
	
	
	

KNL	Performance	
Comparison:	CP2K	

	
March	2017	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

	

	

2	

1. Compilation,	Setup	and	Input		
	

Compilation	

CP2K	and	its	supporting	libraries	libint,	libxsmm,	libgrid,	and	libxc	were	compiled	following	the	
instructions	found	online	at:	
	
https://github.com/ARCHER-CSE/build-instructions/blob/master/CP2K/README.md	
	

• Revision	17772	of	CP2K	(February	22nd,	2017)	was	used		
	

This	code	version	can	be	obtained	by	checking	out	the	CP2K	repository	as	described	at	
https://www.cp2k.org/download	
	
Compiler	and	library	versions	used	were:	
	 	
Compiler/Library	 ARCHER	Xeon	 ARCHER	KNL	
Intel	Compiler	 16.0.2.181	 17.0.0.098	
MKL	 2016.2.181	 2017.0.098	
FFTW	 3.3.4.5	 3.3.4.10	
libint	 1.1.4	 1.1.4	
libxsmm	 1.6.3	 1.6.3	
libgrid	 	in	CP2K	distribution	 in	CP2K	distribution	
libxc	 2.2.2	 2.2.2	
	

Setup	

• The	CP2K	PSMP	(hybrid	MPI+OpenMP)	executable	was	used	on	both	systems	
	

• ARCHER	KNL	nodes	were	used	in	“quad_100”	configuration	(all	the	MCDRAM	configured	
as	an	additional	cache	level)	
	

• Runs	on	ARCHER	Xeon	nodes	were	executed	with	the	following	aprun	options:	
 –d $OMP_NUM_THREADS –cc numa_node
	

• For	runs	on	ARCHER	Xeon	nodes	the	Intel	OpenMP	runtime	environment	variable	
KMP_AFFINITY	was	set	as	follows:	
 export KMP_AFFINITY=none
	

• Runs	on	ARCHER	KNL	nodes	were	executed	with	the	following	aprun	options:	
 –d $OMP_NUM_THREADS –cc depth

	
• On	both	Xeon	and	KNL	nodes	the	number	of	MPI	ranks	and	number	of	OpenMP	threads	

per	rank	were	always	chosen	so	that	the	multiple	of	these	two	numbers	was	equal	to	the	
number	of	physical	cores	(24	for	Xeon,	64	for	KNL)	
	

• Following	initial	experimentation,	hyperthreads	were	left	disabled	(equivalent	to	the	
aprun	option	–j	1)	as	is	the	default	on	both	systems,	as	no	significant	performance	
benefit	was	observed	using	hyperthreading.		

Input	

Three	benchmark	calculations	were	run:	
1. H2O-64	
2. H2O-512	
3. LiH-HFX	

	

	

3	
	
H2O-XXX	Benchmarks	
For	both	the	H2O-XXX	benchmarks,	the	following	files	should	be	copied	from	the	CP2K	
distribution	to	a	working	directory	on	the	parallel	filesystem	accessible	to	compute	nodes:	
	
/tests/QS/benchmark/H2O-XXX.inp
/data/POTENTIAL
/data/GTH_BASIS_SETS	
	
To	run	an	H2O-XXX	benchmark	on	2	ARCHER	Xeon	nodes	with	2	OpenMP	threads	per	MPI	rank:	
	
export OMP_NUM_THREADS=2
aprun –n 24 –d $OMP_NUM_THREADS –cc numa_node cp2k.psmp –i H2O-XXX.inp –o H2O-XXX.log
	
To	run	the	same	benchmark	on	2	ARCHER	KNL	nodes	also	with	2	OpenMP	threads	per	MPI	rank:	
	
export OMP_NUM_THREADS=2
aprun –n 64 –d $OMP_NUM_THREADS –cc depth cp2k.psmp –i H2O-XXX.inp –o H2O-XXX.log
	
The	timing	information	can	be	extracted	by	looking	at	the	final	column	output	from:	
	
grep "CP2K " H2O-XXX.log
	
LiH-HFX	Benchmark	
For	the	LiH-HFX	benchmark,	the	following	files	should	be	copied	to	a	working	directory	on	the	
parallel	filesystem	accessible	to	compute	nodes:	
	
/tests/QS/benchmark_HFX/LiH/*
	
The	following	line	in	input_bulk_HFX_3.inp:	
 MAX_SCF 20
Should	be	changed	to	
 MAX_SCF 1
This	reduces	the	maximum	number	of	SCF	cycles	to	a	more	convenient	runtime.		
	
The	README	file	describes	the	steps	needed	to	run	the	benchmark.	Aprun	statements	should	be	
formed	in	the	same	way	as	described	above	for	the	H2O-XXX	benchmarks,	taking	into	account	the	
appropriate	–cc	option	depending	on	the	architecture.	Timings	can	be	extracted	as	above	but	
referring	to	the	final	log	file	that	is	output.		

	 	

	

	

4	

2. Performance	Data	
	
Figures	and	their	constitutive	data	are	provided	in	this	section.	Times	shown	are	for	those	threading	
configurations	that	give	the	best	performance	in	each	case.	The	CP2K	shorthand	for	naming	threading	
configurations	is:	

• MPI:	pure	MPI	
• X_TH:	X	OpenMP	threads	per	MPI	rank	

	
H2O-64	
	

	
	

Nodes	 Cores	used	 Best	time	(s)	 Threading	
Configuration	

1	 64	 62.993	 MPI	
2	 128	 47.735	 2_TH	
4	 256	 39.095	 4_TH	
6	 384	 46.458	 16_TH	
8	 512	 34.935	 8_TH	
Table	1:	best	times	for	H2O-64	on	ARCHER	KNL	

	
Nodes	 Cores	used	 Best	time	(s)	 Threading	

Configuration	
1	 24	 39.86	 MPI	
2	 48	 23.878	 MPI	
4	 96	 15.202	 MPI	
6	 144	 12.205	 MPI	
8	 192	 13.227	 MPI	
10	 240	 13.953	 MPI	
22	 528	 23.709	 6_TH	

Table	2:	best	times	for	H2O-64	on	ARCHER	Xeon	
	
Full	performance	data	is	included	in	tab-delimited	file	H2O-64.txt	

	

	

5	
	
H2O-512	
	

	
	
	
Nodes	 Cores	used	 Best	time	(s)	 Threading	

Configuration	
2	 128	 2197.655	 MPI	
4	 256	 1204.649	 MPI	
6	 384	 972.262	 MPI	
8	 512	 796.237	 MPI	

Table	3:	best	times	for	H2O-512	on	ARCHER	KNL	
	
	

Nodes	 Cores	used	 Best	time	(s)	 Threading	
Configuration	

2	 48	 1877.049	 MPI	
4	 96	 965.1	 MPI	
6	 144	 670.713	 MPI	
8	 192	 602.771	 MPI	
10	 240	 514.817	 MPI	
22	 528	 375.655	 2_TH	

Table	4:	best	times	for	H2O-512	on	ARCHER	Xeon	
	
Full	performance	data	is	included	in	tab-delimited	file	H2O-512.txt	
	
	 	

	

	

6	
LiH-HFX	
	

	
	
	
Nodes	 Cores	used	 Best	time	(s)	 Threading	

Configuration	
2	 128	 3552.465	 8_TH	
4	 256	 1830.474	 8_TH	
6	 384	 1255.725	 8_TH	
8	 512	 967.011	 8_TH	

Table	5:	best	times	for	LiH-HFX	on	ARCHER	KNL	
	

Nodes	 Cores	used	 Best	time	 Config	
2	 48	 2143.466	 2_TH	
4	 96	 1076.069	 MPI	
6	 144	 738.721	 2_TH	
8	 192	 552.808	 MPI	
10	 240	 447.037	 2_TH	
22	 528	 212.659	 2_TH	

Table	6:	best	times	for	LiH-HFX	on	ARCHER	KNL	
	
	
Full	performance	data	is	included	in	tab-delimited	file	LiH-HFX.txt	
	 	

	

	

7	

3. Summary	and	Conclusions	
	

• CP2K	is	slower	on	ARCHER	KNL	nodes	than	on	equal	numbers	of	ARCHER	Xeon	nodes	
o H2O-64	benchmark:	KNL	nodes	on	average	2.5x	slower	
o H2O-512	benchmark:	KNL	nodes	on	average	1.3x	slower	
o LiH-HFX	benchmark:	KNL	nodes	on	average	1.7x	slower	

	
	

• Single	threaded	pure	MPI	is	often	fastest,		
o On	KNL	multithreading	is	more	likely	to	be	beneficial,	especially	in	problems	

such	as	the	LiH-HFX	benchmark,	in	which	having	fewer	MPI	ranks	means	more	
memory	is	available	to	each	rank,	allowing	partial	integrals	to	be	stored	in	
memory	instead	of	expensively	recomputed	on	the	fly.		

	
• Hyperthreading	does	not	significantly	aid	performance	

	
• On	the	basis	of	these	benchmark	results	it	does	not	appear	to	be	worth	using	KNL	

instead	of	Xeon	
	

	

