

KNL Performance

Comparison: R and SPRINT
Adrian Jackson

a.jackson@epcc.ed.ac.uk

March 2017

2

1. Introduction
R (https://www.r-project.org/) is a statistical programming language widely used for data

analytics and statistics. It is an interpreted language, like Python, so consists of a programming

language and an interpreter that runs users’ programs.

R has a number of different mechanisms for shared memory parallelism (parallelizing a program

within a single ARCHER node), generally based around loop/thread parallelism. There are also

distributed memory parallel packages for R. For this benchmarking we investigated the

performance of the foreach shared memory parallel functionality (which distributes loop

iterations to different threads) and the SPRINT distributed memory parallel package

(http://www.r-sprint.org/).

2. Compilation, Setup and Input

Compilation

There are a number of pre-requisites required to build R on a system like ARCHER. We started

by installing:

• bzip2

• xz

• curl

• pcre

When building R it is important to configure the maths libraries it uses correctly to give good

performance. There are two options on ARCHER, Cray’s libsci or Intel’s MKL. For these

benchmarks we used Intel’s MKL and configured the build to use these like this (note, the same

configuration can be used for the KNL and IvyBridge nodes on ARCHER):

export LIBSCI="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64 -

lmkl_sequential -lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm -

ldl"

export LAPACK_LIBS="$LIBSCI"

export BLAS_LIBS="$LIBSCI"

export CRAYPE_LINK_TYPE=dynamic

On the main ARCHER system we then configured ARCHER using the following setup:

./configure --prefix=/work/d67/d67/adrianj7/R-mkl --with-blas --with-

lapack -with-x=no CC=cc FC=ftn F77=ifort CXX=CC CFLAGS="-

I/work/d67/d67/adrianj7/R-mkl/bzip2/include -

I/work/d67/d67/adrianj7/R-mkl/xz/include -I/work/d67/d67/adrianj7/R-

mkl/pcre/8.35/include -I/work/d67/d67/adrianj7/R-

mkl/curl/7.53.0/include -I/work/d67/d67/adrianj7/R-

mkl/readline/6.3/include -

I/opt/intel/composer_xe_2015.2.164/mkl/include" CPPFLAGS="-

I/work/d67/d67/adrianj7/R-mkl/bzip2/include -

I/work/d67/d67/adrianj7/R-mkl/xz/include -I/work/d67/d67/adrianj7/R-

mkl/pcre/8.35/include -I/work/d67/d67/adrianj7/R-

mkl/curl/7.53.0/include -I/work/d67/d67/adrianj7/R-

mkl/readline/6.3/include -

I/opt/intel/composer_xe_2015.2.164/mkl/include" LDFLAGS="-

L/work/d67/d67/adrianj7/R-mkl/bzip2/lib -L/work/d67/d67/adrianj7/R-

mkl/xz/lib -L/work/d67/d67/adrianj7/R-mkl/pcre/8.35/lib -

L/work/d67/d67/adrianj7/R-mkl/curl/7.53.0/lib -

L/work/d67/d67/adrianj7/R-mkl/readline/6.3/lib"

3

On the ARCHER KNL system we configured R as follows:

./configure --prefix=/work/knl-users/adrianj/R --with-blas --with-

lapack -with-x=no CC=cc FC=ftn F77=ftn CXX=CC CFLAGS="-I/work/knl-

users/adrianj/R/xz/include -I/work/knl-

users/adrianj/R/pcre/8.35/include -I/work/knl-

users/adrianj/R/curl/7.53.0/include -I/work/knl-

users/adrianj/R/readline/6.3/include -

I/opt/cray/pe/libsci/16.09.1/GNU/5.1/mic_knl" CPPFLAGS="-I/work/knl-

users/adrianj/R/xz/include -I/work/knl-

users/adrianj/R/pcre/8.35/include -I/work/knl-

users/adrianj/R/curl/7.53.0/include -I/work/knl-

users/adrianj/R/readline/6.3/include -

I/opt/cray/pe/libsci/16.09.1/GNU/5.1/mic_knl" LDFLAGS="-L/work/knl-

users/adrianj/R/bzip2/lib -L/work/knl-users/adrianj/R/xz/lib -

L/work/knl-users/adrianj/R/pcre/8.35/lib -L/work/knl-

users/adrianj/R/curl/7.53.0/lib -L/work/knl-

users/adrianj/R/readline/6.3/lib"

We then ran make and built R.

As R is an interpreted language, with a full runtime system, once the runtime system has been

built the additional packages we require need to be installed in it. This involves running the R

runtime system (R) and running the following commands.

options(download.file.method='wget')

install.packages('rlecuyer')

install.packages('boot')

install.packages('e1071')

install.packages('rbenchmark')

install.packages('randomForest')

install.packages('doMC')

options(useHTTPS=FALSE)

source("https://bioconductor.org/biocLite.R")

biocLite("ShortRead")

install.packages('sprint', dependencies=TRUE,

repos='http://cran.rstudio.com/', INSTALL_opts ='--no-test-load')

For the ARCHER KNL system the build of R failed because part of the build process involves

running the programs that have been compiled to install additional packages. However, as the

programs have been compiled to run on the KNL hardware they fail on the KNL login nodes

because they don’t have the same instruction set as the KNL processors themselves.

This meant we had to build R on the ARCHER KNL nodes without the craype-mic-knl

module loaded, and therefore without the correct KNL instruction set selected. We compiled

with the craype-ivybridge module loaded. This means that the R executable was not built

for the vector instructions on the KNL processors.

We recognized that this might create performance issues for R on the KNL system so we also

built R on a standalone KNL system, available at EPCC and called ninja, and copied that version of

R to the ARCHER KNL system to allow a comparison between the version built without the KNL

instruction set and the one built natively on the KNL

Setup

We ran on a number of standard ARCHER IvyBridge nodes, and the quad flat (aoe:quad_0) KNL

nodes. We did some initial testing of MCDRAM performance for the benchmark we are using in

the evaluation and it had no performance impact so we have not used MCDRAM for our tests.

4

We used up to 64 cores per KNL node, with no hyperthreading on either system. Hyperthreading

was investigated and did not improve performance so is not presented here.

The performance data we present is the fastest version of two independent runs for each

benchmark. There was no significant variation between the runtime of the two different runs so

error bars outlining the variability of performance for each data point are not included.

Input

For the test we are using the randomForest functionality in R, with a test cases representing

100000 genes and 62 cases. We implemented versions of this script using both the SPRINT

functionality and the foreach functionality available in R. The main functionality from these

input scripts are provided in Appendix A.

For these benchmarks we have skipped the randomForest tuning step and hard coded a number

of trees and the number of variables available for splitting at each tree node (mtry). This

enables us to quickly evaluate the randomForest performance using a consistent setup.

3. Performance Data
Figure 1 shows the core for core performance of R when using SPRINT or foreach on KNL and

IvyBridge processors. We are comparing a number of different variations in this graph:

• R parallelisation strategies: foreach vs SPRINT

• Compilers on the main ARCHER system: Intel vs GNU

• Version compiled directly on KNL (ninja) vs compiled on the ARCHER login nodes

• Processors: IvyBridge vs KNL

Note, where a compiler is not mentioned, the Intel compiler was used.

Figure 1: R parallel performance (SPRINT and foreach) on IvyBridge and KNL processors

 We can see on a core for core comparison both the SPRINT and foreach implementations are

slower on KNL than they are on IvyBridge. We can see that foreach and SPRINT on KNL offer

similar performance, although at higher core counts foreach is a little faster (172 seconds vs

130 seconds at 64 cores on the KNL).

It is also evident from the graph that the version of R compiled on our native KNL system (ninja),

where we can compile directly on the KNL processor and therefore use the correct KNL compiler

flags, significantly outperforms the version we compiled on ARCHER. We can see targeting the

correct instruction set for the KNL is important in terms of performance. Indeed at 64 cores the

1

10

100

1000

10000

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of cores

SPRINT KNL

SPRINT Ivybridge

SPRINT IvyBridge - GNU Compiler

Foreach KNL

Foreach KNL ninja version

Foreach IvyBridge

5

ninja version is nearly 2x faster than the ARCHER KNL version (see the “Foreach KNL” points vs

the “Foreach KNL ninja version” points in Figure 1).

This highlights the importance of correct compilation on a system like the ARCHER KNL testbed,

and identifies a problem that we need to solve for the ARCHER system, either by enabling

compilation directly on the KNL nodes, or by providing some KNL based login nodes for

compilation.

We could not do a similar performance comparison for SPRINT as SPRINT requires MPI libraries,

and ninja does not have the Cray MPI libraries used on the ARCHER KNL system. However, a

direct comparison of foreach vs SPRINT on our standalone system (ninja) suggests that the

same performance impact is being experienced by the SPRINT version of the randomForest

benchmark on the ARCHER KNL system.

We can also see, from Figure 1, that the Intel compilers provides better performance on

IvyBridge processors than the GNU compilers.

Figure 2 presents a node for node comparison, rather than a core for core comparison, of the

SPRINT performance on the ARCHER and ARCHER KNL systems. As we have multiple data

points per node (i.e. 1, 2, 4, 8, 16, 24 cores are all 1 node) we can see a range of performances for

some of the node numbers.

Figure 2: Runtime of SPRINT on IvyBridge and KNL processors vs number of nodes used

 We can see from Figure 2 that the KNL system is not providing as good performance, on a node

for node basis, as the IvyBridge system, and it is not scaling either. However, the scaling issues

are likely to be because this test case isn’t large enough to require all the processes we are using

(128 MPI processes for the 2 node KNL data point). Indeed, the IvyBridge performance is not

scaling well when going from 1 to 2 to 3 nodes (3 nodes represent 72 MPI processes).

It is also likely that the poor KNL performance is, at least partly, due to the compilation issue we

observed with the foreach case (i.e. ARCHER build vs ninja build).

Finally, Figures 3 and 4 demonstrate performance improvements that can be achieved if

underpopulating on KNL processors by making sure threads or processes are properly

distributed across the processor rather than being clustered on the first N cores.

1

10

100

1000

10000

0 1 2 3

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of nodes

SPRINT KNL SPRINT Ivybridge

6

Figure 3: Comparing default KNL performance to the performance when foreach threads are

manually distributed across the cores as evenly as possible

 For the foreach case, where R is creating a set of threads to do the parallel work, we can use

the aprun flag -cc to ensure threads are distributed across cores, i.e. if we are running 16

threads, we can distribute them across the 64 cores like this:
aprun –n 16 –cc 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60 ./R

Such an approach gives between a 10-20% performance improvement over the default thread

mapping aprun will perform. Note, if you were doing this on a different system, not a Cray, you

could use the taskset utility to achieve the same benefits.

With the SPRINT version, where we have MPI processes rather than threads, we can use the

aprun depth flag (-d) to specify how many cores to allocate to each MPI process. For instance,

we could use this aprun line to run 16 SPRINT processes on the 64 cores of the KNL processor:
aprun –n 16 –d 4 ./R

As shown in Figure 4, this approach gives similar performance benefits (10-20%) for the SPRINT

version. Obviously, such an approach is not applicable if you are using all 64 cores on the KNL

processor, and it also does not give any benefit in our cases when using less than 4 cores (as we

aren’t able to saturate the hardware of a single quadrant with such a small number of processes

or threads).

The final data point on the balanced line in Figure 4 is where we are underpopulating on 2 nodes,

running 64 MPI processes, 32 on each node, with a depth of 2. This does provide a significant

speedup for the 2 node case, although it still isn’t quick enough to make it worth using the

resources of 2 nodes for the simulation.

100

1000

10000

0 10 20 30 40 50 60 70

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of cores

Foreach KNL

Foreach balanced

7

Figure 4: Comparing default KNL SPRINT performance to when MPI processes are distributed as

evenly as possible across cores

4. Summary and Conclusions
We have shown that R can be parallelised, and scale well with both shared memory (foreach)

and distributed memory (SPRINT) approaches on ARCHER. We have identified that compilation

on KNL needs careful attention and configuration to get the best performance on the KNL

processor, and some method of compiling applications that require it to be carried out directly on

the KNL would be useful.

We have also shown that process and thread placement can impact performance if you aren’t

filling up nodes (if you’re underpopulating). Currently R on KNL processors, at least for the

randomForest benchmark we used in this benchmarking, is slower than on IvyBridge processors.

5. Acknowledgements
This work was supported by Intel through EPCC’s IPCC project (Intel Parallel Computing Centre).

Fiona Reid and Emmanouil Farsarakis from EPCC kindly reviewed and improved the report.

Appendix A
The SPRINT random forest script:
best.mtry <- 477

ntrees = 8192

transformedInputData = t(inputdata)

before_bench <- Sys.time()

rf.train <- prandomForest(x=transformedInputData,

 y=sampleclasses,

 ntree=ntrees,

 importance=TRUE,

 proximity=TRUE,

 mtry=best.mtry)

100

1000

10000

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of cores

SPRINT KNL

SPRINT KNL balanced

8

after_bench <- Sys.time()

pterminate()

The foreach random forest script:
library(randomForest)

library(doMC)

registerDoMC(noOfThreads)

best.mtry <- 477

ntrees = 8192

rf.train <- foreach(ntreeloc=ntrees, .combine=combine,

.multicombine=TRUE,.packages='randomForest') %dopar% {

randomForest(x=transformedInputData,

 y=sampleclasses,

 ntree=ntreeloc,

 importance=TRUE,

 proximity=TRUE,

 mtry=best.mtry)

}

Appendix B
Timings for the graphs in this report. Figures 1 and 2 are based on this data.

ARCHER IvyBridge Timings

 SPRINT foreach

Number of Nodes

Used

Number of Cores

Used

GNU

Compiler

Intel

Compiler

Intel

Compiler

1 1 991 705 769

1 2 523 379 401

1 4 272 205 213

1 8 154 112 109

1 16 83 60 60

1 24 62 44 39

2 36 51 35

2 48 44 30

3 64 26

3 72 30

ARCHER KNL Timings

 SPRINT foreach

Number of Nodes

Used

Number of

Cores Used

Intel

Compiler

Intel

Compiler

Ninja

version

1 1 3606 3598 2228

1 2 2012 2011 1229

1 4 1015 1012 615

1 8 521 511 314

1 16 282 270 162

9

1 32 168 162 93

1 64 172 130 69

2 128 241

Figures 3 and 4 are based on this data from the ARCHER KNL system:

 SPRINT foreach

Number of

Nodes Used

Number of

Cores Used

Normal

distribution

Balanced

distribution

Normal

distribution

Balanced distribution

1 1 3606 3598

1 2 2012 1799 2011 1799

1 4 1015 911 1012 917

1 8 521 468 511 460

1 16 282 252 270 243

1 32 168 162 147

1 64 172 130

2 128 241 158

