

KNL Performance
Comparison: CASTEP

March 2017

2

1. Compilation, Setup and Input

Compilation

CASTEP 16.1.2 was compiled on both the ARCHER KNL and Xeon systems according to the
instructions found here:
 https://github.com/ARCHER-CSE/build-
instructions/blob/master/CASTEP/build_castep_16.1.2_intel16_ivybrg.md

The only difference from the above instructions is that for the KNL system the
"linux_x86_64_ifort16-XT” make configuration file was copied to "linux_x86_64_ifort17-XT” in the
obj/platforms directory of the CASTEP source tree, so that the build system had instructions to
build with the Intel 17 Compilers.

Compilers and library versions used were:

Compiler/Library ARCHER Xeon ARCHER KNL

Intel Compiler 16.0.2.181 17.0.0.098

FFTW 3.3.4.10 3.3.4.10

Setup

• The ARCHER KNL nodes were used in the “quad_100” configuration with all the

MCDRAM configured as an additional cache level.  

• Each (KNL and Xeon) node was fully populated by either MPI processes or a combination
of MPI processes and OpenMP threads. Hyperthreads were not enabled.

Input

The “medium”-sized Al3x3 benchmark was used. The files can be found at this link:
http://www.castep.org/CASTEP/Al3x3

The al3x3 simulation cell comprises a 270-atom sapphire surface, with a vacuum gap.

https://github.com/ARCHER-CSE/build-instructions/blob/master/CASTEP/build_castep_16.1.2_intel16_ivybrg.md
https://github.com/ARCHER-CSE/build-instructions/blob/master/CASTEP/build_castep_16.1.2_intel16_ivybrg.md
http://www.castep.org/CASTEP/Al3x3

3

2. Performance Data

For the KNL and Xeon systems, the benchmarks were run on 1, 2, 4 and 8 nodes, for the following
combination of MPI processes/threads per node:

 Processes per node (OpenMP threads per process)

KNL 64 (1) 32 (2) 16 (4) 8 (8) 4 (16)

Xeon 24 (1) 12 (2) 8 (3) 4 (6) 2 (12)

All numeric results can be found in the appendix.

2.1 MPI vs OpenMP

For both systems, with a single node, performance is best using pure MPI, with no OpenMP. For
the KNLs, with more than one node the best performance is found using two - or for larger node-
counts - four OpenMP threads per MPI process. On the Xeon system, except for the case of eight
nodes, pure MPI performs best.

100

1000

10000

1 2 3 4 5 6 7 8

T
im

e
(s

)

Nodes

KNL

1 Thread/Process

2 Threads/Process

4 Threads/Process

8 Threads/Process

16 Threads/Process

4

2.2 KNL vs Xeon

Taking the best combination of MPI and OpenMP each number of nodes, it is found that for one
and two nodes, the KNL system performs better than the Xeon system, but for a greater number
of nodes the Xeon system performs best, although not by a significant amount.

2.3 Speedup analysis

In order to directly compare the speedups between the KNL and Xeon systems, we calculate the
speedup relative to one node, then multiply this by the number of cores per node (24 in the case
of the Xeon, and 64 in the case of the KNL). The speedup graph (below) shows that for both

100

1000

10000

1 2 3 4 5 6 7 8

T
im

e
(s

)

Nodes

Xeon

1 Thread/Process

2 Threads/Process

3 Threads/Process

6 Threads/Process

12 Threads/Process

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

T
im

e
(s

)

Nodes

KNL vs Xeon

KNL

Xeon

5

systems, the speedup begins to deviate significantly from ideal at around 100-150 cores,
implying the problem does not scale well beyond this core-count.

The poor scaling for high core-counts could explain why the Xeon system has better performance
than the KNL for larger node counts, since the KNL nodes have more cores per node, so reach the
point where the problem no longer scales at a lower node count (2-3 nodes), whilst this is not
achieved until around 6 nodes in the case of the Xeon nodes.

The poor scaling of the problem could also contribute to the findings that on the KNL
performance was best with two or four OpenMP threads per MPI process.

3. Summary and Conclusions

In general, it was found that the KNLs performed better than the Xeon nodes for small (1-2)
node-counts, although the Xeon nodes performed better for larger node-counts.

On the Xeon system (except for 8 nodes) best performance was attained using pure MPI, however
for the KNL system performance was best using 2 OpenMP threads per MPI process for greater
than one node.

Considering the speedup results, it is found that the benchmark problem only scales up to 100-
150 cores. Much of the above findings about KNL vs Xeon must therefore be considered
cautiously, as two KNL nodes have 128 cores, and so have reached the point where the problem
no longer scales. Ideally a larger benchmark would be used, but the only available benchmarks
that are larger are too big to be run on eight KNL or Xeon nodes.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Sp
ee

d
u

p

Cores

Speedup (Normalised to number of cores)

KNL

Xeon

Ideal

6

Appendix – Numerical Results

KNL nodes:

Nodes Threads Best Speedup Speedup
(cores) 1 2 4 8 16

1 1426 1778 2150 3399 5709 1426 1.00 64

2 976 876 1323 1908 3195 876 1.62 104

4 813 729 712 1153 1775 712 2.00 128

8 729 514 510 622 993 510 2.79 178

Xeon Nodes:

Nodes Threads Best Speedup Speedup
(cores) 1 2 3 6 12

1 2426 2576 2923 4108 5308 2426 1.00 24

2 1177 1342 1446 1871 3136 1177 2.06 49

4 662 771 867 1169 1608 662 3.65 88

8 680 484 533 619 896 484 5.00 120

	1. Compilation, Setup and Input
	Compilation
	Setup
	Input

	2. Performance Data
	2.1 MPI vs OpenMP
	2.2 KNL vs Xeon
	2.3 Speedup analysis

	3. Summary and Conclusions
	Appendix – Numerical Results

