
	
	
	

KNL	Performance	
Comparison:	Linear	GS2	

	
March	2017	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	



	

	

2	

1. Compilation,	Setup	and	Input		

Compilation	

The	actual	code	that	was	used	in	the	testing	is	derived	from	the	publically	available	GS2	code	
(svn	checkout	svn://svn.code.sf.net/p/gyrokinetics/code/	gyrokinetics-code/gs2/trunk).	The	
main	algorithm	is	unchanged	and	the	build	system	is	effectively	identical	to	that	of	GS2.	The	main	
difference	in	the	source	code	is	simply	the	removal	of	code	that’s	unused	in	linear	simulations.	
	
GS2	provides	a	makefile	designed	for	Archer,	to	build	on	the	front-end	the	following	commands	
are	used;	
	
make	WITH_EIG=	USE_NEW_DIAG=	depend	
make	WITH_EIG=	USE_NEW_DIAG=	gs2	
	
When	building	for	the	KNL	we	add	“CHIP=knl”	to	the	make	command.	
	
The	modules	loaded	on	the	front	end	are:	
	

	
	
The	modules	loaded	on	the	KNL	system	are:	

	

Setup	

Used	the	quad_100	memory	option	for	all	KNL	runs.	
	
Restricted	study	to	a	single	node	in	each	case	with	1	thread	and	1	hyperthread	per	MPI	process.	
The	number	of	MPI	processes	was	varied	from	1	to	the	maximum	provided	by	a	single	node.	

Input	

The	input	file	that	was	used	is	provided	at	the	end	of	this	document.	This	provides	the	input	for	
the	“collisional”	runs,	the	“collisionless”	runs	set	`collision_model=’none’	`	but	are	otherwise	
identical.		This	is	a	fairly	representative	“full	physics”	linear	simulation,	although	larger	grids	are	
not	uncommon.	
	
Note	a	few	of	the	input	variables	are	in	different	namelists	for	the	reduced	code	used	here	as	
compared	to	GS2.	It	should	be	straightforward	to	transform	back	to	a	GS2	input	file	by	referring	
to	http://gyrokinetics.sourceforge.net/wiki/index.php/GS2_Input_Parameters.	

	
	
	

		1)	modules/3.2.10.2																							9)	packages-archer																							17)	cray-libsci/13.2.0																				25)	alps/5.2.3-2.0502.9295.14.14.ari						33)	scalasca/2.2
		2)	eswrap/1.3.3-1.020200.1278.0										10)	bolt/0.6																														18)	udreg/2.3.2-1.0502.9889.2.20.ari						26)	rca/1.0.0-2.0502.57212.2.56.ari							34)	papi/5.4.1.2
		3)	switch/1.0-1.0502.57058.1.58.ari						11)	nano/2.2.6																												19)	ugni/6.0-1.0502.10245.9.9.ari									27)	atp/1.8.3																													35)	ddt/4.0.1.0_32296
		4)	craype-network-aries																		12)	leave_time/1.0.0																						20)	pmi/5.0.7-1.0000.10678.155.25.ari					28)	PrgEnv-intel/5.2.56																			36)	intel/15.0.2.164
		5)	craype/2.4.2																										13)	quickstart/1.0																								21)	dmapp/7.0.1-1.0502.10246.8.47.ari					29)	cray-netcdf/4.3.3.1																			37)	cray-petsc-complex/3.5.2.1
		6)	pbs/12.2.401.141761																			14)	ack/2.14																														22)	gni-headers/4.0-1.0502.10317.9.2.ari		30)	fftw/3.3.4.5
		7)	craype-ivybridge																						15)	xalt/0.6.0																												23)	xpmem/0.1-2.0502.57015.1.15.ari							31)	cube/4.3
		8)	cray-mpich/7.2.6																						16)	epcc-tools/6.0																								24)	dvs/2.5_0.9.0-1.0502.1958.2.55.ari				32)	scorep/1.4

	1)	modules/3.2.10.5																		7)	gni-headers/5.0.7-3.1												13)	sysadm/2.2.2-3.39																19)	cray-mpich/7.4.4																	25)	cray-netcdf/4.4.1
		2)	alps/6.1.6-20.1																			8)	dmapp/7.1.0-12.37																14)	lustre-utils/2.3.4-6.74										20)	pbs/default																						26)	fftw/3.3.4.10
		3)	nodestat/2.2-2.40																	9)	xpmem/0.1-4.5																				15)	Base-opts/2.1.3-2.16													21)	cray-libsci/16.09.1														27)	papi/5.4.3.3
		4)	sdb/2.2.1-3.119																		10)	llm/20.2.4-3.18																		16)	craype-mic-knl																			22)	pmi/5.0.10-1.0000.11050.0.0.ari		28)	intel/17.0.0.098
		5)	udreg/2.3.2-4.6																		11)	nodehealth/5.2.0-5.46												17)	craype-network-aries													23)	atp/2.0.3
		6)	ugni/6.0.12-2.1																		12)	system-config/2.2.18-3.38								18)	craype/2.5.7																					24)	PrgEnv-intel/6.0.3



	

	

3	

2. Performance	Data	
	
The	figures	below	compare	the	time	to	solution	(initialisation+advance)	on	the	KNL	and	front	
end	Xeon	as	the	number	of	MPI	processes	is	varied	within	a	single	node.	Rather	than	plotting	
against	the	number	of	processes	directly,	the	x-axis	is	instead	normalised	by	the	number	of	
processes	available	in	a	node	(rough	calculations	suggest	one	KNL	node	requires	roughly	the	
same	power	as	one	Xeon	node).	The	left	hand	plot	is	for	the	collisionless	case	whilst	the	right	plot	
shows	the	collisional	case.	Also	shown	is	the	ideal	scaling	for	each	case.	On	the	KNL	the	number	
of	MPI	processes	used	are	{1,2,4,8,16,24,32,48,64}	and	on	the	front	end	the	number	of	MPI	
processes	are	{1,2,4,8,16,24}.	

	
	
The	above	plots	indicate	that	for	this	linear	problem	the	KNL	runtime	never	falls	below	the	front	
end	time,	for	a	given	fraction	of	a	node.	The	efficiency	(ideal/actual)	is	shown	in	the	plots	below	
(left	is	collisionless,	right	is	collisional).	The	efficiency	for	the	KNL	and	Front	end	runs	follow	each	
other	fairly	closely.	

	
	
The	raw	data	for	the	first	plots	is	provided	in	appendix	2.	

3. Summary	and	Conclusions	
	
Currently	in	these	preliminary	investigations	it	appears	that	these	linear	simulations	do	not	
benefit	from	the	use	of	KNL.	This	is	perhaps	to	be	expected	given	that	the	code	is	currently	pure	
MPI	and	does	not	take	advantage	of	shared	memory.	A	number	of	the	more	costly	operations	(a	
global	data	transpose,	a	matrix	inversion	and	a	matrix-vector	multiplication)	within	the	code	are	
expected	to	benefit	from	the	use	of	shared	memory	and	future	development	to	explore	this	will	
potentially	offer	more	favourable	KNL/Xeon	comparisons.	
	



	

	

4	

	

	
	

Appendix	1:	input	file	

&kt_grids_knobs	
		grid_option	=	"single"	
/	
	
&kt_grids_single_parameters	
		n0	=	50	
		rhostar_single	=		0.001084	
/	
	
&theta_grid_parameters	
		ntheta	=	32		
		nperiod	=3		
		eps	=	0.18	!0.18	
		epsl	=	2.0	
		shat	=	0.776	
		pk	=	1.4285	
		shift	=		0.0		
		akappa	=	1.0	
		akappri	=	0.0	
		tri	=	0.0	
		tripri	=	0.0	
		qinp	=	1.44	
/	
	
&theta_grid_knobs	
		equilibrium_option	=	"eik"	
/	
	
&theta_grid_salpha_knobs	
		model_option	=	"default"	
/	
	
&theta_grid_eik_knobs	
		local_eq	=	.true.	
		efit_eq	=	.false.	
		gen_eq	=	.false.	
		ppl_eq	=	.false.	
		transp_eq	=	.false.	
		bishop	=	2	
		beta_prime_input	=	0.0	
		s_hat_input	=	0.776	
		iflux	=0	
		irho	=	2	
		writelots	=	.true.	
/	
	
&le_grids_knobs	
		ngauss	=	8	
		negrid	=	8	
/	
	
&dist_fn_knobs	



	

	

5	
		fexp	=		0.48	
		bkdiff	=	0.05	
/	
	
&knobs	
		fphi	=	1.0	
		fapar	=	1.0	
		fbpar	=	1.0	
		delt	=	0.075	
		nstep	=	10000	
		beta	=	0.001	
		tite	=	1.0	
		zeff	=	1.0	
/	
	
&layouts_knobs	
!The	following	should	be	removed	when	working	with	GS2	
		imbalance_l	=	.true.	
		imbalance_e	=	.true.	
		imbalance_s	=	.true.	
		imbalance_g	=	.true.	
/	
	
&collisions_knobs	
		collision_model	=	"default"!"none"		
/	
	
&species_knobs	
		nspec	=		2	
/	
	
&species_parameters_1	
		z	=	1.0	
		mass	=	1.0	
		dens	=	1.0	
		temp	=	1.0	
		tprim	=	6.92	
		fprim	=	2.22	
		uprim	=	0.0	
		vnewk	=	0.03	
		type	=	'ion'	
		bess_fac	=	1.0	
/	
	
&species_parameters_2	
		z	=	-1.0	
		mass	=	2.74e-4	
		dens	=	1.0	
		temp	=	1.0	
		tprim	=	6.92	
		fprim	=	2.22	
		uprim	=	0.0	
		vnewk	=	1.97	
		type	=	'electron'	
		bess_fac	=	1.0	
/	
	
&init_g_knobs	
		ginit_option	=	"default"	



	

	

6	
		chop_side	=	.false.	
		phiinit	=	1.0e-5	
/	
	
&gs2_diagnostics_knobs	
		write_ascii	=	.false.	
		write_moments	=	.false.	!.true.	
		ob_midplane	=	.false.	
		write_final_moments	=	.true.	
		save_for_restart	=	.false.	
		nsave	=	1000	
		nwrite	=	200	
		navg	=	100	!50	
		omegatol	=	-1.0e-3		
		omegatinst	=	500.0	
/	
	

Appendix	2:	Raw	data	

KNL	timing	data	
	
Number	of	mpi	processes	 Time	(mins)	–	Collisional	case	 Time	(mins)	–	Collisionless	case	
1	 19.66	 5.33	
2	 10.52	 2.88	
4	 5.53	 1.51	
8	 3.34	 0.82	
16	 1.77	 0.47	
24	 1.40	 0.49	
32	 0.94	 0.30	
48	 0.78	 0.25	
64	 0.75	 0.23	
	
Front	end	timing	data	
	
Number	of	mpi	processes	 Time	(mins)	–	Collisional	case	 Time	(mins)	–	Collisionless	case	
1	 5.77	 1.60	
2	 3.06	 0.85	
4	 2.01	 0.47	
8	 1.04	 0.32	
16	 0.61	 0.16	
24	 0.48	 0.14	
	


