of assertions to test the validity of the inputs.
Reporting in the log file was improved to cover the new cases. The public
subroutines can now return an error flag to the calling application, a number of
specific error codes with associated explanatory messages were created and
made available via an application programing interface that handles error
messages. The set of test cases was extended to cover the linear and non-linear
PBE. A test script was developed to run a suite of synthetic cases on a large
number of parallel execution models: varying MPI topologies, varying number of
OpenMP threads both in hybrid mode and standalone. This is the first defense
barrier against code changes that could accidentally introduce regressions.

An option to output the values of crucial quantities, at every step of the multigrid
defect-correction procedure, for a user-defined cross section through the
simulation cell has been added. This greatly helps user-side debugging, should
the calculation be set up incorrectly. The quantities (optionally) printed include
the electronic density, electrostatic potential, permittivity, steric potential and
steric weight. The produced outputs are can be directly plotted using e.g. gnuplot.

The documentation, which contains a general description of the algorithms
employed and the details of all public interfaces, was integrated with the source
code using Doxygen.

The solver was extensively tested on ARCHER but also on other systems which
are available to UK scientists (e.g. Iridis4) and with all major compilers and
releases of MPL.

DL_MG source code releases and the online documentation are available through
CCP-Forge at http://ccpforge.cse.rl.ac.uk/gf/project/dl-mg/

1.6 Conclusions

Through extensive changes to the DL_MG solver and localised changes to
ONETEP, with careful consideration of the underlying theory and numerical
issues, we enabled the capability for density functional theory calculations with
implicit solvent and non-zero salt concentrations through a physically sound,
elegant and numerically efficient and scalable approach.
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